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Large scale models of physical phenomena demand the development of new statistical and computa-
tional tools in order to be effective. Many such models are “sloppy,” i.e., exhibit behavior controlled
by a relatively small number of parameter combinations. We review an information theoretic
framework for analyzing sloppy models. This formalism is based on the Fisher information matrix,
which is interpreted as a Riemannian metric on a parameterized space of models. Distance in this
space is a measure of how distinguishable two models are based on their predictions. Sloppy model
manifolds are bounded with a hierarchy of widths and extrinsic curvatures. The manifold boundary
approximation can extract the simple, hidden theory from complicated sloppy models. We attribute
the success of simple effective models in physics as likewise emerging from complicated processes
exhibiting a low effective dimensionality. We discuss the ramifications and consequences of sloppy
models for biochemistry and science more generally. We suggest that the reason our complex
world is understandable is due to the same fundamental reason: simple theories of macroscopic
behavior are hidden inside complicated microscopic processes. C 2015 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported
License. [http://dx.doi.org/10.1063/1.4923066]

I. PARAMETER INDETERMINACY AND SLOPPINESS

As a young physicist, Dyson paid a visit to Enrico Fermi1

(recounted in Ditley, Mayer, and Loew2). Dyson wanted to
tell Fermi about a set of calculations that he was quite excited
about. Fermi asked Dyson how many parameters needed to be
tuned in the theory to match experimental data. When Dyson
replied there were four, Fermi shared with Dyson a favorite
adage of his that he had learned from Von Neumann: “with four
parameters I can fit an elephant, and with five I can make him
wiggle his trunk.” Dejected, Dyson took the next bus back to
Ithaca.

As scientists, we are frequently in a similar position to
Dyson. We are often confronted with a model—a heavily para-
meterized, possibly incomplete or inaccurate mathematical
representation of nature—rather than a theory (e.g., the Navier-
Stokes equations) with few to no free parameters to tune. In
recent decades, fueled by advances in computing capabilities,
the size and scope of mathematical models have exploded.
Massive complex models describing everything from biochem-
ical reaction networks to climate to economics are now a
centerpiece of scientific inquiry. The complexity of these
models raises a number of challenges and questions, both
technical and profound, and demands development of new

statistical and computational tools to effectively use such
models.

Here, we review several developments that have occurred
in the domain of sloppy model research. Sloppy is the term
used to describe a class of complex models exhibiting large
parameter uncertainty when fit to data. Sloppy models were
initially characterized in complex biochemical reaction net-
works,3,4 but were soon afterward found in a much larger class
of phenomena including quantum Monte Carlo,5 empirical
atomic potentials,6 particle accelerator design,7 insect flight,8

and critical phenomena.9

As a prototypical example, consider fitting decay data to
a sum of exponentials with unknown decay rates,

y(t, θ) =

µ

e−θµt . (1)

We denote the vector of unknown parameters by θ. These
parameters are to be inferred from data, for example, by
nonlinear least squares. This inference problem is notoriously
difficult.10 Intuitively, we can understand why by noting that
the effect of each individual parameter is obscured by our
choice to observe only the sum. Parameters have compensatory
effects relative to the system’s collective behavior. A single
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decay rate can be decreased, for example, provided other rates
are appropriately increased to compensate.

This uncertainty can be quantified using statistical
methods, as we detail in Section II. In particular, the Fisher
Information Matrix (FIM) can be used to estimate the uncer-
tainty in each parameter in our model. The result for the sum of
exponentials is that each parameter is almost completely unde-
termined. Any parameter can be varied by an infinite amount
and the model could still fit the data. This does not mean that all
parameters can be varied independently of the others. Indeed,
while the statistical uncertainty in each individual parameter
might be infinite, the data place constraints on combinations
of the parameters.

The eigenvalues of the FIM tell us which parameter
combinations are well-constrained by the data and which are
not. Most of the FIM eigenvalues are very small, correspond-
ing to combinations of parameters that have little effect on
model behavior. These unimportant parameter combinations
are designated sloppy. A small number of eigenvalues are
relatively large, revealing the few parameter combinations that
are important to the model (known as stiff ). It is generally
observed that the FIM eigenvalues decay roughly log-linearly,
with each parameter combination being less important than the
previous by a fixed factor, as in Figure 1. Consequently, there
is not a well-defined boundary between the stiff and sloppy
combinations, and four parameters really can “fit the elephant.”

The degree of parameter indeterminacy in the simple sum-
of-exponentials model has been seen in many complex models
of real life systems for many of the same reasons. The FIMs
for 17 systems biology models have been shown to have the
same characteristic eigenvalue structure,12 and examples from
other scientific domains abound.5 In each case, observations
measure a system’s collective behavior, and this means that
when parameters have compensatory effects, they cannot be
individually identified.

The ubiquity of sloppiness would seem to limit the useful-
ness of complex parameterized models. If we cannot accu-
rately know parameter values, how can a model be predictive?

FIG. 1. Sloppy eigenvalue spectra of multiparameter models from various
fields.3–5,9,11 Eigenvalues of the FIM, indicating sensitivity to perturbations
along orthogonal directions in parameter space, are roughly evenly spaced
in log-space, extending over many orders of magnitude. Reprinted with
permission from Machta et al., Science 342, 604-607 (2013). Copyright 2013
by AAAS.

Surprisingly, predictions are possible without precise param-
eter knowledge. As long as the model predictions depend on
the same stiff parameter combinations as the data, the predic-
tions of the model will be constrained in spite of large numbers
of poorly determined parameters.

The existence of a few stiff parameter combinations can
be understood as a type of low effective dimensionality of
the model. In Section III, we make this idea quantitative by
considering a geometric interpretation of statistics. This leads
naturally to a new method of model reduction that constructs
low-dimensional approximations to high-dimensional models
(Section IV). These approximations are useful for extracting
a simple emergent theory of the collective behavior from the
larger, complex model.

Simple approximations to complex processes are common
in physics (Section V). The ubiquity of sloppiness suggests that
similarly simple models can be constructed for other complex
systems. Indeed, sloppiness provides a number of new insights
into the unreasonable effectiveness of mathematics13 and the
hierarchical structure of scientific theories.14 We discuss some
of these consequences specifically for modeling biochem-
ical networks in Section VI. We discuss more generally the
implications of sloppiness for mathematical modeling in Sec-
tion VII. We argue that sloppiness is the underlying reason why
the universe (a complete description of which would be inde-
scribably complex) is comprehensible, i.e., well-approximated
by relatively simple mathematical constructions.

II. MATHEMATICAL FRAMEWORK

In this section, we use information theory to define key
measures of sloppiness geometrically.15 We first consider the
special case of model selection for models fit to data by least
squares. We then generalize to the case of arbitrary proba-
bilistic models. The key insight is that the Fisher informa-
tion defines a Riemannian geometry on the space of possible
models.15 The geometric picture allows us to show (in Sec-
tion III) that this local sloppy structure in the metric is paral-
leled by a global hyper-ribbon structure of the entire space of
possible models.

We begin with a simple case—a model y predicting data
d at experimental conditions u, with independent Gaussian
errors; each of these are vectors whose length M is given by the
number of data points. Our model depends on N parameters θ.
In general, an arbitrary model is a mathematical mapping from
a parameter space into predictions, so interpreting a model as
a manifold of dimension N embedded in a data space RM is
natural; the parameters θ then become the coordinates for the
manifold. If our error bars are independent and Gaussian all
with the same width (say, σ = 1), finding the best fit of model
to data is a least squares data fitting problem, as we illustrate in
Figure 2. In this case, we assume that each experimental data
point, di, is generated from a parameterized model, y(ui, θ),
plus random Gaussian noise, ξi,

di = y(ui, θ) + ξi. (2)

Since the noise is Gaussian,

P(ξ) ∝ e−ξ
2/2, (3)
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FIG. 2. The model manifold: a simple model16,17 of an enzyme-catalyzed
reaction can be expressed as a rational function in substrate concentration (u)
with four parameters (θ) predicting the reaction velocity (y) (inset, top). By
varying θ, the model can predict a variety of behaviors y as a function of u
(top). The model manifold is constructed by collecting all possible predictions
of the model at specific values of u (red vertical lines at u = 0.1,2.0,4.0).
To visualize the manifold, we take a two-dimensional cross section of the
four dimensional manifold by choosing θ1 and θ2 to best fit the experimental
data. Varying θ3 and θ4 then maps out a two-dimensional surface of possible
values in three-dimensional data space (bottom). Each curve in the top figure
corresponds to a point of the same color on the model manifold (bottom); the
red crosses on top are data corresponding to the red dot below.

maximizing the log likelihood is equivalent to minimizing the
sum of squared residuals, sometimes referred to as the cost or
χ2 function,

χ2(θ) =

i

r2
i =


i

(di − y(ui, θ))2. (4)

A sum of squares is reminiscent of a Euclidean distance.
Fitting a model to data by least squares is therefore minimizing
a distance in data space between the observed data and the
model. Distance in data space measures the quality of a fit
to experimental data (red point in Figure 2). Distance on the
manifold is induced by, i.e., is the same as, the correspond-
ing distance in data space and is measured using the metric
tensor,11,18

gµν =

i

∂ y(ui, θ)
∂θµ

∂ y(ui, θ)
∂θν

= (JT J)µν, (5)

where Jiµ = ∂ y(ui, θ)/∂θµ is the Jacobian matrix of partial
derivatives. This metric tensor is precisely the well-known FIM
defined below, specialized to our least-squares problem. The
FIM plays a key role in optimal experimental design19 and
the selection of a particular kind of non-informative Bayesian
prior.20 The matrix in Eq. (5) is also equal to the least squares

Hessian matrix,3 measuring sensitivity of the fit to changes
in parameters using second derivatives of 1/2χ2 from Eq. (4),
evaluated where the data point d is taken to be perfectly pre-
dicted by y(θ). On the manifold, the least-squares distance
between two alternate models is a measure of identifiability—
how difficult it would be to distinguish nearby points on the
manifold through their predictions.

This general approach to identifiability allows us to discuss
multiparameter models for systems with non-Gaussian distri-
butions or error estimates that vary with parameters. This can
include the extreme case of models (like the Ising model9)
that predict entire probability distributions. For the purpose of
modeling, the output of our model is a probability distribution
for x, the outcome of an experiment. A parameterized space of
models is thus defined by P(x |θ). To define a geometry on this
space, we must define a measure of how distinct two points θ1
and θ2 in parameter space are, based on their predictions.21

Imagine getting a sequence of assumed independent data
x1, x2, . . . with the task of inferring the model which produced
them. The likelihood that model θ would have produced these
data is given by

P(x1, x2, . . . |θ) =

i

P(xi |θ) = exp *
,


i

log P(xi |θ)+
-
. (6)

In maximum likelihood estimation, our goal is simply to
find the parameter set θ which maximizes this likelihood. It
is useful to talk about log P(x |θ), the log-likelihood, as this
is the unique measure which is additive for independent data
points. The familiar Shannon entropy of a model’s predictions
x is given by minus the expectation value of the log-likelihood,

S(θ) = −

x

P(x |θ) log P(x |θ). (7)

The Shannon entropy is the average likelihood of the data being
generated from the model. We can define an analogous quantity
that measures the likelihood that model θ2 would produce
typical data from θ1,

x

P(x |θ1) log P(x |θ2). (8)

The Kullback-Leibler divergence between θ1 and θ2 measures
how more likely θ1 is to produce typical data from θ1 than θ2
would be,

DKL(θ1||θ2) =

x

P(x |θ1)� log P(x |θ1) − log P(x |θ2)�. (9)

Thus, DKL is an intrinsic measure of how difficult distinguish-
ing these two models will be from their data.

The KL divergence does not satisfy the mathematical
requirements of a distance measure. It is asymmetric and does
not satisfy even a weak triangle inequality: in some cases,
DKL(θ1||θ3) > DKL(θ1||θ2) + DKL(θ2||θ3). However, for models
whose parameters θ and θ + δθ are quite close to one another,
the leading terms are symmetric and can be written as

DKL(θ ||θ + δθ) = gµνδθ
µδθν + Oδθ3, (10)

where gµν is the FIM, which can be written as

gµν(Pθ) = −

x

Pθ(x) ∂

∂θµ
∂

∂θν
log Pθ(x), (11)
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providing the generalization of Eq. (5) to arbitrary Pθ(x). The
FIM has all the properties of a metric tensor. It is symmetric
and positive semi-definite (because no model can on average
be better described by a different model) and it transforms
properly under a coordinate reparameterization of θ. Infor-
mation geometry11,18,22–27 is the study of the properties of
the model manifold defined by this metric. In particular, it
defines a space of models in a way that does not depend on
the labels given to the parameters, which are presumably arbi-
trary; should one measure rate constants in seconds or hours,
and more problematically, should one label these constants
as rates or time constants? Information geometry makes clear
that some aspects of a parameterized model can be defined in
ways that are invariant to these arbitrary choices. Independence
to reparameterization is often required of both computational
and theoretical methods to guarantee consistency and robust-
ness.28–31

III. WHY SLOPPINESS? INFORMATION GEOMETRY

We noted previously that the characteristic eigenvalue
spectrum of the FIM suggests a simpler, lower-dimensional
“theory” embedded within larger, more complex “models,” and
in this section, we make this notion explicit. We will see that
although this interpretation of sloppy models turns out to be
correct, the eigenvalues of the FIM are not sufficient to make
this conclusion. Instead, we use the geometric interpretation
of modeling introduced in Section II that allows us to quantify
important features of the model in a global and parameteriza-
tion independent way. The effort to develop this formalism will
pay further dividends when we consider model reduction in
Section IV.

To understand the limitations of interpreting the eigen-
values of the FIM, we return to the question of model repa-
rameterization. Something as trivial as changing the units of a
rate constant from Hz to kHz changes the corresponding row
and column of the FIM by a factor of 1000, in turn changing
the eigenvalues. Of course, none of the model predictions are
altered by such a change since a correcting factor of 1000 will
be introduced throughout the model. More generally, the FIM
can be transformed into any positive definite matrix by a simple
linear transformation of parameters while model predictions
are always invariant to such a reparameterization.

Although the FIM eigenvalues are not invariant to repa-
rameterization, we can use information geometry to search
for a parameterization independent measure of sloppiness.
Specifically, the key geometric feature of the model manifolds
of nonlinear sloppy systems is that they have boundaries.
Many parameters and parameter combinations can be taken
to extreme values (zero or infinity) without leading to infinite
predictions.

These boundaries can be explored in a parameter inde-
pendent way using geodesics. Geodesics are the analogs of
straight lines on curved surfaces. They are one-dimensional
curves through parameter-space that are constructed numer-
ically as the solution of a differential equation using the
methods of computational differential geometry. A review of
these methods is beyond the scope of this paper, and we refer
the interested reader to Refs. 18 and 11 or any standard text

on differential geometry.32,33 The geodesic curve in parameter
space corresponds to a curve on the model manifold. The arc
lengths of geodesics on the manifold are a measure of the
manifold width in each direction. Measuring these arc lengths
for a sloppy model shows that the widths of sloppy model
manifolds are exponentially distributed, reminiscent of the
exponential distribution of FIM eigenvalues. Indeed, when we
use dimensionless model parameters (e.g., log-parameters),
the square roots of the FIM eigenvalues are a reliable approx-
imation to the widths of the manifold in the corresponding
eigendirections.11,18

The exponential distribution of manifold widths has been
described as a hyperribbon11,18 (Fig. 3). A three-dimensional
ribbon has a long dimension, a broad dimension, and a very thin
dimension. The observed hierarchy of exponentially decreas-
ing manifold widths is a high-dimensional generalization of
this structure. We will explore the nature of these boundaries
in more detail when we discuss model reduction in Section IV.

The observed hierarchy of widths can be demonstrated
analytically for the case of a single independent variable (such
as time or substrate concentration in Figure 2) by appealing
to theorems for the convergence of interpolating functions
(Fig. 3(a)). Consider removing a few degrees of freedom from
a time series by fixing the output of the model at a few time
points. The resulting model manifold corresponds to a cross
section of the original. Next, consider how much the predic-
tions at intermediate time points can be made to vary as the
remaining parameters are scanned. As more and more predic-
tions are fixed (i.e., considering higher-dimensional cross sec-
tions of the model manifold), we intuitively predict that the
behavior of the model at intermediate time points will become
more constrained. Interpolation theorems make this intuition
formal; presuming smoothness or analyticity of the predic-
tions as a function of time, one can demonstrate an expo-
nential hierarchy of widths consistent with the hyperribbon
structure observed empirically.11,18 This argument is illustrated
in Fig. 3(b). Briefly, an analytic function f (t) with radius
of convergence R allows one to predict the behavior at a
neighboring point t + ϵ using n derivatives with error going
as (ϵ/R)n. Interpolation theory tells us that one can use values
f (t1), . . . , f (tn) separated by ∼∆t to predict values with errors
converging as (∆t/R)n.18,34 Hence, each successive data point
(cross section) becomes thinner by a constant factor ∆t/R,
giving us our hyperribbon structure.

The exponential hierarchy of manifold widths reflects a
low effective dimensionality in the model, which was hinted
at by the eigenvalues of the FIM. It also helps illustrate how
models can be predictive without parameters being tightly con-
strained. Only those parameter combinations that are required
to fit the key features of the data need to be estimated accu-
rately. The remaining parameter combinations (controlling,
for example, the high-frequency behavior in our time series
example) are unnecessary. In short, the model essentially func-
tions as an interpolation scheme among observed data points.
Models are predictive with unconstrained parameters when the
predictions interpolate among observed data.

Understanding models as generalized interpolation sche-
mes makes additional predictions about the generic structure
of sloppy model manifolds. There is not only an exponential
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FIG. 3. Hyperribbon. (a), (c), and (d) are visualizations of a model for radioactive decay (a sum of exponentials), a famously ill-posed fitting problem.5 (a) Given
a multiparameter model for one-dimensional data y(t) at different times t , the model manifold has a different dimension for every time t . Here, we successively
specify the values at times t = 0,1 (yellow), 1

3 (orange), and 2
3 (red); f (0)= 1, f (1)= 1/e, and successive points are constrained to the centers of their respective

possible ranges. Specifying each data point y(tn) can also be viewed in data space as giving a cross section of the model manifold—each successive data point
giving the later cross section narrower widths, implying a hyperribbon structure.18 (b) Interpolation theory11,18 can be used to quantify this qualitative argument,
showing that each cross section of an analytic function f (t) reduces the width by an approximately constant factor. (Reprinted with permission from Fig. 5 of
M. K. Transtrum, B. B. Machta, and S. P. Sethna, Phys. Rev. E 83, 036701 (2011). Copyright 2011 by American Physical Society.) (c) and (d) Two views of
a hyperribbon cross section of a model manifold, with the values y(t) at t = 0, 1

3 ,
2
3 , and 1 set to measured values as in part (a). The xyz coordinates are the

values y( 1
2 ), y( 1

4 ), y( 3
4 ); the width of the red band in (a) is the projection of the model manifold onto the corresponding axis. Notice the ribbon-like structure of

these two projections: (c) long and narrow and (d) very thin. Notice that total range of z in (a) is much larger than the range of z given x and y depicted in (d);
the addition of two more data points constrains z more tightly.

distribution of widths but also an exponential distribution of
extrinsic curvatures. Furthermore, these curvatures are rela-
tively small in relation to the widths, making the model mani-
fold surprisingly flat. Most of the nonlinearity of the model’s
parameters takes the form of “parameter effects curva-
ture”23,35–37 (equivalent to the connection coefficients11). The
small extrinsic curvature of many models was a mystery first
noted in the early 1980s,23 which is explained by interpolation
arguments.

IV. MODEL REDUCTION

In this section, we leverage the power of the information
geometry formalism to answer the question: how can a simple
effective model be constructed from a (more-or-less) complete
but sloppy representation of a physical system? Our goal is to
construct a physically meaningful representation that reveals
the simple “theory” that is hidden in the model.

The model reduction problem has a long history, and it
would be impossible in this review to even approach a compre-
hensive survey of literature on the subject. Several standard
methods have emerged that have proven effective in appro-
priate contexts. Examples include clustering components into
modules,38–40 mean field theory, various limiting approxima-
tions (e.g., continuum, thermodynamic, or singular limits), and
the renormalization group (RG).41,42 Considerable effort has
been devoted by the control and engineering communities to
approximate large-scale dynamical systems,43–47 leading to the
method of balanced truncation,48–50 including several struc-
ture preserving variations51–53 and generalizations to nonlinear

cases.54–56 Methods for inferring minimal dynamical models in
cases for which the underlying structure is not known are also
beginning to be developed.57,58

Unfortunately, many automatic methods produce “black
box” approximations. For most scenarios of practical impor-
tance, a reduced representation alone has limited utility since
attempts to engineer or control the system typically operate
on the microscopic level. For example, mutations operate on
individual genes and drugs target specific proteins. A method
that explicitly reveals how microscopic components are “com-
pressed” into a few effective degrees of freedom would be
very useful. On the other hand, methods that do explicitly
connect microscopic components to macroscopic behaviors
have limited scope since they often exploit special properties
of the model’s functional form, such as symmetries. Consider,
for example, the renormalization group, which operates on
field theories with a scale invariance or conformal symmetry.
Simplifying modular network systems, such as biochemical
networks, is particularly challenging due to inhomogeneity and
lack of symmetries.

The Manifold Boundary Approximation Method
(MBAM)59 is an approach to model approximation whose goal
is to alleviate these challenges. As the name implies, the basic
idea is to approximate a high-dimensional, but thin, model
manifold by its boundary. The procedure can be summarized
as a four-step algorithm. First, the least sensitive parameter
combination is identified from an eigenvalue decomposition
of the FIM. Second, a geodesic on the model manifold is
constructed numerically to identify the boundary. Third, hav-
ing found the edge of the model manifold, the corresponding
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model is identified as an approximation to the original model.
Fourth, the parameter values for this approximate model are
calibrated by fitting the approximate model to the behavior of
the original model.

The result of this procedure is an approximate model
that has one less parameter and that is marginally less sloppy
than the original. Iterating the MBAM algorithm therefore
produces a series of models of decreasing complexity that
explicitly connect the microscopic components to the macro-
scopic behavior. These models correspond to hyper-corners
of the original model manifold. The MBAM requires that
the model manifold is bounded with a hierarchy of bound-
aries (faces, edges, corners, hyper-corners, etc.). It makes no
assumptions about the underlying physics or mathematical
form of the model. As such, MBAM is a very general approx-
imation scheme.

The key component that enables MBAM is the edges of the
model manifold. The existence of these edges was first noted
in the context of data fitting18 and Markov Chain Monte Carlo
(MCMC) sampling of Bayesian posterior distributions.7 It was
noted that algorithms would often “evaporate” parameters,
i.e., allow them to drift to extreme, usually infinite, values.
These extreme parameter values correspond to limiting behav-
iors in the model, i.e., manifold boundaries.

“Evaporated parameters” are especially problematic for
numerical algorithms. Numerical methods often push parame-
ters to the edge of the manifold and then become lost in param-
eter space. Consider the case of MCMC sampling of a Bayesian
posterior. If a parameter drifts to infinity, there is an infinite
amount of entropy associated with that region of parameter
space and the sampling will never converge. Furthermore,
the model behavior of such a region will always dominate
the posterior distribution.7 Because the entropic contributions
from these evaporated parameters are essentially infinite, they
can overwhelm a small, nonzero factor from the likelihood.
The result is a posterior distribution that is dominated by
unlikely parameter values, is inconsistent with the observed
data, and makes poor predictions for new experiments.

For data fitting algorithms, methods such as Levenberg-
Marquardt operate by fitting the key features of the data first
(i.e., the stiffest directions), followed by successive refining
approximations (i.e., progressively more sloppy components).
While fitting the initial key features, algorithms often evapo-
rate those parameters associated with less prominent features
of the data. The algorithm is then unable to bring the parame-
ters away from infinity in order to further refine the fit.18

Although problematic for numerical algorithms, mani-
fold edges are useful for both approximating (as we have
seen using the MBAM) and interpreting complex models. To
illustrate, we consider an Epidermal Growth Factor Receptor
(EGFR) signaling model.3 Figure 4 illustrates components of
one eigenparameter, corresponding in this case to the smallest
eigenvalue of the FIM. Notice that the eigenparameters do not
align with bare parameters of the model, but typically involve
an unintuitive combination of bare parameters. However, by
following a geodesic along the model manifold to the manifold
edge (step 2 of the MBAM algorithm), these complex combi-
nations slowly rotate to reveal relatively simple, interpretable
combinations that correspond to a limiting approximation of

FIG. 4. Identifying the boundary limit.59 The components of the smallest
eigenvector of the FIM are often a complicated combination of bare param-
eters that is difficult to either interpret or remove from the model (top left).
By following a geodesic to the manifold boundary, the combination rotates to
reveal a limiting behavior (bottom left); here, two parameters (a reaction rate
and a Michaelis-Menten constant) become infinite. The limiting behavior is
revealed when the smallest eigenvalue has become separated from the other
eigenvalues (right).

the model. For example, the EGFR model in Ref. 3 consists
of a network of Michaelis-Menten reactions. The boundary
revealed59 in Figure 4 corresponds to the limit of a reaction
rate and a Michaelis-Menten constant becoming infinite while
their ratio is finite,

d
dt
[A] = k[A][B]

KM + [A] + · · · (12)

→
(

k
KM

)
[A][B] + · · ·, (13)

where [A] and [B] are concentrations of two enzymes in the
model and the ratio k/KM is the renormalized parameter in the
approximate model.

Because the manifold edges correspond to models that are
simple approximations of the original, the MBAM can be used
to iteratively construct simple representations of otherwise
complex processes. By combining several limiting approxima-
tions, simple insights into the system behavior emerge, which
were obfuscated by the original model’s complexity. Figure 5
compares network diagrams for the original and approximate
EGFR models. The original consists of 29 differential equa-
tions and 48 parameters, while the approximate consists of
6 differential equations and 12 parameters and is notably not
sloppy.

Because the MBAM process explicitly connects models
through a series of limiting approximations, the parameters of
the reduced model can be identified with (nonlinear) combi-
nations of parameters in the original model. For example, one
of the 12 variables in the reduced model of Fig. 5 is written as
an explicit combination of 7 “bare” parameters of the original
model,
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FIG. 5. Original3 and reduced59 EGFR
models. Reprinted with permission
from M. K. Transtrum and P. Qiu, Phys.
Rev. Lett. 113, 098701 (2014). Copy-
right 2014 by American Physical Soci-
ety. The interactions of the EGFR sig-
naling pathway3,4 are summarized in
the leftmost network. Solid circles are
chemical species for which the experi-
mental data were available to fit. Man-
ifold boundaries reduce the model to a
form (right) capable of fitting the same
data and making the same predictions as
in the original references.3,4 The FIM
eigenvalues (center) indicate that the
simplified model has removed the ir-
relevant parameters identified as eigen-
values less than 1 (dotted line) while
retaining the original model’s predictive
power.

φ =
(kRap1ToBRaf)(KmdBRaf)(kpBRaf)(KmdMek)

(kdBRaf)(KmRap1ToBRaf)(kdMek) . (14)

Expressions such as this explicitly identify which combina-
tions of microscopic parameters act as emergent control knobs
for the system.

MBAM naturally includes many other approximation
methods as special cases.59 By an appropriate choice of param-
eterization, it is both a natural language for model reduction
and a systematic method that in practice can be mostly auto-
mated.

The MBAM is a semi-global approximation method.
Manifold boundaries are a non-local feature of the model.
However, MBAM only explores the region of the manifold
in the vicinity of a single hyper-corner. More generally, it is
possible to identify all of the edges of a particular model (and
by extension, all possible simplified models). This analysis is
known as information topology.60

V. SLOPPINESS IN PHYSICS: EMERGENCE
AND EFFECTIVE THEORIES

Unlike in systems biology, physics is dominated by effec-
tive models and theories whose forms are often deduced long
before a microscopic theory is available. This is in large part
due to the great success of continuum limit arguments and
RG procedures in justifying the expectation and deriving the
form of simple emergent theories. These methods show that
many different multi-parameter microscopic theories typically
collapse onto one coarse-grained model, with the complex
microscopic details being summarized into just a few “rele-
vant” coarse-grained parameters. This explains why an effec-
tive theory, or an oversimplified “cartoon” microscopic theory,
can often make quantitatively correct predictions. Thus, while
three dimensional liquids have enormous microscopic diver-
sity, in a certain regime (lengths and times large compared to
molecules and their vibration periods), their behavior is deter-
mined entirely by their viscosity and density. Although two
different liquids can be microscopically completely different,
their effective behavior is determined only by the projection
of their microscopic details onto these two control parameters.

This parameter space compression underlies the success of
renormalizable and continuum limit models.

This connection has been made explicit, by examining
the FIM for typical microscopic models in physics.9 A micro-
scopic hopping model for the continuum diffusion equation
quickly develops “stiff” directions corresponding to the param-
eters of the continuum theory—the total number of particles,
net mean velocity, and diffusion constant. As time proceeds,
all other microscopic parameter combinations become increas-
ingly irrelevant for the prediction of long-time behavior. Simi-
larly, a microscopic long-range Ising model for ferromagne-
tism, when observed on long length scales, develops stiff direc-
tions along precisely those parameter combinations deemed
“relevant” under the renormalization group.

Consider a model of stochastic motion as a stand-in for
a molecular level description of particles moving through a
possibly complicated fluid. Such a fluid’s properties depend
on many parameters such as the bond angle of the molecules
which make it up, all of which enter into the probability distri-
bution for motion within the fluid. However, the law of large
numbers says that as many of these random steps are added
together, the long-time movement of particles will lead to them
being distributed in space according to a Gaussian. As this
happens, diverse microscopic details must become compressed
into the two parameters of a Gaussian distribution—its mean
and width. As a concrete example, in the top of Figure 6, two
very different microscopic motions are considered. In each
time step, red particles take a random step from a triangular
distribution, while blue particles step according to a square
distribution. While these motions lead to very different distri-
butions after a single time step, as time proceeds they become
indistinguishable precisely because their first and second mo-
ments are matched.

This indistinguishability can be quantified by considering
the model manifold of possible microscopic models of sto-
chastic motion. When probed at the intrinsic time and length
scales of these fluids, we should make few assumptions about
the type of motion we expect; in particular, we should allow for
behaviors more complicated than diffusion, by analogy with the
square and triangle described in two dimensions above. Follow-
ing Ref. 9, we consider a one dimensional “molecular level”
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FIG. 6. Microscopic motion becomes diffusive. Top: Simulated particles undergo stochastic motion in discrete time. Red particles hop according to a triangular
kernel, while blue particles hop according to a square kernel. After a single time step, the particles have very different distributions in space, and neither resemble
the distribution predicted by the diffusion equation. However, as time evolves, most of the information about this kernel is lost, and only the diffusion tensor and
average drift enter into a continuum description. Here, the drift is 0, and their respective diffusion tensors are matched, so that the resulting distributions become
quantifiably indistinguishable as time proceeds. The compression of microscopic details mirrors the compression of molecular level detail in the emergence of
diffusion as a continuum limit of motion in real fluids. Bottom: A three dimensional projection of the model manifold of a one dimensional lattice version of
this diffusion example as in Ref. 9. Six parameters describe the probability of hopping to one of 6 nearby neighbor sites (shown pictorially in arrows at left).
The red and blue kernels shown on the left have drift 0 and identical second moments, though higher moments are very different. Other (white) points are
taken from a uniform distribution in the 6 dimensional parameter space which is bounded only by the constraint that no hopping probabilities are negative and
that the total probability of a hop sums to a number less than 1. After a single time step, the model manifold resembles a “hyper-blob,” with a large diversity
of behaviors. In particular, the red and blue points are not initially close to each other. However, after several stochastic steps, the model manifold takes on a
hyperribbon structure. Models for which all effective parameters are matched, like the red and blue kernels, rapidly move close to each other. At late times, any
model sufficiently flexible to capture the two remaining extended directions is adequate to describe effective behavior, explaining the ubiquity and success of the
continuum diffusion equation.

model for stochastic motion, in which parameters describe the
rates at which a particle hops to one of its close-by neighbors.
After a single time step, the corresponding model manifold
is a “hyper-blob” (Fig. 6, bottom) and two particular models,
marked in red and blue, are distinguishable; they are not nearby
on the model manifold. The prediction space of a model is
truly multidimensional in this regime—it cannot be described
by the two parameter diffusion equation. In this “ballistic”
regime, motion is not described by the diffusion equation and is
presumably not just different, but genuinely more complicated.
However, as time proceeds, the model manifold contracts onto
a hyper-ribbon, in which just two parameter combinations
distinguish behavior. In this regime, all points lie close to the
two dimensional manifold predicted by the diffusion equation,
and the red and blue points have become indistinguishable; they
are now in close proximity on the manifold.

Using information geometry, approximations analogous
to continuum limits or the renormalization group can be found
and used to construct similarly simple theories in fields for
which effective theories have historically been difficult to
construct or justify.

VI. SLOPPINESS IN SYSTEMS BIOLOGY: PARAMETER
ESTIMATION AND “WRONG” MODELS

Unlike in physics, where the value of effective theories
has long been recognized, the field of systems biology has
focused on the development of detailed microscopic models

and has wrestled with the associated challenges of parameter
estimation. In Secs. II–IV, we have highlighted the structure
of the model manifold in data space, as in Figure 2: thin,
sloppy dimensions of the hyperribbon correspond to behavior
that is minimally dependent on parameters. The dual picture
in parameter space, sketched in Figure 7, is one in which the
set of parameters that fits some given data sufficiently well is
stretched to extend far along sloppy dimensions. This picture
is important to understanding implications for biochemical
modeling with regard to parameter uncertainty.

For instance, using the full EGFR signal transduction
network (left side of Figure 5), we may wish to make a predic-
tion about an unmeasured experimental condition, e.g., the
time-course of Extracellular signal-Regulated Kinases (ERK)
activity upon EGF stimulation. In general, if there are large
uncertainties about the model’s parameters, we expect our
uncertainty about this time-course to also be large. If we view
the problem of uncertainties in model predictions as coming
from a lack of precision measurements of individual parame-
ters, we may try to carefully and independently measure each
parameter. This can work if such measurements are feasible, but
can fail if even one relevant parameter remains unknown: as in
the right plot of Figure 7, a large uncertainty along the direction
of a single parameter corresponds to large changes in system-
level behavior, leading to large predictive uncertainties.12

In contrast, we can instead constrain the model parameters
with system-level measurements that are similar to the types of
measurements we wish to predict. Due to sloppiness, we expect
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FIG. 7. Sloppiness in parameter space. Left: A schematic of a typical sloppy model ensemble, pictured in two dimensions for clarity. The underlying cost surface
(with constant cost contours illustrated as ellipses) is generated by the fit to data. Eigenvectors of the FIM correspond to principal axes of the ellipse, with widths
of the ellipse inversely proportional to the square roots of the corresponding eigenvalues λi. Points inside the ellipse each represent a set of parameters that fits
the data within a given tolerance (in practice often created using a Monte Carlo approach), forming an ensemble representing uncertainty about the true values
of parameters. Sloppiness can result in good fits to data despite enormous uncertainties in “bare” θ parameters (dotted lines intersecting the axes). Right: Careful
measurements of individual parameters (like θ1) can shrink uncertainty, but if even a single parameter remains unknown (like θ2), large predictive uncertainty
can still result.

that this will produce a subspace of acceptable parameters
that will include large uncertainties in individual parameter
values (left plot of Figure 7). And somewhat counterintui-
tively, because of correlations among parameter sensitivities
in sloppy models, useful predictions of interest can be made
without precisely knowing any single parameter.

Thus, from the perspective of sloppy models, working to
estimate precise parameter values in a model is useless. This
does not mean that anything goes; indeed, the region of accept-
able parameters may be small compared to prior knowledge
about their values. Yet it does validate a common approach to
modeling such systems, in which educated guesses are made
for most parameters, and a remaining handful is fit to the data.
In the common situation in which there are a small number m of
important “stiff” directions, with remaining sloppy directions
extending to cover the full range of feasible parameters, fitting
m parameters will be enough to locate the sloppy subspace.
(And if using a maximum likelihood approach, this is in fact
statistically preferred to fitting all parameters, in order to avoid
overfitting.) Unfortunately, it is hard to know m ahead of
time, in general requiring a sampling scheme like MCMC
or a geodesic-following algorithm11,18 to ascertain the global
structure of the sloppy subspace. The information provided
by fitting these m parameters is often enough to make sharp
predictions in similar experimental contexts. Note that this is
not true for all possible experiments: in general, the relevant
information depends on the questions being asked.

The extremely large uncertainties in parameter estimates
in sloppy models led to the suggestion that accurate param-
eter estimates might not be possible.12 However, advances in
the theory of experimental design have suggested that such
estimates might be feasible after all,61–64 although requiring
considerable experimental effort.65 The perspective provided
by sloppy model analysis provides at least two alternatives to
this method of operation.

First, in spite of the large number of parameters, complex
biological systems typically exhibit simple behavior that re-
quires only a few parameters to describe, analogous to how
the diffusion equation can describe microscopically diverse

processes. Attempting to accurately infer all of the parameters
in a complex biological model66 is analogous to learning all
of the mechanical and electrical properties of water mole-
cules in order to accurately predict a diffusion constant. It
would involve considerable effort (measuring all the micro-
scopic parameters accurately12), while the diffusion constant
can be easily measured using collective experiments and used
to determine the result of any other collective experiment.

Second, in many biological systems, there is considerable
uncertainty about the microscopic structure of the system.
Sloppiness suggests that an effective model that is microscop-
ically inaccurate may still be insightful and predictive in spite
of getting many specific details wrong. For example, a hopping
model for thermal conductivity would be “wrong” even though
it gives the right thermal diffusion equation. “Wrong” models
can provide key insights into the system level behavior because
they share important features with the true system. In such a
scenario, it is the flexibility provided by large uncertainties in
the parameters that allows the model to be useful. Any attempt
to infer all the microscopic parameters would break the model,
preventing it from being able to fit the data.

Indeed, it is difficult to envision a complete microscopic
model in systems biology. Any model will have rates and bind-
ing affinities that will be altered by the surrounding complex
stew of proteins, ions, lipids, and cellular substructures. Is the
well-known dependence of a reaction rate on salt concentra-
tion (described by an effective Gibbs free energy tracing over
the ionic degrees of freedom) qualitatively different from the
dependence of an effective reaction rate on cross talk, regu-
latory mechanisms, or even parallel or competing pathways
not incorporated into the model? We are reminded of quantum
field theories, where the properties (say) of the electron known
to quantum chemistry are renormalized by electron-hole reac-
tions in the surrounding vacuum which are ignored and ignor-
able at low energies. Insofar as a model provides both insight
and correct predictions within its realm of validity, the fact
that its parameters have effective, renormalized values incor-
porating missing microscopic mechanisms should be expected,
not disparaged. We hope to bring some of the perspective
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regarding effective theories and relevant degrees of freedom as
understood in physics to the field of systems biology, in order to
better comprehend complex, heterogeneous processes in living
systems.

VII. MORE GENERAL CONSEQUENCES
OF SLOPPINESS

The hyperribbon structures implied by interpolation the-
ory and information geometry in Section III have profound
implications. Complex scientific models have predictions that
vary in far fewer ways than their complexity would indicate.
Multiparameter models have behavior that largely depends
upon only a few combinations of microscopic parameters.
The high-dimensional results of a system with a large number
of control parameters will be well encompassed by a rather
flat, low-dimensional manifold of behavior. In this section, we
shall speculate about these larger issues, and how they may
explain the success of our efforts to organize and understand
our environment.

A. Efficacy of principal component analysis

Principal component analysis, or PCA, has long been an
effective tool for data analysis. Given a high-dimensional data
set, such as the changes of mRNA levels for thousands of genes
under several experimental conditions,67 PCA can provide a
reduced description which often retains most of the variation
in the original data set in a few linear components. Arranging
the data into a matrix Rjn + cj of experiments n and data points
j centered at cj, PCA uses the singular value decomposition
(SVD),

R =

k

σkû(k) ⊗ v̂(k), (15)

Rjn =

k

σkû(k)
j v̂

(k)
n , (16)

to write R as the sum of outer products of orthonormal vec-
tors û(k) in data space and v̂(k) in the space of experiments.
Here, σ1 ≥ σ2 ≥ · · · ≥ 0 are non-negative “strengths” of the
different components k. These singular values can be viewed as
a generalization of eigenvalues for non-square, non-symmetric
matrices. The û(k) for small k describe the “long axes” of the
data, viewed as a cloud of points Rn in data space; σk is the
RMS extent of the cloud in direction û(k). The utility of PCA
stems from the fact that in many circumstances only a few
components k are needed to provide an accurate reconstruction
of the original data. Just as our sloppy eigenvalues converge
geometrically to zero, the singular values σk often rapidly
vanish. It is straightforward to show that the truncated SVD
keeping only the first, largest K components is an optimal
approximation to the data, with total least square error bounded
by


K+1 σ

2
k
. These largest singular components often have

physical or biological interpretations—sometimes mundane
but useful (e.g., which machine was used to take the data),
sometimes scientifically central.

Why does nature often demand so few components to
describe large dimensional data sets? Sloppiness provides a

new perspective. If the data result from (say) a biological sys-
tem whose behavior is described by a sloppy model y(θ), and if
the different experiments are sampling different parameter sets
θn, then the data will be points Rjn + cj = y j(θn) on the model
manifold. Insofar as the model manifold has the hyperribbon
structure we predict, it has only a few long axes (corresponding
to stiff directions) and it is extrinsically very flat along these
axes11 (Fig. 18). Here, each y j − cj, being a difference between
a data point and the center of the data, will be nearly a linear
sum of a small number K of long directions of the model
manifold, and the RMS spread along this kth direction will be
bounded by the width of the model manifold in that direction,
plus a small correction for the curvature. As any cloud of
experimental points must be bounded by the model manifold,
the high singular values will be bounded by the hierarchy
of widths of the hyperribbon. Hence, our arguments for the
hyperribbon structure of the model manifold in multiparameter
models provide a fundamental explanation for the success of
PCA for these systems.

B. Efficacy of Levenberg-Marquardt—Improved
algorithms

The Levenberg-Marquardt algorithm28,68,69 is one of the
standard algorithms for least squares minimization. Its broad
utility can be explained through the lens of sloppy models and
geometric insights lead to natural improvements. Minimizing
a linear approximation to a nonlinear model with a constraint
on the step size,

min
δθ

|y(θ0) + Jδθ − y0|2, |δθ | ≤ ∆, (17)

leads to the iterative algorithm,

δθ = −
�
JT J + λ

�−1
JT (y(θ0) − y0) , (18)

where λ is a Lagrange multiplier. The FIM (JT J) for a typical
sloppy model is extremely ill-conditioned. However, the damp-
ened scaling matrix JT J + λ will have no eigenvalues smaller
than λ. By tuning λ, the algorithm is able to explicitly control
the effects of sloppiness. Furthermore, since the eigenvalues
of JT J are roughly log-linear, λ need not be finely tuned to be
effective. By slowly decreasing λ, the algorithm fits the key fea-
tures of the data first (i.e., the stiffest directions), followed by
successive refining approximations (i.e., progressively more
sloppy components). The algorithm may still converge slowly
as it navigates the extremely narrow canyons of the cost surface
(see Figure 7) or fail completely if it becomes trapped near the
boundary of the model manifold.11,18

Information geometry provides a remarkable new perspec-
tive on the Levenberg-Marquardt algorithm. The move δθ for
λ = 0 is the direction in parameter space corresponding to the
steepest descent direction in data space; for λ , 0, the move
is the steepest descent direction on the model graph.11,18 The
fact that the model graph is extrinsically rather flat turns the
narrow optimization valleys in parameter space into nearly
concentric hyperspheres in data space—explaining the power
of the method. Levenberg-Marquardt takes steps along straight
lines in parameter space; to take full advantage of the flatness
of the model manifold, it should ideally move along geodesics.
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As it happens, the leading term in the geodesic equation is
numerically cheap to calculate, providing a “geodesic accel-
eration” correction to the Levenberg-Marquardt algorithm
which greatly improves the performance and reliability of the
algorithm.70,71

C. Evolution is enabled

Besides practical consequences for parameter estimation
of biochemical networks (Section VI), sloppiness has poten-
tial implications for biology and evolution. Specifically, the
fact that biological systems often achieve remarkable robust-
ness to environmental perturbations may be less mysterious
when taking into account the vastness of sloppy subspaces.
For instance, the circadian rhythm in cyanobacteria, controlled
by the dynamics of phosphorylation of three interacting Kai
proteins, seems remarkable in that it maintains a 24-h cycle
over a range of temperature over which kinetic rates in the
system are expected to double. Yet the degree of sloppiness
in the system suggests that evolution may have to tune only a
few stiff parameter directions to get the desired behavior at any
given temperature and perhaps only one extra parameter direc-
tion to make that behavior robust to temperature variation.72

Extended, high-dimensional neutral spaces have been identi-
fied as a central element underlying robustness and evolvability
in living systems,73 and sloppy parameter spaces play a similar
role: a population with individuals spread throughout a sloppy
subspace can more easily reach a broader range of phenotypic
changes, such that the population is simultaneously highly
robust and highly evolvable.72

D. Pattern recognition as low-dimensional
representation

The pattern recognition methods we use to comprehend
the world around us are clearly low-dimensional representa-
tions. Cartoons embody this: we can recognize and appre-
ciate faces, motion, objects, and animals depicted with a few
pen strokes. In principle, one could distinguish different peo-
ple by patterns of scars, fingerprints, or retinal patterns, but
our brains instead process subtle overall features. Caricatures
in particular build on this low-dimensional representation—
exaggerating unusual features of the ears or nose of a celebrity
makes them more recognizable, placing them farther along the
relevant axes of some model manifold of facial features. Arche-
typal analysis,74 a branch of machine learning, analyzes data
sets with a matrix factorization similar to PCA, but expressing
data points as convex sums of features that are not constrained
to be orthogonal. In addition, the features must be convex
combinations of data points. Archetypal analysis applied to
suitably processed facial image data allows faces to be decom-
posed into strikingly meaningful characteristic features.74–76

One might speculate, for example, that our facial structures
are determined by the effects of genetic and environmental
control parameters θ and that the resulting model manifold of
faces has a hyperribbon structure, explaining the success of
the linear, low-dimensional archetypal analysis methods and
perhaps also the success of our biological pattern recognition
skills.

E. Big data are reducible

Machine learning methods that search for patterns in
enormous data sets are a growing feature of our information
economy. These methods at root discover low-dimensional
representations of the high-dimensional data set. Some tasks,
such as the methods used to win the Netflix challenge77 of pre-
dicting what movie users will like, explicitly focus on dimen-
sionality reduction through the use of methods such as PCA.
More complex problems, such as digital image recognition,
often make use of artificial neural networks, such as stacked
denoising autoencoders.78 Consider the problem of recogniz-
ing handwritten digits (the MNIST database). Neural networks
are used to fit the data, with parameters θα giving the outputs
of the digital neurons, and the model y(θ) producing a digital
image that is optimized to best represent the written digits.
The training of these networks focuses on simultaneously
developing a model manifold flexible enough to closely mimic
the data set of digits and of developing a mapping ỹ−1(d)
from the original data d depicting the digit to neural outputs θ
= ỹ−1(d) close to the best fit. Neural networks starting with
high-dimensional data routinely distill the data into a much
smaller, more comprehensible set of neural outputs θ—which
are then used to classify or reconstruct the original data.
The neural network thus forms a reduced-dimensional model
manifold in the space of possible images. One might guess
that a successful neural network would have a hyperribbon
structure—since an N-neuron network does almost as well
as an N + 1 neuron network, one would imagine that the
(N + 1)th direction would be thin. Initial explorations of a
stacked denoising autoencoder trained on the MNIST digit data
by Hayden et al.79 instead shows that the neural network forms
a roughly equiaxed structure—but that the reconstructed digits
form a lower-dimensional structure on the boundary.

F. Science is possible

In fields like ecology, systems biology, and macroeco-
nomics, grossly simplified models capture important features
of the behavior of incredibly complex interacting systems.
If what everyone ate for breakfast was crucial in determin-
ing the economic productivity each day, and breakfast eating
habits were themselves not comprehensible, macroeconomics
would be doomed as a subject. We argue that adding more
complexity to a model produces diminishing returns in fidelity,
because the model predictions have an underlying hyperribbon
structure.

G. Different models can describe the same behavior

We are told that science works by creating theories and
testing rival theories with experiments to determine which is
wrong. A more nuanced view allows for effective theories of
limited validity—Newton was not wrong and Einstein right,
Newton’s theory is valid when velocities are slow compared to
the speed of light. In more complex environments, several theo-
retical descriptions can cast useful light onto the same phenom-
ena (“soft” and “hard” order parameters for magnets and liquid
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crystals80 (Chap. 9)). Also, in fields like economics and sys-
tems biology, all descriptions are doomed to neglect pathways
or behavior without the justification of a small parameter. So as
long as these models are capable of capturing the “long axes”
of the model manifold in the data space of known behavior,
and are successful at predicting the behavior in the larger
data space of experiments of interest, one must view them as
successful. Many such models will in general exist—certainly
reduced models extracted systematically from a microscopic
model (Section IV), but other models as well. Naturally, one
should design experiments that test the limits of these models
and cleanly discriminate between rival models. Our infor-
mation geometry methods could be useful in the design of
experiments distinguishing rival models; current methods that
linearize about expected behavior81 could be replaced by geo-
metric methods that allow for large uncertainties in model
parameters corresponding to nearly indistinguishable model
predictions.

H. Why is the world comprehensible?

Surely the reason that handwritten digits have a hyper-
ribbon structure—that we do not use random dot patterns to
write numbers—is partially related to the way our brain is
wired. We recognize cartoons easily; therefore, the information
in our handwriting is encapsulated in cartoon-like subrep-
resentations. But physics presumably has low-dimensional
representations (Section V) independently of the way our brain
works. The continuum limit describes our world perturbatively
in the inverse length and time scales of the observation; the
renormalization group in addition perturbs in the distance to
the critical point. Why is science successful in other fields,
systems biology and macroeconomics, for example? Is it a
selection effect—do we choose to study subjects where our
brains see patterns (low-dimensional representations), and
then describe those patterns using theories with hyperribbon
structures? Or are there deep underpinning structures (evolu-
tion, game theory) that guide the behavior into comprehen-
sible patterns? A cellular control circuit where hundreds of
parameters all individually control important, different as-
pects of the behavior would be incomprehensible without full
microscopic information, discouraging us from trying to model
it. On the other hand, it would seem challenging for such a
circuit to arise under Darwinian evolution. Perhaps, modu-
larity and comprehensibility themselves are the result of evo-
lution.82–85

Philosophers of science have long noticed and specu-
lated about the “unreasonable effectiveness of mathematics”13

in constructing a hierarchy of physical theories.14 Although
the final explanation for this mystery remains elusive, sloppi-
ness provides a new way to frame the question using the lan-
guage of information geometry. The problem is thus translated
from philosophical speculation into one that can be studied
systematically and rigorously. Indeed, a partial explanation has
been proposed based on interpolation theory. While interpo-
lation arguments cannot explain the hyperribbon structure in
all contexts, they suggest that a comprehensive explanation
might be possible and what such an explanation would look
like.

VIII. CONCLUSION

What began as a rather pragmatic exercise in parameter
fitting has blossomed into an enterprise that stretches across
the landscape of science. The work described here has both
methodological implications for the development and valida-
tion of scientific models (in the areas of optimization, machine
learning, and model reduction) and philosophical implications
for how we reason about the world around us. By investigat-
ing and characterizing in detail the geometric and topological
structures underlying scientific models, this work connects
bottom-up descriptions of complex processes with top-down
inferences drawn from data, paving the way for emergent
theories in physics, biology, and beyond.
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