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ABSTRACT

Homotopy Type Theory (HoTT) is a putative new foundation for mathematics grounded

in constructive intensional type theory that offers an alternative to the foundations

provided by ZFC set theory and category theory. This article explains and motivates

an account of how to define, justify, and think about HoTT in a way that is self-contained,

and argues that, so construed, it is a candidate for being an autonomous foundation for

mathematics. We first consider various questions that a foundation for mathematics

might be expected to answer, and find that many of them are not answered by the stand-

ard formulation of HoTT as presented in the ‘HoTT Book’. More importantly, the

presentation of HoTT given in the HoTT Book is not autonomous since it explicitly

depends upon other fields of mathematics, in particular homotopy theory. We give an

alternative presentation of HoTT that does not depend upon ideas from other parts of

mathematics, and in particular makes no reference to homotopy theory (but is compat-

ible with the homotopy interpretation), and argue that it is a candidate autonomous

foundation for mathematics. Our elaboration of HoTT is based on a new interpretation

of types as mathematical concepts, which accords with the intensional nature of the type

theory.
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1 Introduction

Homotopy Type Theory (HoTT) is first and foremost a research programme

within mathematics that connects algebraic topology with logic, computer

science, and category theory. Its name derives from the way it integrates

homotopy theory (which concerns spaces, points, and paths) and formal

type theory (as pioneered by Russell, Church, and Gödel, and developed in

computer science) by interpreting types as spaces and terms of them as points

in those spaces. Hence, the extant text on the theory (The Univalent

Foundations Program [2013]; hereafter the ‘HoTT Book’), hereafter the

‘HoTT Book’, involves homotopy theory throughout.

The authors of the HoTT Book are concerned to develop and promote

HoTT for working mathematicians, and to establish it as a foundation for

mathematics—the subtitle of the HoTT Book is ‘Univalent Foundations of

Mathematics’.1 Here the authors mean ‘foundation’ in the sense of a frame-

work or language for mathematical practice. They make a strong case that

HoTT can indeed serve as a foundation in this sense, demonstrating how to

characterize mathematical structures such as natural numbers, real numbers,

1 Indeed, much of the interest in HoTT is due to the fact that it may be regarded as a ‘program-

ming language for mathematics’, and it is formulated in a way that facilitates automated com-

puter proof checking (HoTT Book [2013], p. 10).
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and groups in the language of HoTT, and how to use it to formalize proofs in

homotopy theory.

In this article, we grant for the sake of argument that HoTT is adequate as a

framework for mathematics, and hence as a foundation in this restricted sense.

However, philosophers often mean something stronger by ‘foundation for

mathematics’—they require a foundation to provide not just a language but

also a conceptual and epistemological basis for mathematics, and moreover

one that can be formulated without relying upon any other existing founda-

tion.2 If a system is to serve as a foundation for mathematics in this stronger

sense, it must be possible to present it in a way that does not make reference to

other parts of mathematics such as homotopy theory.

This article explains how to define, motivate, and think about HoTT in a

way that is self-contained and does not depend upon other mathematics. So

construed, HoTT is a candidate for being an autonomous foundation for

mathematics; arguably, moreover, our interpretation improves on the stand-

ard one, as explained below. (Of course, this article does not present all the

technical details of HoTT—for this, see (HoTT Book [2013]; Ladyman and

Presnell [2014])—but it does introduce its essential features.) It is important to

note that we do not alter the framework of HoTT, but rather reconstruct and

interpret the formal theory given in the HoTT Book, often answering ques-

tions that its authors did not address rather than answering them differently.

Thus, while this way of thinking about HoTT does not presuppose the homo-

topy interpretation, it also does not introduce anything that is incompatible

with that interpretation.

In order to judge whether HoTT provides a foundation for mathematics, it

is essential to be clear about what is meant by ‘foundation’. There are many

related notions in the folklore of the field, but not everyone in the field agrees

about what is and is not required of a foundation of mathematics. It is pre-

cisely because this is not made make explicit that some disputes about the

foundations of mathematics involve the protagonists talking past each other.

In the next section we therefore list a number of questions of different kinds,

pertaining to semantics, metaphysics, and epistemology, that a foundation for

mathematics might be required to answer.3

Many foundational programmes give answers to some questions that make

other questions particularly difficult. For example, if the proposed ontology of

mathematics consists of abstract entities with no causal connection to the

2 This is the notion of an ‘autonomous’ foundation similar to that of (Linnebo and Pettigrew

[2011]) that we define below.
3 We make no great claims for the originality of our characterization of foundation, but we are

not aware of any similar explicit characterization in the literature. The most detailed treatment

that we have found is the one due to Linnebo and Pettigrew ([2011]), but ours differs very

significantly from theirs. We give further references to extant discussions of foundations in

Footnote 8.
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physical world, then this raises the question of why we should believe in such

entities, and how we can come to have access to them at all (the ‘access

problem’; see Benacerraf and Putnam [1983], pp. 30–3). Ideally, a founda-

tional programme should answer philosophical questions about mathematics

without generating new, more difficult questions, and its answers should hang

together with each other, with mathematical practice, and with our broader

understanding of the world. For example, its epistemological claims should

follow naturally from the ontology, without positing new, mysterious ways for

the mind to gain access to knowledge of non-physical things. The interpret-

ation of HoTT we propose in this article is intended to meet these desiderata,

give answers to the questions of Section 2, avoid the access problem, and fit

well with mathematical practice.

Our primary aim is not to convince the reader that HoTT can really do all

this, nor that it is to be preferred as a foundation for mathematics over the

usual foundation provided by ZFC set theory.4 Nor is it to argue that math-

ematics must have a foundation that answers all the questions set out below.5

Rather, our intention is to demonstrate (assuming HoTT’s adequacy as a

framework for mathematical practice) that, under our proposed interpret-

ation, HoTT is worth the consideration of those who think mathematics

should be given an autonomous philosophical foundation. Our secondary

aim is to draw the attention of philosophers of mathematics to this new re-

search programme that, as we argue below, offers an interestingly different

way of thinking about mathematics. We explain the formal theory in some

detail since existing presentations of HoTT are highly technical and not easily

accessible. Hence, the reader should be able to learn about HoTT, its concep-

tual structure, and its philosophical dimensions.

The structure of the remainder of the article is as follows: Section 2

characterizes a foundation for mathematics. Section 3 introduces HoTT.

Section 4 argues that the existing presentation of HoTT is not autonomous.

Section 5 explains our interpretation of HoTT. Section 6 outlines our novel

autonomous justification of the way identity is handled in HoTT (summar-

izing the argument of our companion paper; see Ladyman and Presnell

[2015]). Section 7 shows how our interpretation of HoTT answers the ques-

tions of Section 2. Section 8 replies to some possible objections and Section 9

4 Although we do believe that it has a number of advantages, some of which are described in

Section 9.1.
5 Some authors deny that any foundation for mathematics is necessary at all (see, for example,

Putnam ([1967]). However, notice that some ‘anti-foundationalists’ who deny that we need and/

or can have foundations of a particular kind may be happy with foundations in a weaker sense.

For example, Awodey ([1996], [2014]) rejects a particular conception of foundationalism, but

nonetheless he does think that answers must be given to at least some of the questions we set out

below. Likewise, Shapiro ([1991]) rejects foundationalism while doing work in foundations more

generally.
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briefly concludes by raising the issue of whether HoTT under our interpret-

ation ought to be adopted as a foundation for mathematics.6

2 What Is a Foundation for Mathematics?

In order to answer whether HoTT provides a foundation for mathematics, we

must first establish what is meant by ‘foundation’. Any discussion of the

foundations of mathematics is complicated by the fact that advocates of dif-

ferent foundational programmes often have different ideas about what it is to

provide a foundation, and what is taken to be required is not always made

explicit. As mentioned above, one sense of foundation is that of a unifying

language and conceptual framework, such as that of ZFC set theory. Another

sense goes beyond this by adding particular definitions for mathematical enti-

ties in terms of that language (such as the Kuratowski definition of ordered

pair, or the point-set definition of topological space in terms of sets).7

On the other hand, as also pointed out above, philosophers often seek a

stronger kind of foundation for mathematics. Beyond merely giving a lan-

guage for mathematics, a foundation in this sense involves providing a

grounding for mathematics in pre-mathematical ideas, and answering seman-

tic, metaphysical, epistemological, and/or methodological questions about

mathematics.8 In what follows, we will use the word ‘foundation’ to denote

a foundation in this stronger sense unless otherwise indicated, reserving the

work ‘framework’ for the weaker sense of foundation as language and con-

ceptual framework. The notion of a framework is intended to distinguish the

foundational work of many mathematicians, which is not concerned with the

details of epistemology and metaphysics, from most foundational work in the

philosophy of mathematics.

In this article we do not seek to answer the question of whether HoTT gives

an adequate framework for the reconstruction of existing mathematics. One

feature of HoTT that may be considered an obstruction to its providing such a

framework is that (as we discuss in Section 3 below) the logic intrinsic to

6 The main part of (HoTT Book [2013]) is about a version of the theory in which two further

axioms are introduced called ‘function extensionality’ and ‘univalence’ (and in subsequent chap-

ters, further extensions are considered). However, while these additions are of great interest, and

univalence in particular is argued to be of philosophical significance in relation to mathematical

structuralism (Awodey [2014]), they are beyond the scope of the present article, which focuses on

the core of the theory and its interpretation without the addition of univalence or anything else.
7 The distinction between these two positions essentially comes down to a question of how much

of the groundwork of mathematics should be counted as part of the foundation, rather than as

mathematical work built upon the foundational language. No philosophical issues relevant to

the present discussion hang on this, and so we set aside this issue.
8 See (Mayberry [1994]) for one explicit account of this sense of a foundation, for mathematics.

For a discussion of different varieties of foundations, see (Shapiro [1991], Chapter 2). The classic

discussion of the foundations of mathematics is (Benacerraf and Putnam [1983], Part 1). See

(Shapiro [2005]) for recent reviews of the main foundational programmes.

Does HoTT Provide a Foundation for Mathematics? 5
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HoTT is constructive rather than classical. If, to qualify as an adequate frame-

work for mathematics, a system must provide the means to reconstruct all the

theorems of classical mathematics as standardly stated, then any constructive

foundation is ruled out (since, for example, the standard statement of the

intermediate value theorem in analysis cannot be proved constructively). Of

course, if HoTT were ruled out from being even a framework for mathematics

in virtue of being constructive, then it could not further be a foundation for

mathematics in the stronger sense sketched above, and the question posed in

this article would be immediately answered in the negative. We assume for the

remainder of the article that a constructive framework for mathematics is

acceptable. (We take up the issue again briefly in Section 8.1.) Moreover,

granting this assumption, we trust that the work done in the HoTT Book

([2013]) provides sufficient evidence for a cautious affirmative answer to the

question of whether HoTT in particular is adequate as a framework for math-

ematics.9 The question we are concerned with then is whether, on the assump-

tion that HoTT is a candidate framework, it is also a candidate foundation for

mathematics in the stronger philosophical sense.

To address this question, we must spell out in more detail the distinction

between a framework and a foundation. Even those who are interested in

foundations in the strong sense do not agree about their required features.

There are therefore no necessary and sufficient conditions for a system to

constitute a foundation. Rather, in the next subsection we offer a character-

ization of five components that a foundation might be expected to have, and

articulate a series of questions that can be asked for each component. In

Section 2.2 we introduce an important criterion, namely, that a foundation

be autonomous, in the sense that it is not built upon some other foundational

system. In the rest of the article, we use the analysis of this section to explore

the foundational status of HoTT.

2.1 A characterization of a foundation for mathematics

There are five interrelated components to a foundation for mathematics and

each generates a series of questions that a given putative foundation for math-

ematics might be expected to answer:

(1) A single framework in which to cast some or all of existing mathem-

atics. This framework involves a mathematical language and theory

that may be studied in its own right as well. This language may also

9 See, in particular, the reconstructions of the natural numbers (HoTT [2013], Section 1.9), real

numbers ([2013], Chapter 11), category theory ([2013], Chapter 9), and a model of ZFC set

theory ([2013], Chapter 10).
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be used in the everyday practice of mathematics, but this is not

necessary.10

Questions: How are complex higher-level elements constructed or

composed out of more basic ones? Is it built on a formal logic or

not?11 What role, if any, do axioms play?

(2) A semantics in the sense of an account of the basic concepts of the

foundation, how the theoretical terms of (1) are to be understood,

and an account of how the rules that are used to manipulate the

concepts are to be understood.

Questions: What are the basic concepts and how are they related? Are

statements expressed in this language to be understood as potentially

having truth values and, if so, is the logic bivalent? How are the rules

governing the elements of the language to be understood? What are

the identity criteria for the elements of the theory? In particular, is the

theory extensional or intensional?

(3) A metaphysics that spells out the ontological status of any entities

posited in (2).

Questions: Does the metaphysics posit any objects at all?12 Is

the ontology (if any) to be understood as mind-dependent or mind-

independent? What is the relationship between mathematical reality

(if any) and physical reality?

(4) An epistemology in the sense of an account of how we are able to

know the truths (if any) of mathematics, given (2) and (3) (which may

also include an account of the applicability of mathematics), and a

justification of the axioms and rules of the framework.

Questions: Given the answers to the above questions, what account,

if any, do we give of mathematical knowledge? In particular, if basic

entities are posited, how do we defend our claim to know about

10 For example, most mathematicians do not work in the formal language of ZFC set theory, but

this does not impugn its status as a framework for mathematics since definitions and theorems

can (in principle) be translated into this language.
11 Some foundational programmes presuppose a background formal logic as with, for example,

axiomatic set theory, or with logicism, which reduces mathematics to logic. Others incorporate a

logic informally by way of the rules that govern the mathematical theory, or advocate a par-

ticular logic for metaphysical and/or epistemological reasons, as with constructive logic and

intuitionism. See (Shapiro [1991]) for a detailed investigation of the relationship between math-

ematics and logic.
12 We may take a nominalist position, denying (or at least not asserting) that there are any math-

ematical objects (Field [1980]), in which case our answers to subsequent questions must be

compatible with this.

Does HoTT Provide a Foundation for Mathematics? 7
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them?13 Given the role of proof in mathematical practice, what is the

relationship between mathematical knowledge and proof ? How are

the rules justified, given their interpretation (if any)? If there are

axioms, what is their epistemological status—for example, are they

taken to be known, or are they taken to be merely hypothetical state-

ments that form the antecedent of conditionals? What is the relation-

ship between mathematical knowledge and knowledge of physical

reality?

(5) A methodology for mathematical practice based on some or all of the

above.

Questions: How is the foundation to be used in practice? In particu-

lar, how is it to be applied in the physical sciences?

Note that we do not claim that a putative foundation must be able to answer

all these questions, nor must it definitively settle all the issues considered by

philosophers of mathematics. However, to provide a foundation in the stron-

ger sense, a system must at least speak to questions of semantics, metaphysics,

and epistemology (even if only to say that no interpretation, metaphysics,

and/or epistemology is to be given).

2.2 Autonomy

The answers given to the above questions may in some presentations be ex-

pressed in terms of some other foundational system. For example, an account

of category theory might assume a background of ZFC set theory and define a

category to be a set of objects and a set of morphisms satisfying certain rules.

If this were the only way to present the system, then it would be hard to justify

calling it a ‘foundation’ at all, since the concepts that were actually taken to be

(conceptually, logically, or ontologically) fundamental would be those of the

background mathematical system.

Following the terminology of Linnebo and Pettigrew ([2011]), we call a

presentation of a putative foundation autonomous if and only if the answers

given to the above questions depend only upon pre-mathematical ideas and

principles. By ‘pre-mathematical’, we mean ideas and principles that can be

explained and justified without recourse to mathematical ideas whose explan-

ation or justification depends upon some other foundational system or some

part of established mathematics. John Mayberry says: ‘the primitive concepts

of mathematics are those in terms of which all other mathematical concepts

are ultimately defined, but which themselves are grasped directly, if grasped at

13 For example, do we take the indispensability argument to justify a belief in mathematical objects

(Colyvan [2001])?

James Ladyman and Stuart Presnell8
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all, without the mediation of a definition’ ([1994], p. 18). There is no sharp

distinction between the mathematical and the pre-mathematical, but there is a

clear difference between, for example, a framework that uses the idea of mem-

bership of a collection and one that assumes ideas from advanced mathemat-

ics. For example, Linnebo and Pettigrew ([2011]) consider the charge that

standard presentations of category theory fail to be autonomous because

they rely upon ideas from set theory.

Of course, a given system may have multiple presentations, some autono-

mous and others non-autonomous. Moreover, these other ways to think about

the system may have been the original motivation for devising it, and in prac-

tice may be more convenient or fruitful. The requirement of autonomy is only

that there exists some way of arriving at the system via pre-mathematical

considerations. Once this is established we are free to use whatever interpret-

ation of the system is convenient for our day-to-day work.

As we noted above, mathematicians are often not at all concerned with the

epistemology and metaphysics of mathematics, and so there is no reason to

demand that a foundation, in the weaker sense of ‘framework for mathemat-

ics’, be autonomous. It is therefore entirely appropriate that these issues are

not considered in the HoTT Book, and that the presentation in the HoTT

Book weaves homotopy theory and type theory together from the beginning.

Hence, while in what follows we argue that the presentation of HoTT

given by the authors of the HoTT Book is not autonomous, this should

not be taken as criticism of their project in general, or of the HoTT Book

in particular, since their aim in writing the book was to communicate their

work to other mathematicians and computer scientists, and not to provide a

foundation for mathematics in the philosophers’ sense outlined above. It is

because we think that HoTT is so promising as a framework for mathem-

atics that we also think it is worth exploring the extent to which it is a

foundation more broadly. Our work should thus be understood as comple-

mentary to the HoTT Book.

3 The Basic Features of Homotopy Type Theory

In this section, we summarize the basic principles of HoTT and consider the

motivation for some of its rules.14

HoTT is built on the constructive intensional type theory of Martin-Löf

([1974]).15 The framework of this type theory is a formal system consisting of

14 This brief survey just introduces the main ideas and is not intended as a complete introduction or

tutorial for HoTT. For a much more detailed exposition, see (HoTT Book [2013]; Ladyman and

Presnell [2014]).
15 Martin-Löf has his own interpretation and motivation for his theory that derives, in part, from

his view of propositions that is briefly explained in Section 3.3. We explain how our view differs

from his in Section 7.

Does HoTT Provide a Foundation for Mathematics? 9
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types and tokens, in which each token belongs to exactly one type.16 Tokens

are always introduced and presented as tokens of some particular type: we can

never have a token x whose type is unknown or uncertain. We write ‘a : A’ to

denote that token a is of type A. The theory is specified by giving rules for

constructing new types and tokens from given types and tokens.

As an initial heuristic, it may be helpful to think of tokens as ‘mathematical

objects’ and types as ‘kinds of thing a mathematical object could be’.17 For

example, the type N of natural numbers can be defined, whose tokens are

individual natural numbers.

In some literature on type theory, the word ‘term’ is used rather than

‘token’, where terms are thought of as syntactic entities, while types are se-

mantic entities. Note that this is not what’s going on here. Rather, the linguis-

tic entities are expressions in a formal language that are taken to name tokens

and types.

3.1 The rules

We begin with functions, which are defined by means of substitution into

expressions as in lambda calculus (Church [1936]).18 For any types A and B,

a function of type A!B is defined by an expression, �, containing zero, one,

or more instances of a variable x, such that when all instances of x are replaced

by an expression naming a token of A (making sure to avoid re-using variable

names in a way that changes the meaning of the expression), the resulting

expression names a token of B. So, for example, given the expression

‘ðxþ 5Þ=ð2x� 3Þ’, when x is replaced by any expression that names a natural

number, the resulting expression names a rational number. This therefore

defines a function ½x � �� (or in more traditional notation, �x:�) of type

N!Q, that is, a function that, when given any token of N as input, returns

a token of Q as output.

Note that, in this approach, a function is therefore a computable procedure

as in computer science, rather than an arbitrary pairing of input and output

16 Terminology varies in the literature—in the HoTT Book, the words ‘term’, ‘object’, ‘element’,

and ‘point’ are used interchangeably for what we are calling a ‘token’ of a type. However, each

of these words carries a connotation that we wish to avoid: ‘term’ suggests something syntactic,

‘object’ begs the question about the semantics of the interpretation, ‘element’ suggests ideas

from set theory, and ‘point’ suggests a spatial interpretation. We therefore prefer the word

‘token’, which is (we hope) metaphysically neutral, and which we intend to be understood as

a term of art, independent of other usage.
17 However, this is not the interpretation we will eventually settle upon, for reasons explained in

Section 5.1.
18 While lambda calculus is a sophisticated domain of study, the notion of substitution in an

expression is a simple pre-mathematical one, familiar to anyone who, for example, is able to

use pronouns in natural language. We therefore do not consider this to be an obstruction to the

autonomous status of HoTT.

James Ladyman and Stuart Presnell10
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values as in classical mathematics founded in set theory. This is related to the

constructive nature of the theory, as discussed in Section 8.1.

For any two types, A and B, we have the function type A!B whose tokens

are the functions defined as above. Note that, in this theory, functions are not

of a fundamentally different character from any other token in the type

theory. Thus whatever we may do with arbitrary tokens of arbitrary types,

we may also do with functions. (In computer science terminology, functions

are ‘first class citizens’.)

Since not all types in the theory are function types, we must provide rules

for how other types are defined as well. These rules consist of the following

parts: a type former, one or more token constructors, an elimination rule, and

possibly one or more computation rules. Before defining these in general, we

first illustrate them with an example. The product of types is defined as

follows:

. given two expressions, ‘A’ and ‘B’, that name types, the type former pro-

duces the expression ‘A� B’, which names another type, which we call the

product of A and B;

. given expression ‘a’ naming a token of type A and expression ‘b’ naming a

token of type B, the token constructor for the product type produces an

expression ‘ða;bÞ’ naming a token of type A� B;

. the elimination rule for the product type is ‘currying’, which states that for

any type C, a function f : A� B!C is given by a function g : A!ðB!CÞ

that takes tokens a : A as input and gives functions ga : B!C as output.

. the computation rule for the product type states that for any expression

‘(a, b)’ naming a token of type A� B, the expression ‘fðða;bÞÞ’, names

the same token of type C as the expression ‘gaðbÞ’.

We write the computation rule as fðða;bÞÞ :� gaðbÞ, where ‘exp1 � exp2’

means ‘expressions exp1 and exp2 name the same token or type’, and

‘exp1 :� exp2’ means ‘by definition, expression exp1 names the same token

or type as exp2’. Thus when we have exp1 � exp2, any instance of exp1 can

be replaced in any expression by exp2 in any context whatsoever without

changing the meaning.

While the above example has been explained by reference to expressions of

the formal language, it is generally more convenient to talk in terms of func-

tions. To define a type we require functions as follows:

. a type former that when given suitable types (and perhaps tokens of

types) as inputs produces the new type as output;

. one or more token constructors that output tokens of the new type, given

tokens of any required input types;

Does HoTT Provide a Foundation for Mathematics? 11
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. one or more elimination rules that provide functions that take tokens of

the new type as their inputs;

. computation rules that define the behaviour of the functions given by the

elimination rules by specifying their outputs when given particular inputs.

This is the general framework for defining types.

3.2 The basic ways to construct types

The basic ways to construct types in HoTT (with one exception, discussed

below) are as follows19:

. Given any two types, A and B, we can form function type A!B. Tokens of

this type are functions that take a token of A as input and return a token

of B as output (defined as described above).

. Given any two types, A and B, we can form product type A� B. A token

of A� B is a pair, ða;bÞ, where a : A and b : B. The elimination rule is

given by ‘currying’, which for any type C produces a function of type

A� B!C from a function of type A!ðB!CÞ.

. Given any two types, A and B, we can form coproduct type Aþ B. The

token constructors are functions inl : A!Aþ B and inr : B!Aþ B.

The elimination rule states that if we have functions gl : A!C and

gr : B!C (for some type C), then we can form a function

g : Aþ B!C that applies either gl or gr to its input as appropriate.

. There is a unit type 1, which has a single token constructor producing a

token � : 1. The elimination rule states that to define a function f : 1!C

for any given output type C, we need a single token c : C to serve as the

value of fð�Þ.

. There is a zero type 0, which has no token constructors. The elimination

rule states that for any given output type C, there is a function !C : 0!C.

. Recall that a token of A� B is a pair ða;bÞ whose second component is of

type B. We can relax this, allowing the second component of a pair to be

of a type that depends upon the first component. This gives the dependent

pair type. Given a type, A, and a family of types, PðaÞ, indexed by A, the

type former produces the dependent pair type
P

x:AP(x). Tokens of this

type, called ‘dependent pairs’, are pairs ðy;qÞ, where y : A and q : PðyÞ.

. We can likewise generalize the function type to relax the restriction that

the output of a function is always of a particular fixed type, regardless of

what token of the input type it is given. Given a type A and a family of

19 The computation rules, which essentially state that the constructors and eliminators behave as

expected, are not spelled out here. For these and other details see (HoTT Book [2013], Chapter 1).

James Ladyman and Stuart Presnell12

 at U
niversity of H

ong K
ong on O

ctober 1, 2016
http://bjps.oxfordjournals.org/

D
ow

nloaded from
 

Deleted Text: :
Deleted Text: s
http://bjps.oxfordjournals.org/


types PðaÞ indexed by A, the type former produces dependent function

type
Q

x:AP(x). Tokens of this type, called ‘dependent functions’, are

functions that return a token of type PðaÞ when given a : A as input.

There is an important component of HoTT missing from the above,

namely, identity types, which we introduce in Section 3.4. Call the system

sketched above HoTT� to distinguish it from full HoTT.20 Before introducing

identity types, we first discuss the interpretation and justification of the rules

of HoTT�.

3.3 Types as propositions and propositions as types

The above type definitions can be motivated and justified via an interpretation

of types as propositions. It was noted by Curry and Howard (Curry [1934];

Howard [1980]) that there is a correspondence between computations in

type theory and natural deduction. For example, if we have a function, f,

of type A!B and token x of type A, then applying f to x gives, by definition, a

token of type B. This is formally parallel to the rule of modus ponens: if prop-

osition A) B is true and proposition A is true, then it follows that propos-

ition B is also true. The Curry–Howard correspondence (or ‘equivalence’ or

‘isomorphism’) extends this to other logical operations.

Per Martin-Löf’s ‘meaning interpretation’ of propositions (Martin-Löf

[1996]) makes this more than a merely formal parallel. In his system, every

proposition may be represented by a collection of things that stand as ‘evi-

dence’ or ‘proofs’ of that proposition, and logical reasoning is then simply the

manipulation of pieces of evidence according to rules. The Curry–Howard

correspondence is understood as saying that to each proposition there corres-

ponds a type, the tokens of which are proofs (or, as we say, ‘certificates’) of

that proposition.21 Thus we can assert that a proposition is true just in case we

have a token of the corresponding type (the type is said to be ‘inhabited’). This

leads to the Brouwer–Heyting–Kolmogorov (BHK) interpretation of con-

structive logic (Troelstra [2011], p. 161), in which a certificate to a compound

proposition can be understood in terms of certificates to its constituent prop-

ositions. The basic rules for constructing new types from old ones, given the

above, then correspond to logical operations such as conjunction and

disjunction:

20 Recall from Footnote 6 that by ‘HoTT’ we mean the core of the theory without extensions such

as the univalence axiom.
21 Again, terminology varies in the literature. Martin-Löf ([1996]) uses ‘proofs’, which we avoid for

reasons explained in Section 7.2. In the HoTT Book, ‘witness’ and ‘evidence’ are used. We prefer

‘certificate’ over the alternatives, since it makes for a better analogy with everyday usage:

whereas evidence indicates the truth of a proposition, and a witness observes the truth, a

legal document such as a contract or a marriage certificate makes something true.
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. The implication relation A) B between propositions is represented by

function type A!B. The application of a function to an input corres-

ponds to modus ponens, as described above.

. The conjunction of two propositions is represented by the product of the

corresponding types, A� B. The token construction rule corresponds to

the rule of ^-introduction: from a certificate to A and a certificate to B, we

can produce a certificate to the conjunction. Similarly, the elimination

and computation rules correspond to ^-elimination.

. The disjunction of two propositions is represented by the coproduct of

the corresponding types, Aþ B. The token construction rules corres-

pond to the �-introduction rule of constructive logic: to produce a

certificate to A � B we must have either a certificate to A or a certificate

to B. The elimination rule corresponds to �-elimination: given certifi-

cates to A) C and B) C then we can produce a certificate to

ðA � BÞ ) C.

. The zero type corresponds to a contradictory proposition, hence no cer-

tificate to this proposition can be (directly) produced.22 The elimination

rule corresponds to the law of explosion: from a contradictory propos-

ition any consequence follows.

. Given a proposition, A, with corresponding type A, the negation of A

corresponds to type A!0. A token of A!0 is therefore a function that, if

it were given a token of A, would produce a token of 0, which would

certify the truth of a contradiction.

. A family of types PðaÞ indexed by A corresponds to a predicate on A. For

a particular token, x : A, type PðxÞ corresponds to the proposition that x

satisfies this predicate.

. An existentially quantified proposition corresponds to the dependent pair

type
P

a:AP(a). A token of this type is a pair ðx;pÞ whose first compo-

nent is token x of A and whose second component, p : PðxÞ, is a certifi-

cate to the fact that this x satisfies the predicate. Such a pair is (in

constructive logic) a certificate to an existentially quantified proposition.

. A universally quantified proposition corresponds to the dependent func-

tion type,
Q

x:AP(x). A token of this type is a dependent function that,

when given token x of type A, returns a token of type PðxÞ. Such a de-

pendent function is a certificate to the fact that all tokens of type A satisfy

the predicate.

22 Consistency of the system then consists in the claim that no token of 0 can be produced by any

means.
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Note that the logic that is encoded into the definition of the token con-

structors and elimination rules is constructive. In particular, to produce a

certificate to a disjunction, we must have a certificate to one or other of the

disjuncts, and to produce a certificate to the negation of a proposition, we

must demonstrate how to derive contradiction from that proposition. Thus

the law of excluded middle (LEM) and the law of double megation elimination

do not hold as laws of logic in this system, since it is not in general possible to

produce a certificate to A�:A or ::A) A for arbitrary propositions, A.

(This issue is discussed further in Section 8.1.)

The interpretation of types as propositions, in conjunction with the BHK

interpretation of constructive logic, leads directly to the rules of HoTT�.

Moreover, this interpretation can be motivated and explained without any

recourse to existing mathematics such as set theory.23 The rules of HoTT� can

therefore be part of an autonomous foundation for mathematics.

Applying these type formation rules, we can build up many complex types

corresponding to complex mathematical propositions. A proof of such a prop-

osition from some given premises consists of a sequence of applications of

token constructors and elimination rules, beginning with the given certificates

to the premises and ending with a certificate to the proposition.

The above rules give us ways of manipulating types, but provide almost no

content with which to begin working. In practice, we must introduce add-

itional definitions to define the objects of study: natural numbers, real num-

bers, and so on.24

Unlike the axioms of ZFC set theory, in which the existence of the objects of

study (that is, pure sets) follows immediately from the axioms of the theory, in

HoTT the basic rules of the theory do not assert the existence of any particular

types or tokens (beyond a few very simple ones related to the zero and unit

types). This allows HoTT to be given an ontologically minimal interpretation,

as discussed in Section 7.

3.4 Identity

The above definitions are not sufficient to provide a language for mathemat-

ics, since they do not provide an adequate way to assert that two things are

equal. The statement that two things are equal is a proposition, and so, in line

23 In the case of the quantified propositions, we must, of course, interpret ‘domains of quantifi-

cation’ correctly: not as sets whose elements are members, but as types whose elements are

tokens.
24 For example, the type N, whose tokens are natural numbers, has two token constructors

z : 1!N, which gives the zero element, and s : N!N, the successor. We can therefore produce

tokens zð�Þ : N (which we write as ‘0’ for convenience), and sð0Þ : N, and sðsð0ÞÞ : N, and so

on. The elimination rule then tells us how to construct a function of type N!C, for arbitrary

type C, given a token cz : C and a function cs : C!C. For more details, see (HoTT Book

[2013], Section 1.9).
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with the correspondence between propositions and types discussed above, we

should expect to have a corresponding type in the theory. However, the judge-

mental or external equality relation� introduced in Section 3.1 does not name

a type in the theory, but rather says something about expressions of the

theory, namely, that they name the same token or type. Such external judge-

ments cannot be combined with other elements of the language to produce

more complex statements; for example, the trivial number-theoretic statement

8m;n : N; ðm ¼ nÞ ) ðsðmÞ ¼ sðnÞÞ cannot be expressed using judgemental

equality. Rather, what is needed is a new way of forming types that corres-

pond to the proposition that two particular things are equal. In the remainder

of this section, we define these identity types.

The type former for identity types gives, for each type C and any two tokens

a : C and b : C, type IdCða;bÞ that corresponds to the proposition that a

and b are equal. A token of the type (that is, a certificate to the proposition) is

called an ‘identification’ of a and b.

The token constructor for identity types produces, for any type C and any

token a : C, a certificate to the fact that a is identical to itself. These tokens,

refla : IdCða;aÞ (where ‘refl’ is short for ‘reflexivity of identity’), are called

‘trivial self-identifications’.

This much is easily justified: we should be able to form the proposition

‘a¼ b’ for any two tokens of the same type (but not for two tokens of distinct

types), but in the absence of further assumptions, we should only be able to

prove such a proposition (that is, construct a token of the type) in the trivial

case ‘a¼ a’ (and we should always be able to prove this).

The relation between judgemental equality and identity is asymmetric in the

theory. For any type C and any tokens a : C and b : C, given a judgemental

equality a � b, we can derive a token of identity type IdCða;bÞ. However, the

converse ‘reflection rule’ does not hold: given a token of IdCða;bÞ we cannot

conclude that a judgemental equality a � b holds. (Indeed, if such a rule

obtained, then all identity types would be trivial and of no interest, since all

identifications would be judgementally equal to trivial self-identifications; see

HoTT Book [2013], Exercise 2.14.) The failure of this reflection rule is the

definition of ‘intensionality’ for a type theory (Martin-Löf [1974]).

Note that although trivial self-identifications of the form refla are the

only identifications that can be freely constructed, we cannot prove (in the

absence of the reflection rule) that these are the only identifications that exist.

That is, although without additional premises we cannot construct non-trivial

identifications, we also cannot prove that none exist.25 (This is a common

25 Indeed, it is this fact that allows identity types to take on the rich and interesting structure of

‘1-groupoids’ that allows for a more tractable approach to problems previously treated in

n-category theory, and is part of what makes the theory so mathematically interesting, and

allows the homotopy interpretation discussed in Section 3.5 (see HoTT Book [2013], Chapter 2).
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situation in constructive logic: consider, for example, the non-zero infinitesi-

mals in synthetic differential geometry; Bell [2008].)

3.4.1 Path induction

To complete the definition of the identity type, we must also give its elim-

ination rule, which is called ‘path induction’. Just as mathematical induction

on N allows us to prove that some condition holds of all natural numbers

without considering each natural number individually, likewise path induc-

tion allows us to prove that some condition holds of all identifications

between tokens of some type. In an induction on N, we first prove that

the condition holds of 0 (the base case), then show that if it holds of some

n, then it also holds of n + 1 (the inductive step). A proof using path induc-

tion is even simpler than this, since only a base case needs to be proved—the

inductive step holds as a theorem for all properties that we might consider.

That is, the principle of path induction states that for any type C and any

property P that can be asserted of identifications between tokens of C, if we

can prove that P holds of all trivial self-identifications refla for all a : C,

then it holds of all identifications in C. (A formal statement of path induc-

tion is given in Section 6.)

Path induction is a very powerful tool, since in many cases it makes proofs

about identifications very simple. However, its interpretation and justification

are not so straightforward. One natural way to interpret it is as a statement

that all identifications are trivial self-identifications. However, as noted above,

this is not something that can be proved in HoTT and, moreover, this is not

the intended interpretation, since it eliminates all the structure of identity

types that is of particular interest in HoTT ([2013], Section 1.12).

The propositions as types interpretation set out in the previous section does

not extend to give an account of identifications between tokens. Thinking of

tokens as certificates to propositions gives no motivation for path induction.

Instead, the HoTT Book explains and justifies path induction via the

homotopy interpretation of HoTT ([2013], Section 1.12), which we sketch

below.

3.5 The homotopy interpretation

3.5.1 A sketch of homotopy theory

One of the major innovations of HoTT is the alternative interpretation of

types and tokens it provides using ideas from homotopy theory, which was
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developed by Awodey and Warren ([2009]). In this section we give a very brief

survey of homotopy theory and the main points of this interpretation.26

Homotopy theory is the study of spaces and functions between spaces up to

continuous distortion. That is, if there is a continuous deformation that trans-

forms one topological space into another, or one continuous function into

another, then in homotopy theory they are regarded as equivalent.

More precisely, two continuous functions, f ; g : A!B, between topological

spaces are homotopic (written f � g) if there is a continuous function

h : ½0; 1� � A!B such that hð0;xÞ ¼ f ðxÞ and hð1;xÞ ¼ gðxÞ for all x 2 A.

Such a function is called a ‘homotopy’ between f and g, and provides a con-

tinuous interpolation between the two functions.

Given two points, x and y, in space X, a path between them is a continuous

function, g : ½0; 1�!X , with gð0Þ ¼ x and gð1Þ ¼ y. So, for example, any two

paths between any two points, x and y, in the Euclidean plane are homotopic

to one another, because they can be continuously deformed into one another

(Figure 1(a)). However, in a space with a hole in it (such as an annulus), there

can be paths between two points that are not homotopic, since a path going

one way around the hole cannot be continuously deformed into a path going

the other way around the hole (Figure 1(b)).27

x

y

p

q

(a)

x

y

p

q

(b)

Figure 1. (a) p and q are paths between points x and y in the Euclidean plane. The

dashed lines indicate some of the intermediate paths in a homotopy between p and

q. (b) In a space with a hole or obstruction between paths p and q, continuous

distortions of p cannot jump over the obstruction and so p and q, are not

homotopic.

26 We use the familiar language of set theory and classical logic for this presentation, rather than

casting everything into the language of HoTT itself.
27 These ideas have important applications in physics. For example, the celebrated

Aharonov–Bohm effect depends upon the fact that the space in which the electrons move is

punctured by a ‘hole’, namely, the solenoid around which the electrons pass (Aharonov and

Bohm [1959]; Healey [1997]).
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This relation between functions leads naturally to an equivalence relation,

called ‘homotopy equivalence’, between topological spaces.28 Homotopy

theory does not distinguish between functions that are homotopic, or between

spaces that are homotopy equivalent. Thus in homotopy theory, facts about

spaces and functions can only be specified up to continuous distortions, and

only facts that are preserved by all such distortions are well defined.

3.5.2 The homotopy interpretation of HoTT

For reasons of space and technicality, we cannot give a complete explanation

of the homotopy interpretation of HoTT, but in this section we give a brief

overview.29

Awodey and Warren ([2009]) introduced an interpretation of the language

described above, in which the types of the theory are interpreted as spaces (as

thought of in homotopy theory) and the basic operations on types are inter-

preted as operations on spaces. It is then natural to interpret tokens of a type

as points in the corresponding space.

A path between points x and y in space X may itself be regarded as a

homotopy between the constant functions kx : �!X and ky : �!X , which

map the one-point space � to the points x and y, respectively. Thus it is

natural, on the homotopy interpretation, to interpret identifications

between tokens as paths between the corresponding points. The constant

path at x (that maps every element of ½0; 1� to x) corresponds to the trivial

self-identification of x with itself.

This also provides an important part of the explanation of the principle of

path induction given in the HoTT Book ([2013], Section 1.12). Any path, p,

between x and y is homotopic to a constant path at x: keeping one end fixed at x,

the path can be continuously retracted along its length. Thus any property of the

constant path at x that respects homotopy must be shared by p. Thus to show

that every path starting at x has such a property, it suffices to show that the

constant path at x has that property. More generally, to show that all paths have

such a property, it suffices to show that all constant paths have the property.

This is the homotopy-theoretic counterpart to the principle of path induction.

4 Autonomy of the Standard Presentation?

The presentation of HoTT given in the previous section (which sketches that

of the HoTT Book, henceforth called the ‘standard presentation’ of HoTT)

28 Specifically, two spaces, X and Y, are homotopy equivalent if there are continuous maps

f : X!Y and f 0 : Y!X such that f 0 	 f � idX and f 	 f 0 � idY . For example, a disc and a

single point are homotopy equivalent. Likewise, a circle, an annulus, and a (solid) torus are all

homotopy equivalent. But the circle is not homotopy equivalent to the single point.
29 For more details, see (HoTT Book [2013]).
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allows us to answer many of the questions posed in Section 2. Briefly, the

framework of the theory is given by the language outlined in Section 3, the

semantics is given by the homotopy interpretation sketched in Section 3.5, and

no explicit metaphysics or epistemology is given. (As well as presenting our

interpretation, Section 7 gives more details of the standard presentation.)

Since the semantics of this presentation explicitly depends upon the

terminology and concepts of homotopy theory, the standard presentation is

manifestly not autonomous. The interpretation of types, tokens, and identifi-

cations requires an understanding of spaces, points, and paths that is not pre-

mathematical, but rather derives from the mathematics of homotopy theory.

This is not an accidental feature of the standard presentation: throughout the

HoTT Book, the terminology and concepts of homotopy form a central part of

the presentation. The distinction between the type theory per se and the homotopy

interpretation of it is not made, and the authors switch freely between the termin-

ology of the two. As the authors themselves say, ‘Homotopy Type Theory

(HoTT) interprets type theory from a homotopical perspective’ (HoTT Book

[2013], p. 3) and the interpretation of identifications as paths is described as ‘the

key new idea of the homotopy interpretation’ ([2013], p. 5). Spaces, points, and

paths are given centre stage when explaining new ideas; for example, the principle

of path induction, which is a fundamental part of the theory, is justified using

homotopical reasoning as sketched in Section 3.5 above ([2013], Section 1.12).30

Of course, the fact that the homotopy interpretation is used throughout the

presentation does not settle its exact role in the theory itself, and it does not

follow that the fundamentals of the theory inherently depend upon homotopy

theory, or that an alternative presentation cannot be given. Any such presen-

tation, if it is to be autonomous, must address the following two questions:

(1) How can we understand types and tokens without the homotopy

interpretation?

(2) How are the rules of HoTT to be justified on the basis of that under-

standing? In particular, how is path induction to be justified without

reference to the homotopy interpretation?

5 The Interpretation of Tokens and Types

In the standard presentation of HoTT types are to be interpreted either as

propositions or as spaces (more specifically, as homotopy types). As we noted

30 None of this is intended as a criticism of the HoTT Book or its authors. The goal of the authors

of the HoTT Book is not to present HoTT as an autonomous foundation in the sense considered

here, but to introduce it as a subject of study for mathematicians. Since much of the innovative

use of HoTT is derived from the homotopy interpretation, it is completely natural to want the

reader to become familiar with that interpretation.
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in Section 3.4, the interpretation of types as propositions does not give a

justification of path induction or other features of identity types. The homo-

topy interpretation does give a justification of path induction, and pervades

the way of thinking about identity presented in the HoTT Book, but clearly

depends upon the sophisticated machinery of homotopy theory and is there-

fore incompatible with the autonomy of the foundation.

One response to this problem is simply to drop the interpretation of types

from our account of HoTT altogether, adopt a ‘null semantics’, and thus take

an extreme formalist approach.31 That is, one could say that the foundation

provided by HoTT consists only of a formal language with rules for the ma-

nipulation of symbols, but that the symbols should not be interpreted as

having any meaning at all. This is clearly compatible with the foundation’s

being autonomous, and furthermore eliminates any need to explain or justify

any metaphysical assumptions, since none are made. We will not rehearse the

objections to formalism here, but we do show that a richer foundational ac-

count is available: in Section 5.2 we give a semantics that is compatible with

the intensional and constructive nature of the theory.

We might alternatively try to preserve as much of the standard presentation

as possible by giving an account of spaces that contains the features needed to

support this interpretation, but which is grounded in pre-mathematical intu-

itions rather than homotopy theory. That is, by inspection of our intuitive

concept of what a space is, we might hope to recover those features of homo-

topy theory that are used in the homotopy interpretation of HoTT without

needing to set up all the mathematical machinery that is standardly used to

define it. However, it is not at all clear that such an argument—that the

required features of homotopy theory are all present in our intuitive notion

of space—can be defended, and we do not pursue this approach further in the

present article.

In the next subsection, we will argue why tokens should not be interpreted

as mathematical objects, before introducing our interpretation of types and

tokens as concepts in Section 5.2.

5.1 Tokens as mathematical objects?

As noted in Section 3, a natural way to interpret tokens and types is to say that

tokens correspond to mathematical objects and types correspond to kinds of

mathematical objects, so that a : A means that object a is of kind A. However,

there are problems with this interpretation.

First, it commits us to a strong kind of Platonism, since we can only adopt

this interpretation if we believe that there are mathematical objects; we would

31 Formalism in general comes in different forms, see (Detlefsen [2005]).
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then have to give an account of the metaphysics of these objects and our

epistemic access to them.

Second, this interpretation does not naturally accord with the intensional

treatment of types. In particular, while a description of an object may omit

some of its properties and leave it partially specified, any actual object must

possess all the relevant properties, whether they are specified in its description

or not. Thus, for example, any actual triangle must be either equilateral, isos-

celes, or scalene; an abstract triangle that is merely triangular and not, more

specifically, also equilateral, isosceles, or scalene is therefore problematic.

Third, whereas complex types are constructed from simpler types by appli-

cation of the type formers, there is no corresponding sense in which complex

kinds are composed from simpler kinds. The definition or description of a kind

is, of course, constructed by a logical assembly of simpler notions, but the kind

itself is not.

Fourth, this interpretation does not explain why we take each token to

belong to exactly one type. We would normally say that a given mathematical

object can be of multiple kinds, just as a physical object can be of multiple

kinds—for example, a particular dog is of the kinds ‘dog’, ‘mammal’, and

‘pet’, and a particular number may be of the kinds ‘natural number’, ‘odd

number’, and ‘prime number’. The restriction to a single type for each token is,

on this interpretation, both unexplained and unnatural.

Finally, this interpretation arguably gets the relationship between tokens

and types backwards. When we classify physical objects into kinds, we take

the objects themselves to be primary and the kinds to be secondary, dependent

upon the objects. However, in the type theory sketched above, the order is the

other way around: token constructors can only be specified once the type itself

has been defined. To adopt this interpretation, we would therefore need to

explain this reversal.

Hence, while this approach is initially appealing, it does not accord well

with the features of the type theory to be interpreted.

5.2 Tokens and types as concepts

In this section, we present an alternative account of tokens and types as con-

cepts. This account originates in the observation that we can have mathem-

atical concepts, whether or not there are any mathematical objects. For

example, we have the idea of natural numbers whether or not we believe

that there are any such things. We can therefore say that, rather than picking

out mathematical objects, tokens correspond to specific mathematical con-

cepts; and rather than denoting kinds of mathematical objects, types corres-

pond to general mathematical concepts. Thus a : A would mean that specific

concept a falls under, or is an instance of, general concept A. For example, the
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natural number three is a token of the type ‘natural number’, being a specific

instance of the general kind. Similarly, three-dimensional Euclidean space is a

token of the type ‘metric space’.

It is clear that concepts are pre-mathematical in the sense of Section 2.2.

That is, without having learned any mathematics someone can understand the

idea of a concept, and at no point does the development of this understanding

require ideas from mathematics. Thus this interpretation is suitable for an

autonomous foundation for mathematics.

To develop this interpretation we must say a few things about concepts. Of

course, we do not here give a complete account of concepts, but we highlight

some features that are relevant to the present discussion:

(1) The existence of concepts does not depend upon the existence of

specific objects that they may represent. So, for example, the exist-

ence of the concept of ‘unicorn’ does not require that there be any

unicorns in the world, and having the concept does not commit us to

believing that any exist. Indeed, it is necessary to have the concept

‘unicorn’ even to be able to frame the denial that such things actually

exist.

(2) Concepts can be of the concrete or abstract, and can be specific rela-

tive to a more general concept. For example, ‘dog’ is a specific con-

cept relative to the general concept ‘mammal’. Both are concrete

concepts, as opposed to ‘justice’, which is an abstract concept.

Specific concepts can stand in relation to general concepts just as

specific objects stand in relation to kinds; for example, courage is a

virtue. We take it that for any specific object or general kind there is a

corresponding concept. Thus a foundation that takes concepts as

primitive entities is compatible with Platonism about mathematics.32

(3) While concepts only have effects via mental activity, they may or may

not depend for their existence on mental activity—that is, one might

hold that a concept does not spring into existence when the definition

is first stated. For example, the concept ‘triangle’ may exist even

while no-one is presently thinking about triangles, and the concept

‘elliptic curve’ may have existed even before anyone first conceived of

elliptic curves. Thus a foundation that takes concepts as primitive

entities is not thereby committed to saying that mathematics is sub-

jective or intersubjective rather than being concerned with an object-

ive mind-independent subject matter.33

32 It is an open question whether the posited objects would then be redundant in mathematical

practice, and we do not address this here.
33 See Section 8.2 for further discussion of this issue.
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(4) Concepts are intensional: they correspond (roughly) to descriptions

rather than to extensional collections. Hence (to use two famous ex-

amples), ‘the morning star’ and ‘the evening star’ are two distinct spe-

cific intensions, although they have the same extension; and ‘human’

and ‘featherless biped’ are distinct general intensions although they

have the same extension.34 We can have empty concepts, even neces-

sarily empty concepts, and indeed multiple distinct empty concepts.

(5) Concepts can be composed and refined to form more complex

concepts.

(6) Being intensional, concepts can be partially specified. So, for ex-

ample, whereas any specific triangle must be equilateral, isosceles,

or scalene, the concept ‘triangle’ (characterized, for example, as

‘plane figure with three sides’) does not require any particular rela-

tionship between side lengths. Concepts can therefore be just as pre-

cisely specified as required, in a way that objects cannot.

Let’s consider again the problems that faced the interpretation of tokens

and types as objects and kinds. Since the existence of concepts does not depend

upon the existence of entities, we are not committed to mathematical

Platonism. The intensional treatment of types fits perfectly with an interpret-

ation of types as concepts, since concepts are themselves intensional. Complex

concepts may be composed from simpler ones, just as complex descriptions

can be composed.

However, the interpretation of tokens and types as specific and general

concepts, respectively, does not answer the remaining two issues, namely,

why each token belongs to exactly one type, and what the dependence rela-

tionship between tokens and types is. Therefore, our account must be slightly

refined to address these points.

Since concepts are intensional, they can be specified in ways that emphasize

some particular feature or aspect. We therefore interpret a token not simply as

the concept of some specific mathematical thing, but rather as the concept of a

specific thing qua instance of a general concept. This explains why each token

belongs to exactly one type, and gets the order of dependence right: we must

have the general concept first before we can have the concept of some specific

thing qua instance of that general concept.

How does this interpretation accord with the treatment of identity in

HoTT? What does it mean to identify two specific concepts (qua instance of

some general concept)? Consider, for example, two triangles at two different

locations in the Euclidean plane. Since they are at different locations, they are

34 Moreover, mathematical concepts are hyperintensional, since even intensions that are necessar-

ily coextensional, such as ‘equiangular triangle’ and ‘equilinear triangle’, are distinct.
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clearly distinct—two triangles in the Euclidean plane are identical just if they

have precisely the same three vertices. However, if we abstract away their

locations, the criterion of identity becomes congruence (that is, having the

same angles and side lengths). If we further abstract away considerations of

size, then the criterion of identity becomes similarity (that is, having the same

angles). Thus two triangles in the Euclidean plane may be numerically distinct

whilst being identical qua instance of some general concept (whereby some of

their specific features are abstracted away).

By allowing us naturally to abstract away some features and retain others,

the interpretation as concepts fits well with the treatment of identity.35

Moreover, this gives an illustration as to how a pair of tokens may be identi-

fied in multiple distinct ways. For example, two triangles can be shown to be

similar by giving a correspondence between their angles or, alternatively, by

showing that their side-lengths are the same.

Finally, we must address the relation between concepts and propositions.

The rules of HoTT� were justified via the BHK interpretation of constructive

logic, but typically we would consider the entities manipulated in logical rea-

soning to be propositions. In the interpretation proposed here, we take these

entities (namely, the types of the theory) to be general concepts. However, this

change in perspective is not problematic. The general concepts considered in

mathematics are those that can be defined precisely in some mathematical

language. Of course, we may initially come to some mathematical concept

via informal means—for example, initially thinking of real numbers as the

lengths of geometric lines. But, in modern mathematics at least, such concepts

must be given rigorous and precise expression in a formal language before they

can be studied. Because of this, the basic ways that general mathematical

concepts can be manipulated and combined must therefore include those

described in the BHK interpretation of constructive logic. Thus this interpret-

ation may be viewed as an extension, rather than a replacement, of the prop-

ositions as types view.

This brief survey shows that the interpretation of types and tokens as con-

cepts accords well with the intensional nature of the type theory, and how we

think about types, tokens, and their identity.

6 Justifying the Elimination Rule for Identity

Having given an account of the interpretation of tokens and types that is

compatible with HoTT’s being an autonomous foundation, we now turn to

35 Note, however, that this is not necessarily the only way One might have non-trivial identifica-

tions. One might, for example, simply stipulate that there are two numerically distinct instances

of some general concept that are identified (that is, making their distinctness merely a ‘brute

fact’) without providing some other type from which they are abstracted.
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the question of how the rules of the theory are to be justified in a way that does

not appeal to the homotopy interpretation.

We saw in Section 3.3 that the rules of HoTT� (that is, the fragment of the

language without identity types) may be justified via the BHK interpretation

of constructive logic. Thus all that remains is the justification of the rules for

identity types.

To justify the rules for the type former, recall that the type IdCða;bÞ cor-

responds to the proposition that tokens a : C and b : C are equal. Forming

this type corresponds to expressing the proposition that a and b are equal

(whereas, recall, proving that they are equal corresponds to constructing a

token of that identity type, that is, an identification of a and b), so it is rea-

sonable that we should be able to form such an identity type for any tokens of

any type. It is also reasonable that such an identity type cannot be formed for

tokens that are of different types. Since no token can belong to more than one

type, tokens of different types must be distinct and it makes no sense to express

an identity between them.

The token constructor for identity types allows us to say that any token of

any type is identical to itself, that is, that identity is reflexive. It is clear both

that this is an essential defining property of identity (so we are justified in

having this token constructor), and that we should not, in general, be able to

construct identifications between arbitrary pairs of tokens (so no further token

constructors are required).36

However, the elimination rule for the identity type, namely, the principle of

path induction explained in Section 3.4, is not so easily justified. Recall that

according to this principle, if a property holds of all trivial self-identifications,

then it holds of all identifications. The motivation given in the HoTT Book

(and summarized in Section 3.5) depends upon the interpretation of identifi-

cations as paths in (homotopy) spaces: since any path is homotopic to a con-

stant path (since it can be continuously retracted), properties of constant paths

are shared by all paths. However, as we argue above, such a justification

cannot form part of an autonomous foundation for mathematics, for which

an alternative account must be found.

In a companion paper (Ladyman and Presnell [2015]), we investigate this

problem, and set out a justification for path induction that depends only on

HoTT� under our interpretation (which we have argued above is suitable for

an autonomous foundation) and two other principles that can be justified

independently of the homotopy interpretation and do not depend upon any

36 One might think that since symmetry and transitivity are essential characteristics of identity,

they should also be built into to the definition via new token constructors. However, they don’t

need to be imposed separately because they can be derived from one of the principles we intro-

duce below, as we show in (Ladyman and Presnell [2015]).
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other area of mathematics. Without going into all the technical details, we

sketch the argument in the remainder of this section.

One obvious application of identity types is to express facts about the

uniqueness of tokens of types. For example, intuitively, there should be

exactly one token of the unit type, namely, the token � : 1, given by the

single token constructor for this type. Normally, in a classical setting, we

would express this uniqueness statement by saying that ‘there are no tokens

of 1 other than *’, that is, :ð9x : 1; � 6¼ xÞ. However, constructively this is

equivalent to 8x : 1; ::ð� ¼ xÞ, whereas in most applications of uniqueness

what we need is the (constructively) stronger statement 8x : 1; ð� ¼ xÞ. Thus

we take the latter form as the statement of uniqueness: that all tokens of the

unit type are identical to the token � : 1 or, in other words, that there is exactly

one token of 1 ‘up to identity in 1’.

More generally, for each type there is a uniqueness principle characterizing

the tokens of that type up to suitable identifications. Often the relevant unique-

ness principle entails that every token of the type is equal to the output of one of

the token constructors for that type—but this is not the case for every type.

In the case of the identity type, the appropriate uniqueness principle cannot

make it so that every identification p : IdCða;bÞ is equal to the output of a

token constructor, since the constructors only produce identifications of the

form reflx : IdCðx;xÞ, and we cannot identify tokens of different types.

To characterize the uniqueness principle for identity types, we therefore

need to define a type whose tokens are representatives or counterparts of

arbitrary identifications, such as p : IdCða;bÞ, and trivial self-identifications,

such as reflx : IdCðx;xÞ. In this type, we will be able to express a unique-

ness principle that states that the counterpart of any arbitrary p : IdCða;bÞ is

identical to that of some trivial self-identification.

For this purpose we define, for each a : C, the ‘based identity type’ at a

EðaÞ :�
X

z:C

IdCða;zÞ:

The tokens of this type are pairs ðb;pÞ consisting of token b : C and identi-

fication p between that token and the given token, a : C. In particular, one

token of this type is ða;reflaÞ. Thus for any identification q : IdCðx;yÞ, we

can find a counterpart, ðy;qÞ, to it in the based identity type, EðxÞ, alongside a

counterpart to the trivial self-identification, reflx.37

37 We could instead define the free identity type whose tokens are triples ða;b;pÞ consisting of two

tokens of C and an identification between them. This type also contains a counterpart to every

identification, alongside counterparts to trivial self-identifications. However, the justification of

the elimination rule for identity types is more easily expressed in terms of the based identity type

defined above, so we restrict attention to this. We thus directly justify what is known as ‘based

path induction’, from which path induction also follows, as shown in (HoTT Book [2013],

Section 1.12.2).
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In standard approaches to mathematics, we would expect that the only

token of C that is identical with a is a itself, and moreover that it should be

self-identical in just one way. Thus we would expect EðaÞ to have only a single

token, just as we expect the unit type to have just a single token. As with the

unit type, we can express this by saying that ‘all tokens of EðaÞ are identical to

ða;reflaÞ’, that is, that EðaÞ has exactly one token ‘up to identity in EðaÞ’.

Formally, we say that for any token ðb;pÞ : EðaÞ, there is an identification

between it and ða;reflaÞ, which we express by saying that the following type
Y

ðb;pÞ:EðaÞ

IdEðaÞðða;reflaÞ; ðb;pÞÞ

is inhabited. This is the uniqueness principle for identity types.

Note that even with the addition of this principle, it does not follow that all

identifications are trivial self-identifications (which, as discussed above,

cannot even be expressed in the language); nor does it follow that all self-

identifications are trivial. Thus the way identity is treated in HoTT differs

from standard approaches in mathematics and logic, but the uniqueness prin-

ciple for identity types goes some way towards reconciling them.

The second principle we introduce is substitution salva veritate: if tokens a

and b are identical, then anything that is true of one must be true of the

other. This is an essential defining property of identity.38 Combining these

two principles, we derive the elimination rule for identity types: if we can

prove that some property holds of all trivial self-identifications—or, more

precisely, all pairs ða;reflaÞ for all a : C—then it must likewise hold for

any pair ðb;pÞ : E(a), since the uniqueness principle states that this is iden-

tical to ða;reflaÞ.

Thus by applying the uniqueness principle for identity types and the prin-

ciple of substitution salva veritate, each of which is justified on purely pre-

mathematical grounds, we derive the elimination rule for identity types.

Formally, this rule, called ‘based path induction’, states that for any type C,

any token a : C, and any predicate K on EðaÞ, there is a function of type

Kða;reflaÞ!
Y

ðb;pÞ:EðaÞ

Kðb;pÞ:

This concludes the justification of the treatment of identity in HoTT in a

manner that is compatible with its being an autonomous foundation for

mathematics.39

38 One might object that this principle is in conflict with an intensional treatment of types. In

Section 8.5 we explain why this does not pose a problem.
39 For a detailed version of this argument, along with proofs that other properties of identity, such

as symmetry and transitivity follow from substitution salva veritate, see (Ladyman and Presnell

[2015]).
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7 The Foundations of HoTT without Homotopy

This section gives answers to the questions of Section 2 for the new interpret-

ation of HoTT presented in this article.

7.1 Framework

The theory makes use of the language of HoTT, as sketched in Section 3.

Complex expressions are constructed systematically and precisely from basic

ones by application of the rules. HoTT is not formulated using a separately

defined formal logical language like first-order predicate calculus in the way

that axiomatic ZFC is, but rather incorporates constructive logic directly into

the mathematical theory, and propositional and predicate logic have ana-

logues within it. The role of logical axioms is played by the rules of type

formation (for example, the rule that states that for any types A and B,

there is a product type A� B).

Other axioms and premises can be adopted by introducing tokens of types

expressing the corresponding propositions. For example, while LEM does not

hold as a law of the constructive logic incorporated into HoTT, for any given

type, P, we may assume as a premise of an argument that P is ‘decidable’ by

positing a token of type Pþ ðP!0Þ.40

7.2 Semantics

Types and tokens are interpreted as concepts (rather than spaces, as in the

homotopy interpretation). In particular, a type is interpreted as a general

mathematical concept (for example, ‘natural number’), while a token of a

given type is interpreted as a more specific mathematical concept qua instance

of the general concept (for example, 2 qua natural number). This accords with

the fact that each token belongs to exactly one type. Since ‘concept’ is a pre-

mathematical notion, this interpretation is admissible as part of an autono-

mous foundation for mathematics. Note that this is compatible with the

popositions-as-types interpretation of Section 3.3, as explained at the end of

Section 5.

The theory is intensional: types are distinguished from one another by their

definitions (that is, by their constructions), rather than by their extensions. Of

course, since each token belongs to exactly one type, there is no sense in which

two inhabited types could have the same extension. But uninhabited types—

40 Another important example is the univalence axiom (HoTT Book [2013], Section 2.10), which is

central to the research programme developing HoTT. While univalence cannot be derived as a

theorem from the basic framework of HoTT, many proofs use univalence by assuming the

existence of a token of an appropriate type. As noted in Footnote 6, in this article we consider

only the basic language of HoTT, not including univalence.
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for example, ‘even divisor of 9’ and ‘even divisor of 11’—are treated as dis-

tinct. Moreover, any two types that might be understood as containing (rep-

resentatives of) the same mathematical entities under different presentations—

for example, ‘positive natural number less than 3’ and ‘natural number n for

which the Fermat equation xn þ yn ¼ zn has at least one solution in the posi-

tive integers’—are nonetheless considered to be distinct types.41 Thus any

distinction that can be made gives rise to a distinction between types. The

justification given in the HoTT Book for using a theory that is intensional in

this way is the fact that it enables the homotopy interpretation (HoTT Book

[2013], Chapter 1 Notes, Chapter 2 Notes).

Expressions in the language are the names of types and tokens. Those

naming types correspond to propositions. A proposition is ‘true’ just if the

corresponding type is inhabited (that is, there is a token of that type, which

we call a ‘certificate’ to the proposition). For example, any isomorphism

between two structures is a certificate to the proposition that the structures

are isomorphic. The negation of a proposition, P, is represented by the type

P!0, where P is the type corresponding to proposition P and 0 is a type that

by definition has no token constructors (corresponding to a contradiction).

The logic of HoTT is not bivalent, since the inability to construct a token of

P does not guarantee that a token of P!0 can be constructed, and vice

versa.

The rules governing the formation of types are understood as ways of

composing concepts to form more complex concepts, or as ways of combining

propositions to form more complex propositions. They follow from the

Curry–Howard correspondence between logical operations and operations

on types. However, we depart slightly from the standard presentation of the

Curry–Howard correspondence and, in particular, from the way that Martin-

Löf ([1996]) presents it, in that the tokens of types are not to be thought of as

‘proofs’ of the corresponding propositions, but rather as certificates to their

truth. A proof of a proposition is the construction of a certificate to that

proposition by a sequence of applications of the rules. Two different such

processes can result in the construction of the same token, and so proofs

and tokens are not in one-to-one correspondence.

The rules of the fragment of HoTT that we called HoTT� are justified

as the instantiations of the elementary logical operations such as conjunc-

tion and disjunction, all of which can be understood and motivated pre-

mathematically. The specific form of the rules comes from the interpret-

ation of logical reasoning as the manipulation of certificates to

41 The addition of the univalence axiom (HoTT Book [2013], Section 2.10) weakens these distinc-

tions, since it gives identifications between types that are equivalent in a suitable sense. But as

noted above, the theory considered here does not include univalence.
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propositions, which leads (via the BHK interpretation) to the constructive

logic that is used in HoTT.42

The type former and token constructor for the identity type are easily

justified, as outlined in Section 6. In Section 6 we sketch how to derive path

induction, the elimination rule for identity types, from pre-mathematical no-

tions. (A more detailed discussion of this is given in our companion paper; see

Ladyman and Presnell [2015].)

When we work formally in HoTT, we construct expressions in the language

according to the formal rules. These expressions are taken to be the names of

tokens and types of the theory. The rules are chosen such that if a construction

process begins with non-contradictory expressions that all name tokens (that

is, none of the expressions are empty names), then the result will also name a

token (that is, the rules preserve non-emptiness of names). Hence, our inter-

pretation, according to which expressions name tokens and types understood

as concepts, connects the intensionality of HoTT with its constructive nature.

This is another significant departure from Martin-Löf’s ideas.43

7.3 Metaphysics

In the standard presentation of HoTT, nothing is said about the metaphysics.

In particular, it is not clear whether the tokens of types literally are mathem-

atical objects (for example, natural numbers) or whether they represent them

in some sense. We are free to apply any metaphysical interpretation we prefer.

Nothing is said about applicability in the physical sciences.

Since we interpret tokens and types as concepts, the only metaphysical

commitment required is to the existence of concepts themselves. That

human thought involves concepts is an uncontroversial position, and our in-

terpretation does not require that concepts have any greater metaphysical

status than is commonly attributed to them (Isaacson [1994]).

Just as the existence of a concept such as ‘unicorn’ does not require the

existence of actual unicorns, likewise our interpretation of tokens and types as

mathematical concepts does not require the existence of mathematical objects.

However, it is compatible with such beliefs. Thus, for example, a Platonist can

take the concept ‘equilateral triangle’ to be the concept corresponding to the

abstract equilateral triangle (after filling in some account of how we come to

42 We are not here committed to inferentialism about the meaning of the logical constants.

However, in so far as they are represented in HoTT, which derives from the work of

Martin-Löf ([1996]), inferentialism is presupposed. We are grateful to an anonymous referee

for pressing us on this.
43 Martin-Löf ([1995], [1998]) motivates the constructive nature of his type theory on the basis of a

verificationist theory of meaning and a proof-theoretic semantics, according to which the mean-

ing of a proposition is given by an account of what would count as a proof of it, and the meaning

of the logical constants is given by the relevant token constructors and type formers.

Martin-Löf’s ([1996]) philosophy also gives a more prominent role to the notion of judgements.
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know about these abstract objects in a way that lets us form the corresponding

concepts).

Even without invoking mathematical objects to be the targets of

mathematical concepts, one could still maintain that concepts have a mind-

independent status. However, this is not a necessary part of the interpretation,

and one could instead take concepts to be mind-dependent, with correspond-

ing implications for the status of mathematics itself.

7.4 Epistemology

In the interpretation proposed here, as in the standard presentation of

HoTT, since there are no metaphysical commitments to mathematical ob-

jects, there is no issue of explaining how we come to know about abstract

objects, The corresponding problem of explaining how we have epistemic

access to the concepts we form is one that is not unique to mathematics. In

any case, almost all accounts of mathematics must give some account of

mathematical concepts and mathematical thought, even if it is a reductionist

one.

Since complex concepts are formed step-by-step from more basic ones,

our access to any given concept can be traced backward via definitions to

whatever elementary concepts are assumed to be given. The truth of a

proposition is demonstrated by exhibiting a certificate, and a proof is a

step-by-step construction of a certificate to the conclusion from certificates

to the premises. Any claim to mathematical knowledge that can be demon-

strated by means of a proof in constructive logic gives a specific way of

constructing a certificate to the corresponding proposition. This is true even

of proofs of negated propositions, since the classical technique of indirect

proof (proving P by deriving contradiction from the negation of P) is

disallowed. HoTT uses constructive logic, so proofs always result in positive

evidence for their conclusions. Moreover, HoTT can accommodate proofs

that rely upon non-constructive methods—for example, those using in-

stances of LEM—since these principles can be explicitly added as additional

premises in a proof.

The sketch of an account of mathematical knowledge given here is, of

course, not the last word on the matter, and we are not committed to the

claim that only propositions that can be proved within the system should

count as mathematical knowledge. For example, if one had reason to believe

that there were non-deductive routes to mathematical knowledge (as sug-

gested by Paseau [2015]), then things taken to be known by such means

may be posited as axioms or assumptions. So while the existence of a proof

in the system is sufficient for mathematical knowledge, it is not claimed to be
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necessary, and we may allow that one can have reason to believe in the exist-

ence of tokens of types without being able to construct those tokens.44

Where a proof depends upon premises it provides only conditional know-

ledge of its conclusion. In this case, the assumed premises—and, moreover, the

particular certificates to those premises that are assumed—are made com-

pletely explicit.

As detailed above, the constructive logic guarantees that if the input expres-

sions name tokens (that is, they are not empty names), then the output ex-

pressions name tokens as well. We don’t know, in general, that arbitrary types

are inhabited. There are no other axioms of the basic theory.45 The justifica-

tion of axioms introduced to recover extant mathematics—such as, for ex-

ample, the natural numbers—depends only upon our ability to form the

relevant concepts and not on our epistemic access to mathematical objects.

Note that the incorporation of constructive logic into HoTT does not derive

from nor necessitate any strong position on the nature of mathematical truth

itself. In particular, it does not require that we equate mathematical truth with

provability, nor does it require that we deny that unproved (or unprovable)

mathematical statements have truth values. While some approaches to math-

ematics (such as that of Brouwer [1981]) begin from a view about the nature of

mathematical truth and conclude from this that reasoning should be con-

structive, it is entirely possible to take a much more modest or neutral position

regarding mathematical truth, and adopt constructive reasoning for prag-

matic or methodological reasons.

7.5 Methodology

Mathematical reasoning in HoTT is broadly similar to any other foundational

system, in as much as it proceeds by definition, formulation of propositions,

and proofs. We begin by formulating types corresponding to the kinds of

mathematical entities under discussion. Then from these we form types ex-

pressing the proposition to be proved and the premises to be assumed. We

introduce names for the tokens of the premises we assume given, and then seek

to construct a token of the conclusion.

While many presentations of HoTT emphasize its use as a formal language

for mathematics, as with any mathematical formalism, the language of HoTT

may also be used in an informal or semi-formal manner. Just as set-theoretic

reasoning can be used in arguments that are not rendered into completely

formal manipulations in first-order logic, likewise reasoning in HoTT may

44 Hence this account does not fall foul of Gödel’s incompleteness theorem. We are grateful to an

anonymous referee for pressing us on these issues.
45 As noted above, the univalence axiom is often assumed in work in HoTT, but we take this to be

outside the core of HoTT and thus beyond the scope of the present article.
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intermix mathematical notation with human-language descriptions, omitting

details for the reader to fill in, as appropriate to the context. Indeed, such a

style is used in much of the HoTT Book.

Note that this methodology does not require that every type involved be

completely formalized down to the smallest detail. We can just as well intro-

duce placeholder types, so long as whatever particular properties we require of

them for a given proof can be derived or are explicitly assumed. In particular,

we can still reason about entities whose existence cannot be constructively

derived (such as non-principal ultrafilters) by assuming their existence (and

any relevant properties) as premises.

An important difference between HoTT and other foundations, such as

ZFC set theory, is the relative ease with which informal use of HoTT can

be fully formalized in a computer programming language that can be used

directly to construct completely formal proofs to check informal reasoning. In

mathematics based in ZFC set theory, formal proofs can in principle be ren-

dered completely formal but in HoTT, the practicality of computer-assisted

reasoning and proof verification narrows the gap between everyday practice

and idealized formal reasoning. This is a major motivation for HoTT.

Arguably, computability requires, or at least is facilitated by, a constructive

framework. If we wish to ensure that we only assert mathematical claims for

which we have direct and positive evidence, then a constructive methodology

guarantees this.

8 Possible Objections to this Account

In this section we address a number of objections that may be raised to the

interpretation set out above.

8.1 A constructive foundation for mathematics?

As noted in Section 2, some mathematicians and philosophers may object to

the claim that HoTT could be a foundation for mathematics on the grounds

that it cannot even serve as an adequate framework, since its logic is con-

structive rather than classical. On some views of what is required of a frame-

work for mathematics, any adequate framework must enable us to derive all

the theorems of classical mathematics just as they are standardly stated, with-

out the need to modify them. On this view, no constructive foundation could

be adequate, since many theorems of standard mathematics, in their usual

formulation, require classical principles for their proofs.46

46 Consider, for example, Hilbert’s famous objection that ‘taking the principle of excluded middle

from the mathematician would be the same, say, as proscribing the telescope to the astronomer

or to the boxer the use of his fists’ (Hilbert [1976], p. 476).
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For example, one version of the intermediate value theorem of analysis

states that for any continuous function, f : R!R, and for any values a< b

such that f(a) < 0 and f(b)> 0, there is a real number a< x< b such that

f(x)¼ 0. This theorem is not provable constructively (roughly, because any

constructive proof must provide a means of finding the required x to arbitrary

precision). However, there are several variants of the theorem that are con-

structively valid. For example, for any continuous function, f, with f(a)< 0

and f(b)> 0, we can prove that for any e > 0, there is a real number a< x< b

such that jf ðxÞj < e. To judge whether a constructive foundation is adequate,

one must decide, amongst other things, whether the ability to recover such

weakenings of classical theorems is sufficient.

One could take the position that we should not assume in advance that the

foundations of mathematics should be classical or, more generally, that it is

not a priori obvious what fundamental principles should be adopted in a

foundation for mathematics. For example, there is no principled reason

why the continuum hypothesis should not be appended to the axioms of

ZFC to form an alternative foundation for mathematics; but we should not

then judge ZFC itself as inadequate for being unable to recover all the the-

orems provable in ZFC + CH. Likewise then, it is no more reasonable to judge

a constructive foundation inadequate merely because it fails precisely to re-

cover all theorems provable in ZFC. The defender of a constructive founda-

tion could argue, then, that each candidate foundation should be judged on its

own merits, rather than being compared against ZFC as a ‘default’ or ‘stand-

ard’ foundation.

Finally, as noted in Section 7.4, if non-constructive principles, such as par-

ticular instances of LEM, are required for a proof then they may be added as

assumptions. Thus while such principles are not provided as part of the frame-

work, they are compatible with it and may be adopted as required.

Another important difference between the framework of HoTT and that

of ZFC set theory is the treatment of functions. Whereas in ZFC set theory

functions are defined as relations satisfying certain conditions and are

therefore subsets of the product of their domain and codomain, in HoTT

functions are defined via a process of substitution and are therefore more

like procedures or algorithms in computer science. Thus not every ‘func-

tion’ of ZFC set theory counts as a function in this system. This is an

essential feature of the constructive logic used in HoTT and so objections

to this approach to functions are again objections to the use of this con-

structive logic.

We will not pursue these issues further, simply noting (as we did in Section

2) that if one does not accept that a constructive framework can be adequate,
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then the question of whether HoTT can be a foundation for mathematics is

immediately answered in the negative.47

8.2 What are concepts?

A foundation for mathematics is supposed to clear up the mystery of what

mathematical entities are and how we come to know about them, given that

(according to many interpretations) they are abstract entities with no causal

powers. Since we interpret the language of this foundation for mathematics in

terms of concepts, it may be objected that we have simply traded one mystery

for another, namely, the question of what concepts are and what their meta-

physical status is.

However, although we do invoke concepts in our interpretation of tokens

and types, the features of concepts that we rely upon in Section 5.2 are only

those straightforward features that follow from our intuitive understanding of

concepts. Thus we do not depend upon any advanced or intricate theory of

concepts, and therefore do not need to give a comprehensive detailed account

of concepts. Furthermore, concepts are arguably needed for any account of

thought more generally and are not an additional requirement for mathem-

atics in particular.

Since concepts play such a central role in this proposed account of HoTT as a

foundation for mathematics, some features of the foundation provided by

HoTT will depend upon how we think about concepts. For example, as men-

tioned in Section 7.3, the mind-dependent or mind-independent status of math-

ematics will depend, on this interpretation, on whether concepts themselves are

mind-dependent or mind-independent. Similarly, one might be concerned to

explain how different mathematicians appear to be talking about the same

domain when (on some accounts) each has his or her own independent concepts.

We acknowledge this dependence but do not take it to be an objection to the

account of HoTT as a foundation. Rather, it means that there are a number of

interpretational varieties of the foundation available, which append different

accounts of concepts and thus give different views on the status of mathematical

entities. Moreover, interpreting mathematical talk as talk about concepts inte-

grates problems in philosophy of mathematics into this wider domain. So, for

example, questions about the inter-subjectivity of mathematics are subsumed

into questions about the inter-subjectivity of concepts more generally.48

47 For further defence of the adequacy of constructive mathematics, see, for example, (McCarty

[2005]; Richman [1996]).
48 Of course, the answers we give in the case of mathematics might still be specific to that domain.

For example, even without giving a full account of how concepts can be shared between subjects,

we might still be able to give an account of how the concepts of mathematics, being rigorously

defined in a formal language, can be shared.
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8.3 Isn’t this just Brouwerian intuitionism?

According to the interpretation presented here, mathematical language refers

to concepts rather than mathematical objects, and that mathematical reason-

ing is the manipulation of concepts using constructive logic. In these respects,

it resembles Brouwerian intuitionism (Brouwer [1981]), but there are a number

of ways in which the two positions differ.

Brouwer’s intuitionism positively rejected consideration of mathematical

objects, whereas our account is entirely compatible with a Platonist

position (since the existence of objects that can be treated by the math-

ematician entails the existence of concepts under which they can be

understood).

Brouwer’s position puts the activity of the human mind at the centre,

whereas our interpretation is compatible with an understanding of concepts

that grants them a mind-independent status. In particular, our interpret-

ation is compatible with mathematical reasoning being carried out by an

automated process in a computer, without any human being involved (after

the initial setup of the computer program itself, of course). So, for example,

a sufficiently large and complex calculation in a computer might make use

of types that correspond to concepts that have never been conceived by a

human reasoner, and may (for all we know) be too complex for any human

mind to conceive.49

Brouwer held that ‘intuitionistic mathematics is an essentially language-

less activity of the mind having its origin in the perception of a move of

time [which] may be described as the falling apart of a life moment into two

distinct things, one of which gives way to the other, but is retained by

memory’ (Brouwer [1981], pp. 4–5). No such hypothesis plays any role in

our interpretation of HoTT as a foundation for mathematics, and indeed

we give no account of how mathematical concepts originate. Moreover,

while we leave it open that one could take concepts to be necessarily pre-

linguistic, any concepts that are involved in mathematical activity must, on

our account, be given a precise and rigorous definition in the formal lan-

guage of HoTT.

Finally, Brouwer’s intuitionism is often interpreted as taking the truth and

falsity of propositions to be a temporal matter, with propositions only gaining

a truth value when they are first proved or disproved and having no truth

value at all before then. Our interpretation makes no such claim, and allows

that propositions may have truth values—or rather, that types may have

tokens—that are simply unknown to us.

49 Although this last point would not be relevant if we took the reasoner in intuitionism to be the

idealized ‘creating subject’ (Brouwer [1948]).
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8.4 Duplicated objects

Mathematicians standardly consider, for example, the number 2 as a single

entity that appears in multiple different domains—the natural numbers, the

reals, the complex numbers, and in subsets such as the even numbers and the

prime numbers. However, in the formalism of HoTT, this cannot be the case,

since each token belongs to exactly one type. This appears to require us need-

lessly to multiply entities, producing ‘clones’ or ‘counterparts’ that inhabit

different types. This, it might be argued, is inelegant and in conflict with

our intuitions.

In response, we recall that the tokens of the theory are interpreted not as

mathematical objects, but as specific concepts qua instances of general con-

cepts. Even if we think that ‘the number 2’ is a singular entity, it is clear that

the conception of 2 as a rational number is distinct from the conception of 2 as

a natural number. This is a natural distinction, not one artificially imposed.

Moreover, we have no concept of ‘the number 2’ except as a member of some

number system—we do not conceive of the number 2, separately conceive of

the natural numbers, and then determine that the former is a member of the

latter.

Rather, it is these concepts—‘2 qua natural number’, ‘2 qua rational

number’, and so on—to which we can plausibly claim to have direct access.

We have no concept of ‘the number 2 simpliciter’, and any putative access to

‘the number 2 itself’ (as a mathematical object) is notoriously shrouded in

mystery.

8.5 Intensionality and substitution salva veritate

Our justification of path induction (the elimination rule for identity types)

given in Section 6 depends upon the principle of substitution salva veritate.

However, intensionality generates opaque contexts, namely, ones in which co-

referring expressions cannot be substituted while preserving the truth of a

sentence. Since the treatment of types in HoTT is intensional, surely substitu-

tion salva veritate is routinely violated and so cannot be a defining principle of

identity?

For example, in sentences describing the contents of a person’s thoughts or

beliefs, if that person is unaware of the fact that two names or descriptions

refer to the same entity, then substituting one for the other may change the

truth of a sentence. For example, the sentence ‘S is thinking about the inventor

of bifocal glasses’ can be true while the sentence ‘S is thinking about the first

US Postmaster General’ is arguably false, if S does not know that both of

these descriptions pick out Benjamin Franklin.
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The standard diagnosis of this phenomenon is that in some contexts names

and descriptions are implicitly associated with a ‘mode of presentation’. When

a sentence omits this mode of presentation (as is usually the case) it can be

rendered ambiguous, and filling in different modes of presentation can change

the truth value. Thus, in the case above, S is thinking about Benjamin

Franklin under the mode of presentation ‘inventor of bifocal glasses’ and

not under the mode of presentation ‘first US Postmaster General’. Thus S’s

thinking about Franklin can render the first sentence true and the second

sentence false, even though the object of S’s thought, Benjamin Franklin, is

the extension of both descriptions.

Arguably, eliminating ambiguity about intensions solves this problem, and

this is the case according to our interpretation of HoTT. The intension of a

token is the type that it belongs to—for example, the intension of ‘2 qua

rational number’ is ‘rational number’. Since each token belongs to exactly

one type, there can be no ambiguity about the intension under which it is

considered, so the intensional treatment of types does not generate an opaque

context, and substitution salva veritate is not violated.

9 Conclusion

In this article we granted that HoTT is an adequate framework for mathem-

atical practice and addressed the question as to whether, in addition, it is a

candidate for being an autonomous foundation for mathematics, in the strong

sense that involves providing an account of the semantics, metaphysics, and

epistemology. Section 4 argued that under the standard interpretation, HoTT

is not autonomous. In Section 5 we introduced the types-as-concepts inter-

pretation and argued that, so construed, HoTT is such a candidate foundation

for mathematics. While the framework in question is that presented in the

HoTT Book ([2013], Chapter 1) (without function extensionality and univa-

lence; see Footnote 6), this article presents a new interpretation of the tokens

and types of the theory, and an account of the metaphysical commitments and

the epistemology that goes with it. Whether this interpretation can be ex-

tended to cover function extensionality, univalence, and other additions to

the theory is a matter for further research.

The types-as-concepts interpretation of the theory presented here is meta-

physically relatively conservative. No special ontology of abstract objects is

required for mathematics. If concepts are regarded as abstract objects, then

either we need them anyway to account for non-mathematical thought, or

some reductive or eliminative account of them can be given, in which case it

can be applied to mathematical concepts as well. We have no such account in
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mind, but do not rule one out, and we do not address the ontology of concepts

further here.

As far as epistemology goes, the present view requires that concepts can be

accessed by thought, and again there is no special mystery about this in the

mathematical case. When it comes to knowledge of mathematical truths,

where these are construed as conceptual facts, any philosophy of mathematics

that respects mathematical practice must take proof to be the primary means

by which mathematical knowledge is established. Any informal proof in

HoTT can always be translated into a completely formal proof and the

logic of the latter is constructive. Thus knowledge of the truth of theorems

is reduced to knowledge of the existence of certificates to those theorems, and

a proof is a complete and explicit specification of a method to produce such a

certificate by the application of simple rules.

Note that none of this rules out an ontology of abstract objects. However,

we do not need to posit the latter in order to do mathematics. Our

interpretation is compatible with stronger positions that have such an ontol-

ogy of mathematics, but it does not give any additional support to them.

Similarly, the epistemological position proposed here provides a basis for

mathematical knowledge via constructive proofs, but does not rule out that

it may be had in other ways, such as via proofs in classical logic (or even by

some non-deductive means, Paseau [2015]). For example, a particular proof

may assume the applicability of LEM or some other additional premise that is

not a consequence of the axioms of the theory; such a proof is then conditional

on these assumptions, which must be made explicit. Unlike some strong

Intuitionist positions, the epistemology proposed here does not rule out the

use of LEM, it simply requires that such uses be explicitly flagged up as as-

sumptions that must either be justified or assumed as premises of the proof. In

short, the metaphysical and epistemological positions proposed here do not

restrict the ontological or mathematical assertions that can be made, but they

do limit the assertions for which we can claim justification without further

premises.

9.1 Advantages of this foundation

HoTT understood as above or as in the HoTT Book has many advantages as a

foundation for mathematics. Type theories help us avoid paradox and errors,

and the constructive framework of HoTT facilitates automatic proof verifica-

tion. The intensionality of the theory allows for the finest of distinctions to be

made. In terms of flexibility and the naturalness with which structures can be

represented, it is like category theory rather than set theory; but HoTT also

unifies logic with mathematics via the Curry–Howard correspondence. As
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Awodey ([2014]) argues, HoTT is also a promising framework for structural-

ism in the philosophy of mathematics.

In mathematical practice, every well-formulated definition is the careful

expression of some concept, usually formed by the logical combination of

simpler concepts. We have direct access to concepts, as well as to pictures

and symbols, in thinking about mathematics. Mathematical concepts are

often taken to be about mathematical objects, but (even setting aside problems

of the nature of these abstract objects and our access to them) the relationship

between concepts and objects is not straightforward. It can be a matter of

great mathematical effort to determine that a given mathematical concept

denotes a particular object, and it is often a substantial mathematical achieve-

ment to show that two concepts are extensionally equal.50

Hence, it is plausible that concepts and the definitions that directly corres-

pond to them should be taken as the primary entities of mathematics, while the

objects that they (appear to) denote should be taken as at best secondary and

at worst redundant. It follows that our foundational language for mathemat-

ics should be understood as picking out concepts rather than objects. This

implies that the language should be intensional, maintaining a distinction

between conceptually distinct descriptions even when they have the same ex-

tension. This is in contrast to the extensional foundations given by ZFC set

theory, for example, which takes the objects (that is, sets) as primary and

therefore collapses together co-extensional definitions.

Our types-as-concepts interpretation of HoTT motivates the intensionality

of the theory, coheres with its constructive nature, explains how identity types

are thought of and used, and is independent of, but compatible with, the

homotopy interpretation. Whether or not these advantages are sufficient to

show that HoTT so construed or otherwise should be adopted as a foundation

for mathematics is a matter for future work.
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