
Bayesian Perceptual Psychology 

 

Bayesian decision theory is a mathematical framework that models reasoning and 

decision-making under uncertainty. Around 1990, perceptual psychologists began constructing 

detailed Bayesian models of perception.
1
 This research program has proved enormously fruitful. 

As two leading perceptual psychologists put it, “Bayesian concepts are transforming perception 

research by providing a rigorous mathematical framework for representing the physical and 

statistical properties of the environment, describing the tasks that perceptual systems are trying to 

perform, and deriving appropriate computational theories of how to perform those tasks” 

(Geisler and Kersten, 2002, p. 508). To understand perception, one must acquire detailed 

knowledge of Bayesian perceptual psychology. Or so I hope to convince you. 

§§1-2 introduce the Bayesian approach. §§3-8 highlight its philosophical significance. 

 

§1. Perception as unconscious inference 

 Perception solves an underdetermination problem. The perceptual system estimates 

environmental conditions, such as the shapes, sizes, colors, and locations of distal objects. It does 

so based upon proximal stimulations of sensory organs. The proximal stimulations 

underdetermine their environmental causes. For instance, a convex object under normal lighting 

generates retinal stimulations ambiguous between at least two possibilities: that the object is 

convex and that light comes from overhead; or that the object is concave and that light comes 

from below. Similarly, light reflected from a surface generates retinal stimulations consistent 

with various colors (e.g. the surface may be red and bathed in daylight, or the surface may be 

                                                 
1
 Bayesian perceptual psychology generalizes signal detection theory, which was developed in the 1950s. For 

comparison of the two frameworks, see (Kersten and Schrater, 2002, pp. 193-199). 
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white and bathed in red light). In general, then, retinal input underdetermines possible states of 

the distal environment. We cannot yet program a computer that solves this underdetermination 

problem. The perceptual system solves it quickly, effortlessly, automatically, and reliably. How? 

Helmholtz (1867) proposed that the perceptual system executes an “unconscious 

inference” from sensory stimulations to hypotheses about the environment. The inference reflects 

“implicit assumptions” concerning the environment or the interaction between environment and 

perceiver. For instance, the visual system deploys an “implicit assumption” that light comes from 

overhead. Helmholtz‟s approach, now called constructivism, helps explain two notable 

phenomena: perceptual constancies and illusions. 

Perceptual constancies are capacities to represent properties or entities as the same 

despite large variation in proximal stimulation. To varying degrees, human vision displays 

constancies for numerous properties, including size, shape, location, color, depth, and motion. 

How does the perceptual system achieve constancies? By using “implicit assumptions” to 

discount variations in proximal stimulation. Color constancy provides a good illustration. Color 

constancy is the capacity to perceive surface color as constant despite large variation in viewing 

conditions, including background illumination. To estimate surface color, the perceptual system 

first deploys various “implicit assumptions” (such as that the light source is fairly uniform, or 

that certain surface colors are likelier than others) to estimate background illumination based 

upon overall retinal stimulation. The perceptual system then deploys this background 

illumination estimate so as to estimate a surface‟s color based upon retinal stimulation caused by 

that surface. As Helmholtz famously put it, the perceptual system “discounts the illuminant.” 

Perceptual constancies are reliable but fallible, as demonstrated by illusions. Consider 

again the assumption that light comes from overhead. The assumption is correct in normal cases, 
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so it usually supports an inference to an accurate percept. When the assumption fails, the 

resulting percept is inaccurate. For instance, lighting a concave object from below generates an 

illusory percept as of a convex object. Constructivists explain the mistaken shape-estimate by 

isolating its source: the implicit assumption that light comes from overhead. Similarly, a red 

spotlight directed upon a single object violates the implicit assumption of a fairly uniform 

illuminant, thereby inducing an illusory color percept. These examples illustrate constructivism‟s 

template for explaining illusions: isolate an implicit assumption deployed during perceptual 

inference; show how failure of the assumption can induce an inaccurate percept. 

 Perceptual processes are subpersonal and inaccessible to the thinker. There is no good 

sense in which the thinker herself, as opposed to her perceptual system, executes perceptual 

inferences. For instance, a normal perceiver simply sees a surface as having a certain color. Even 

if she notices the light spectrum reaching her eye, as a painter might, she cannot access the 

perceptual system‟s inference from retinal stimulations to surface color.
2
 

 The 20th century produced various rivals to constructivism, including Gibson‟s direct 

perception framework. Gibson (1979) denied that perception involves complex psychological 

activity, inferential or otherwise. He held that the perceptual system directly “picks up” certain 

distal properties by “resonating” to them. Gibson‟s work yielded many invaluable insights, such 

as the importance of optic flow, that can be incorporated into constructivism. Viewed as an 

alternative to constructivism, Gibson‟s direct perception framework has difficulty explaining the 

vast bulk of constancies and illusions (Fodor and Pylyshyn, 1981). That is why the direct 

perception framework remains marginal within perceptual psychology. 

A satisfactory development of constructivism must answer three questions: 

(a) In what sense does the perceptual system execute “inferences”? 

                                                 
2
 On the distinction between the perceiver and her perceptual system, see (Burge, 2010, pp. 23-24; 2011, pp. 68-69). 
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(b) In what sense do the inferences “reflect” various “implicit assumptions”? 

(c) In what sense does perceptual inference yield the “best” hypothesis? 

Different versions of constructivism answer these questions differently. For instance, some 

constructivists regard “implicit assumptions” as stored premises fit to participate in unconscious 

deductive, inductive, or abductive inferences (Rock, 1983, pp. 272-282). Bayesian perceptual 

psychology develops constructivism in a different direction, as I will now explain. 

 

§2. Perception as unconscious statistical inference 

The perceptual system operates under conditions of uncertainty, stemming from at least 

three sources: 

Ambiguity of sensory input, as described above. 

Noisiness of perceptual organs and neural mechanisms: that is, their vulnerability to 

corruption by random errors. 

Potential conflict between sensory modalities (e.g. visual versus auditory cues to an 

object‟s location) or between cues within a modality (e.g. binocular disparity cues to 

depth versus monocular linear perspective cues to depth). 

It therefore seems natural to formalize constructivism through Bayesian decision theory, which 

models decision-making under uncertainty. 

The core notion underlying Bayesian decision theory is subjective probability. Subjective 

probabilities reflect psychological facets of the individual or her subsystems, rather than 

“objective” features of reality. To formalize probabilities, we introduce a hypothesis space H 

containing various hypotheses h. Each hypothesis h reflects a possible state of the world (e.g. a 

possible shape of some distal object; or a possible color of some distal surface; or a possible 
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assignment of distal objects to spatial locations). A probability function p maps each hypothesis 

h to a real number p(h), reflecting the agent‟s subjective probabilities.
3
 

 Bayesian decision theory dictates how to update subjective probabilities based on new 

evidence. Bayes’s Theorem states that 

)()|()|( hphepehp  , 

meaning that the left-hand side is proportional to the right hand side. p(h | e) and p(e | h) are 

conditional probabilities. For instance, p(e | h) is the probability of e, conditional on h. Bayes’s 

Rule states that, when one receives evidence e, one should update p(h) by replacing it with p(h | 

e). To execute Bayes‟s Rule, one multiplies the prior probability p(h) by the prior likelihood p(e 

| h). One then normalizes so that all probabilities sum to 1. Finally, one adopts the resulting 

posterior probability p(h | e) as a revised probability assignment for h. Thus, the new probability 

of h is proportional to its original probability, multiplied by the likelihood of evidence e given h.
4
 

 Bayesian perceptual psychologists use this framework to model perceptual inference 

(Knill and Richards, 1996). On a Bayesian approach, the perceptual system entertains hypotheses 

drawn from a hypothesis space H. The perceptual system assigns prior probabilities to 

hypotheses h and prior likelihoods to (e, h) pairs, where each e corresponds to some possible 

sensory input. After receiving input e, the perceptual system reallocates probabilities across the 

hypothesis space, in rough accord with Bayes‟s Rule. 

To illustrate, consider the extraction of shape from shading (Mamassian, Landy, and 

Maloney, 2002). Let s reflect possible shapes, θ reflect possible lighting directions, and e reflect 

possible patterns of retinal illumination. The visual system encodes: 

                                                 
3
 When the hypothesis space is continuous, p(h) is a probability density function. See §8 for details. For ease of 

exposition, I blur the distinction between probability and probability density. 
4
 There is an unfortunate tendency among scientists and even some philosophers to conflate Bayes‟s Theorem and 

Bayes‟s Rule. The former is an easily provable mathematical theorem. The latter is a prescriptive norm that dictates 

how to reallocate probabilities in light of new evidence. 
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A prior probability p(s), which assigns higher probability to certain distal shapes than 

others (e.g. it may assign higher probability to convex shapes). 

A prior probability p(θ), which assigns higher probability to an overhead lighting 

direction than to alternative lighting directions. 

A prior likelihood p(e | s, θ), which assigns a higher probability to an (e, s, θ) triplet if 

distal shape s and lighting direction θ are likely to cause retinal illumination e. 

Upon receiving retinal illumination e, the perceptual system redistributes probabilities over 

shape-estimates, yielding a posterior p(s | e). Depending on the case, the posterior might assign a 

much higher probability to convexity than concavity. For details, see (Stone, 2011). 

 Perception normally yields a determinate percept. For instance, one sees an object as 

having a determinate shape, not a spectrum of more or less probable shapes. Accordingly, 

Bayesian models explain how the perceptual system selects a single hypothesis h based on the 

posterior p(h | e). Typical models invoke expected utility maximization. The “action” is selection 

of h. The utility function, which is task-dependent, reflects the penalty for an incorrect answer. If 

the utility function has a suitable shape, then expected utility maximization reduces to a much 

simpler decision rule, such as selecting the mean or the mode of the posterior probability. 

 As another example, Bayesian models of surface color perception proceed roughly as 

follows. A surface has reflectance R(λ), specifying the fraction of incident light that the surface 

reflects at each wavelength λ.
5
 The illuminant has spectral power distribution I(λ): the light 

power at each wavelength. The retina receives light spectrum C(λ) = I(λ) R(λ) from the surface. 

The visual system seeks to estimate surface reflectance R(λ). This estimation problem is 

underdetermined, since C(λ) is consistent with numerous I(λ)-R(λ) pairs. Typical Bayesian 

                                                 
5
 The models described in this paragraph assume diffusely illuminated flat matte surfaces. To handle other viewing 

conditions, we must replace R(λ) with a more complicated surface reflectance property, such as a bidirectional 

reflectance distribution. 
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models posit that two surfaces have the same color appearance for a perceiver when her 

perceptual system estimates the same reflectance for each surface. To estimate R(λ), the visual 

system estimates I(λ). It does so through a Bayesian inference, based upon overall retinal 

stimulation, that deploys a prior probability over possible illuminants and possible surface 

reflectances. To a first approximation, the illuminant prior assigns higher probability to 

illuminants that resemble natural daylight, while the surface prior assigns higher probability to 

surface reflectances that occur more commonly in the natural environment. This framework can 

explain both the success and the failure of human color constancy under various conditions. For 

details, see (Brainard, 2009).
6
 

 We can schematize a typical Bayesian model through the following template: 

                                                 
6
 Current models describe perception of surface color. As Matthen (2005, p. 176) emphasizes, color perception also 

responds to transmitted color (e.g. stained-glass windows) and colored light sources. Thus, we should not identify 

colors with surface reflectance properties. Should we identify colors with other, possibly disjunctive, physical 

properties? Maybe. But the Bayesian models I am describing do not presuppose a physicalist reduction of color. One 

might combine those models with various metaphysical views of color, such as that colors are dispositions to cause 

sensations in normal human perceivers, or such as Matthen‟s (2005) pluralistic realism. Current Bayesian models 

assume no particular metaphysics of color. They simply assume that human color perception involves estimation of 

surface reflectance, as informed by estimation of background illumination. 
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Note that this template does not require perception to represent Bayesian norms. There is no 

evidence that the perceptual system explicitly represents Bayes‟s Rule or expected utility 

maximization. The perceptual system simply proceeds in rough accord with Bayesian norms. 

A typical Bayesian model dictates a unique outcome given four factors: prior 

probabilities, prior likelihoods, sensory input, and the utility function.
7
 In that sense, the model is 

deterministic. Of course, the model‟s generalizations are ceteris paribus. Perceptual malfunction, 

external interference, or corruption by internal noise can induce exceptions. 

 Most Bayesian models conform roughly to the foregoing template. But some models vary 

the template. For instance, some models augment the template by incorporating motor efference 
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 Cf. Burge‟s “Proximality Principle” (2005). 
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copy.
8
 Other models replace expected utility maximization with probability matching, a non-

deterministic process whereby the probability that the perceptual system selects some hypothesis 

matches the posterior probability assigned to that hypothesis (Mamassian, Landy, and Maloney, 

2002). One phenomenon sometimes analyzed through non-deterministic Bayesian modeling is 

multistable perception (such as the Necker cube). During multistable perception, experience 

fluctuates between distinct percepts, rather than yielding a unique percept. 

 One can construe Bayesian models of perception in two different ways (Kersten and 

Mamassian, 2009). On the first construal, a Bayesian model describes how an “ideal observer” 

would estimate environmental conditions based upon sensory input. We construct the model only 

so as compare human performance with an ideal benchmark. On the second construal, a 

Bayesian model approximately describes actual mental processes. The model seeks to describe, 

perhaps in an idealized way, how the perceptual system actually transits from sensory input to 

perceptual estimates. Both construals figure in the scientific literature. I emphasize the second 

construal. I am discussing Bayesian models as empirical theories of actual human perception. 

 Many Bayesian models are fairly unrealistic. For example, the hypothesis space is often 

uncountable. In general, Bayesian inference over an uncountable hypothesis space is 

computationally intractable. So I think that we should regard most Bayesian perceptual models 

as idealizations, akin to models from physics that postulate frictionless surfaces or infinite wires. 

Of course, we eventually want less idealized descriptions. However¸ I see no principled problem 

here. AI offers numerous tools for constructing computationally tractable approximations to 

idealized Bayesian computation. No doubt we will eventually supplement or replace current 

perceptual models with computationally tractable approximations. 

                                                 
8
 Motor efference copy figures most prominently in Bayesian models of sensorimotor control (Wolpert, 2007).  
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 Bayesian perceptual psychology provides detailed answers to the three questions (a)-(c) 

posed at the end of §1: 

(a) Transitions among perceptual states approximately conform to norms of Bayesian 

decision theory. In that sense, the transitions are statistical inferences. 

(b) Bayesian models replace talk about “implicit assumptions” with talk about prior 

probabilities and likelihoods. The models thereby depart substantially from many earlier 

versions of constructivism. On Rock‟s approach, for example, an “implicit assumption” 

that light comes from overhead corresponds to a single stored premise whose content is 

that light comes from overhead. Bayesians instead posit a prior assignment of 

probabilities to possible lighting directions. This prior figures not as a premise but rather 

as input to Bayesian reallocation of subjective probabilities over shape-estimates. 

(c) The perceptual system produces an estimate that is “best” or “optimal” insofar as it 

conforms to rational norms of Bayesian decision theory. In this manner, Bayesian models 

depict numerous perceptual illusions as natural byproducts of a near-optimal process that 

infers environmental conditions from ambiguous sensory stimulations. 

Hence, the Bayesian framework converts talk about “implicit assumptions” and “unconscious 

inferences” into mathematically rigorous, quantitatively precise psychological models. 

 Where do the prior probabilities and prior likelihoods come from? The human visual 

system evolved over millennia in a fairly stable environment. Accordingly, one might expect 

certain lawlike or statistical environmental regularities to be “encoded in the genes.” 

Nevertheless, Bayesian perceptual priors do not simply reflect innate programming. For instance, 

even the “light-from-overhead” prior reflects a complex interplay between nature and nurture. It 

gathers considerable strength during early childhood (Stone, 2011), and it changes rapidly upon 
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adult exposure to deviant environments (Adams, Graf, and Ernst, 2004). At present, we do not 

know how genetic endowment and individual experience jointly determine Bayesian priors. 

Current research mainly tries to identify the priors, not to explain the etiology of those priors.
9
 

Ultimately, we want detailed theories explaining how Bayesian priors originate and 

develop. Even lacking such theories, we can cite the priors to explain constancies and illusions. 

In this connection, I stress that the priors postulated by Bayesian perceptual psychology are not 

ad hoc. Admittedly, a precise quantitative match usually requires some “curve fitting.” 

Qualitatively, though, the priors typically reflect antecedently motivated claims about lawlike or 

statistical properties of our environment. It is plausible that the perceptual system acquires these 

priors through some combination of nature and nurture, even if we do not yet know how.
10

 

How can we legitimately postulate Bayesian priors, lacking a developed theory of their 

etiology? Because Bayesian priors generate the unifying predictive power characteristic of good 

explanation. To illustrate, consider motion perception.
11

 The visual system can directly measure 

local retinal image velocities, which underdetermine the distal motions that cause them. The 

visual system must estimate distal motion based upon local retinal image velocities. It does so 

fairly well but not perfectly, as illustrated by the fact that low contrast stimuli appear to move 

more slowly than high contrast stimuli. (This may explain why drivers accelerate in the fog --- 

they underestimate relative velocities.) Weiss, Simoncelli, and Adelson (2002) offer a Bayesian 

motion perception model with two features: 

                                                 
9
 There are exceptions, such as (Knill, 2007). 

10
 In some cases, the priors reflect non-obvious statistical regularities about the environment (Geisler, 2008). In other 

cases, a satisfying explanation awaits discovery. An example: somewhat mysteriously, the perceptual system 

assumes that the light source is located overhead and slightly to the left (Mamassian, Landy, and Maloney, 2002). 

One question in this area concerns informational encapsulation: to what extent can cognition influence the priors? 
11

 Cue combination provides another good illustration. The perceptual system typically receives multiple cues, often 

through different sensory modalities, regarding a single environmental variable. Bayesian perceptual psychology 

offers a unified framework for explaining diverse cases of intermodal and intramodal sensory fusion: visual and 

auditory cues to location; visual and proprioceptive cues to limb position; conflicting visual cues to depth; and so on. 

See (Trommershäuser, Körding, and Landy, 2011) for an overview. 
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The prior probability favors slow distal motions. 

The visual system treats low contrast retinal images as less reliable.
12

 

This model explains why vision underestimates velocity under low contrast conditions: namely, 

because the slow-motion prior exerts more influence over the velocity-estimate. The model also 

explains other motion illusions, including the following: a fat rhombus moving horizontally 

appears to move horizontally, but a thin rhombus seems to move diagonally at low contrasts and 

horizontally at high contrasts. (Readers can experience this effect at 

www.cs.huji.ac.il/~yweiss/Rhombus/rhombus.html.) Thus, a single Bayesian model explains 

diverse illusions that otherwise resist unified treatment. Subsequent models have elaborated the 

Bayesian approach to motion perception in increasingly sophisticated ways (Ernst, 2010). 

 Bayesian perceptual psychology offers illuminating, rigorous explanations for diverse 

constancies and illusions. It is our best current science of perception. We should carefully 

consider how it bears upon contemporary philosophy of mind --- a task to which I now turn. 

 

§3. Estimation and representation 

 A natural view holds that perceptual states are evaluable as accurate or inaccurate. For 

instance, suppose I perceive a concave object that appears convex due to misleading lighting. It 

seems natural to say that my percept is inaccurate. To say this, we must ascribe truth, accuracy, 

or veridicality conditions to the percept. Some philosophers distinguish among “truth,” 

“accuracy,” and “veridicality” (Burge, 2010), but I use these terms interchangeably. Call the 

view that perceptual states have truth-conditions representationalism. Burge (2005, 2010, 2011) 

                                                 
12

 More technically: the prior likelihood p(e | h), considered as a function of h for fixed e, has higher variance when 

the retinal image e has lower contrast. 
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argues that current perceptual psychology supports representationalism. I will now defend the 

same conclusion by examining Bayesian models of perception.
13

 

 On the Bayesian approach, perceptual inference reallocates probabilities over a 

hypothesis space and then selects a favored hypothesis. This favored hypothesis is incorporated 

into the final percept, whose accuracy depends upon whether the hypothesis is accurate. To 

illustrate, consider Bayesian models of shape perception. The perceptual system assigns prior 

probabilities to estimates of specific distal shapes. After receiving sensory input, perceptual 

inference revises the probability assignment and selects a favored estimate of a specific distal 

shape. The resulting percept incorporates this favored shape-estimate. The percept may also 

incorporate various size-estimates, motion-estimates, and so on. Accuracy of the percept depends 

upon accuracy of the individual estimates. By describing perceptual inference in this way, we 

type-identify perceptual states truth-conditionally. We individuate perceptual states partly 

through environmental conditions that must obtain for the states to be accurate. 

What exactly are the truth-conditions of percepts? According to Davies (1992), a percept 

involves something like existential quantification. The percept is accurate iff there exist objects 

with properties represented by the percept. An opposing view, espoused by Burge (2005), holds 

that perceptual truth-conditions are object-dependent. A percept represents environmental 

particulars, such as physical bodies or events. The percept attributes properties to those 

particulars. It is accurate only if those particulars have the represented properties. I remain 

neutral between these two views. I emphasize a shared presupposition underlying both views: 

that perceptual states have truth-conditions. This presupposition is integral to perceptual 

                                                 
13

 Burge discusses several Bayesian perceptual models, but he does not discuss their specifically Bayesian features. 

Bradley (2009) defends representationalism by citing Bayesian models of color perception.  
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psychology. The science seeks to explain how the perceptual system generates a percept that 

estimates specific environmental conditions. Estimates can be either accurate or inaccurate. 

Following standard philosophical usage, I say that a mental state has representational 

content when it has a truth-condition. On this usage, perceptual states have representational 

content. I do not assume a specific theory of representational content. One might gloss perceptual 

contents as sets of possible worlds, or Russellian propositions, or Fregean senses. There are 

many other options.
14

 The key point for us is that the science routinely individuates perceptual 

states through their representational import. 

 Bayesian models individuate both explananda and explanantia in representational terms. 

The science explains perceptual states under representational descriptions, and it does so by 

citing other perceptual states under representational descriptions. For instance, Bayesian models 

of shape from shading assume prior probabilities over hypotheses about specific distal shapes 

and about specific lighting directions. The models articulate generalizations describing how 

retinal input, combined with these priors, causes a revised probability assignment to hypotheses 

about specific distal shapes, subsequently inducing a unique estimate of a specific distal shape. 

The generalizations type-identify perceptual states as estimates of specific distal shapes. 

Similarly, Bayesian models of surface color perception type-identify perceptual states as 

estimates of specific surface reflectances. Thus, the science assigns representation a central role 

within its explanatory generalizations. The generalizations describe how mental states that bear 

certain representational relations to the environment combine with sensory input to cause 

mental states that bear certain representational relations to the environment. 

 In §§4-8, I develop my analysis by examining various philosophical theories that either 

reject representationalism or else downplay the importance of representational content. 

                                                 
14

 For a survey of philosophical approaches to perceptual content, see (Siegel, 2011). 
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§4. The relational view of perception 

Brewer (2007), Campbell (2010), Martin (2004) and Travis (2004) espouse a relational 

view of perception. Relationalists eschew all talk about perceptual representation. They treat 

perceptual states as relations not to representational contents but rather to objects or properties in 

the perceived environment. For instance, Campbell (2010, p. 202) holds that “the content of 

visual experience is constituted by the objects and properties in the scene perceived,” rather than 

by anything resembling a truth-condition. He cautions that we should not “think of experience 

itself as already a representational state” (p. 202). The relational approach is sometimes allied 

with Gibsonian direct perception, sometimes not. 

To illustrate, consider two counterfactual situations A and B in which I perceive the same 

object O, yielding qualitatively indistinguishable percepts PA and PB: 

In situation A, O is convex and looks convex. 

In situation B, O is concave but looks convex through misleading lighting. 

Representational taxonomization type-identifies PA and PB by correlating them with the same 

truth-condition. In particular, both percepts estimate the same distal shape: convexity. In 

situation A, the estimate is correct. In situation B, the estimate is incorrect. By contrast, 

Campbell‟s relational taxonomization treats PA and PB as type-distinct. Campbell type-identifies 

the first percept through its relation to a distal property (convexity) to which the second percept 

is not appropriately related. 

Bayesian perceptual psychology supports representationalism over relationalism.  

A core postulate underlying the science is that perception produces an estimate of environmental 

conditions, where the estimate may be either accurate or inaccurate. Consider the diagram from 

§2. If we neglect noise, malfunction, and external interference, then a unique percept-type is 
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determined by four factors: the prior probability, the prior likelihood, proximal sensory input, 

and the utility function. We may stipulate that all four factors are the same in situations A and B. 

It follows that percepts PA and PB are type-identical from the perspective of the Bayesian model. 

In both cases, the final percept incorporates a convexity-estimate. The perceptual system 

produces a convexity-estimate whether or not the perceived object is convex. (Cf. Burge, 2005, 

pp. 22-25; 2010, pp. 362-364.) An appropriately modified diagnosis applies to non-deterministic 

Bayesian models, such as models that replace expected utility maximization with probability 

matching. For such models, the probability that situation A yields a convexity-estimate equals the 

probability that situation B yields a convexity-estimate. Thus, explanatory generalizations of 

Bayesian perceptual psychology enshrine a representational, non-relational taxonomic scheme. 

The generalizations type-identify percepts by specifying environmental conditions that must 

obtain for a given percept to be accurate. 

Campbell (2010) suggests that we can interpret perceptual science in relational terms. 

This suggestion seems unpromising, because the Bayesian explanation of illusion relies 

essentially upon non-relational taxonomization. The central idea is that the perceptual system 

estimates some environmental state, which may or may not obtain. Bayesian modeling seeks to 

explain the environmental state estimate, regardless of whether the estimate is veridical. Contrary 

to Campbell‟s relationalist strictures, the science routinely type-identifies veridical and non-

veridical percepts. Of course, there is a difference between the veridical and the non-veridical 

percept. Perceptual psychologists acknowledge this difference. Yet they also emphasize 

fundamental representational commonalities between the two percepts. Those commonalities 

play a key individuative role within Bayesian explanatory generalizations. So a relational, non-

representational taxonomic scheme flouts explanatory practice within perceptual psychology. 
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Brewer (2007, p. 173) seeks to accommodate illusions in a relational framework. He 

concedes that there can be a “visually relevant similarity” between a veridical and a non-

veridical percept. He compares: (i) a red surface in daylight; and (ii) a white surface 

surreptitiously bathed in red light. He acknowledges that the surface in scenario (ii) looks red. He 

says that “this consists in the fact that [the surface] has visually relevant similarities with 

paradigm red objects: the light reflected from it is like that reflected from such paradigms in 

normal viewing conditions” (p. 173). 

Naturally, I agree that (i) and (ii) emit similar light spectra. However, merely noting this 

commonality does not capture the fact that both surfaces look red. A surface that emits the same 

light spectrum under different viewing conditions may not look red. A surface that emits a 

radically different light spectrum under different viewing conditions can still look red. Thus, we 

must reject Brewer‟s proposed analysis of looks red. In contrast, representationalists can say that 

a surface looks red when one‟s percept represents the surface as red. 

Brewer‟s analysis omits crucial scientifically relevant commonalities between the two 

percepts. A key scientifically relevant commonality is that both percepts result from perceptual 

estimation of a single surface reflectance R(λ). The estimate is correct in (i), incorrect in (ii). We 

do not capture this key commonality between the percepts simply by noting that (i) and (ii) emit 

similar light. The perceptual system can estimate reflectance R(λ) despite large variation in the 

light spectrum C(λ) emitted by a surface. Moreover, depending on the perceptual system‟s 

estimate of illumination I(λ), the perceptual system may not estimate R(λ) even when the surface 

emits the same light spectrum C(λ). Capturing the scientifically relevant commonalities between 

(i) and (ii) requires us to cite perceptual estimation (and hence perceptual representation) of 

surface reflectance. Yet relationalists eschew all talk about perceptual representation. 
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There are delicate issues here surrounding the relation between colors and surface 

reflectances. According to current science, a percept that represents a surface as red is caused by 

perceptual activity that represents reflectance. But does the final percept itself represent 

reflectance? There are at least three salient options: 

(a) The percept represents color but not reflectance. 

(b) The percept represents reflectance and separately represents color. 

(c) The percept represents reflectance and thereby represents color. 

The choice between (a)-(c) depends upon other matters, including the metaphysics of color (cf. 

note 6). We need not choose among (a)-(c) here. The crucial point is that relationalists must 

reject all three options. Relationalists do not countenance perceptual representation of color, 

reflectance, or any other distal property. 

In summary, relationalism cannot accommodate a core postulate underlying 

contemporary perceptual psychology: that perception produces an estimate of environmental 

conditions, where the estimate may be either accurate or inaccurate. 

 

§5. Eliminativism, instrumentalism, and realism 

 Beginning with Quine (1960), various philosophers have argued that intentionality (or 

representationality) deserves no place in serious scientific discourse. They have argued that we 

should replace intentional psychology with some alternative framework, such as Skinnerian 

behaviorism (Quine, 1960) or neuroscience (Churchland, 1981). This eliminativist position 

concedes that representational locutions are instrumentally useful in everyday life. It denies that 

they offer literally true descriptions. Dennett (1987) advocates a broadly instrumentalist position 

intermediate between intentional realism and eliminativism. He acknowledges that the 
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“intentional stance” is instrumentally useful for scientific psychology, but he questions whether 

mental states really have representational content. 

I assume a broadly scientific realist perspective: explanatory success is a prima facie 

guide to truth. From a scientific realist perspective, the explanatory success of Bayesian 

perceptual psychology provides prima facie reason to attribute representational content to 

perceptual states. The science is empirically successful and mathematically rigorous. It routinely 

individuates perceptual states through representational relations to the environment. We have no 

clue how to preserve the resulting explanatory benefits without employing representational 

locutions. Thus, current perceptual psychology strongly supports intentional realism over 

eliminativism and instrumentalism. We should no more adopt an eliminativist or instrumentalist 

posture towards intentionality than we should adopt an eliminativist or instrumentalist posture 

towards electrons. The famous Quinean criticisms of intentional psychology are notably less 

rigorous and compelling than the science they purport to undermine. Philosophers who reject 

intentionality as spooky, obscure, or otherwise unscientific are in fact opposing our current best 

science of perception. 

One might greet my argument by proposing an instrumentalist interpretation of 

perceptual psychology. In this vein, McDowell insists that appeals to representational content 

within perceptual psychology are “metaphorical” (2010, p. 250). On his analysis, perceptual 

psychologists do not literally claim that perception represents. They claim only that perception 

proceeds as if it represents. Representational talk is mere heuristic. 

McDowell‟s proposal misinterprets perceptual psychology. (Cf. Burge, 2011, pp. 67-68.) 

A fundamental idea underlying how the science treats illusion is that a perceptual estimate can be 

inaccurate. An estimate is accurate only if the environmental conditions that it estimates actually 
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obtain. Thus, truth-conditional attribution is embedded within the foundations of the science. 

Representational locutions do not play a metaphorical role within Bayesian perceptual 

psychology. They are not heuristic chitchat. They reflect the central, explicit goal of the science: 

to describe how the perceptual system estimates environmental conditions. Instrumentalism is no 

more justified towards Bayesian perceptual psychology than towards any other science. 

Even readers who reject full-blown instrumentalism may contemplate a moderate 

instrumentalist agenda: construe representational description literally when applied to 

explananda but metaphorically when applied to explanantia. Consider again the diagram from 

§2. Moderate instrumentalism adopts a realist stance towards sensory input e and the output 

hypothesis h but an instrumentalist stance towards the priors, posterior, and utility function. On 

this approach, the priors, posterior, and utility function are simply useful tools for predicting how 

certain sensory inputs cause certain perceptual states. The perceptual system transits from retinal 

input to perceptual estimates as if it encodes Bayesian priors. Moderate instrumentalism 

concedes that the perceptual system implements a mapping from sensory inputs to perceptual 

estimates, but it remains neutral regarding how the perceptual system implements that mapping. 

For defense of moderate instrumentalism regarding Bayesian perceptual psychology, see 

(Colombo and Seriès, forthcoming). 

Moderate instrumentalism does not flout the science as blatantly as full-blown 

instrumentalism. Nevertheless, it strikes me as unsatisfactory. A key point here is that experience 

can alter the mapping from proximal input to perceptual estimates. For example, Adams, Graf, 

and Ernst (2004) manipulated the light-from-overhead prior by exposing subjects to deviant 

haptic feedback regarding shape. The new prior caused altered shape-estimates. Moreover, the 

new prior transferred to a different task that required subjects to estimate which side of an 
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oriented bar was lighter than the other. Realists can offer a principle, unified explanation for the 

altered shape-estimates and lightness-estimates: namely, that there is a change in the prior over 

lighting directions. Moderate instrumentalists seem unable to offer a comparably satisfying 

explanation. Moderate instrumentalists must simply say that the mapping from retinal input to 

shape-estimates changes and that the mapping from retinal input to lightness-estimates changes, 

without offering any underlying explanation for why the mappings change as they do. In this 

case, at least, realism seems more explanatorily fruitful than moderate instrumentalism.
15

 

We must exercise care in stating the realist position. As already noted, current Bayesian 

models are highly idealized. When the hypothesis space is large enough, the perceptual system 

may only approximately encode the priors and the posterior. What does it mean to 

“approximately encode” a probability assignment? What is the difference between saying that 

the mind approximately implements Bayesian inference and saying that the mind merely behaves 

as if it implements Bayesian inference?
16

 These questions --- which lie at the intersection of 

philosophy, AI, and empirical psychology --- merit extensive further study. 

 

§6. Phenomenal content 

Relatively few philosophers reject representationalism. However, many popular 

philosophical theories downplay perceptual representation of the distal environment. Most of 

these theories are consistent with but unsupported by contemporary science. I illustrate by 

                                                 
15

 There are additional phenomena in a similar vein that favor realism towards prior probabilities and likelihoods 

(Seydell, Knill, and Trommershäuser, 2011), (Beierholm, Quartz, and Shams, 2009). Realism towards the utility 

function seems well-supported for Bayesian models of sensorimotor control (Maloney and Mamassian, 2009). I am 

less sure about the utility functions that figure in Bayesian models of perception. Moderate instrumentalism may be 

more promising for that case. 
16

 Clark (forthcoming) raises the same worry. 
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considering phenomenal content, as postulated by Chalmers (2006), Horgan and Tienson (2002), 

Thompson (2010), and various other philosophers. 

A distinguishing feature of phenomenal content is that it supervenes upon phenomenal 

aspects of experience. For example, suppose that a normal perceiver Nonvert observes a red 

object and experiences a perceptual state with a certain phenomenological character. Suppose 

that a spectrally inverted perceiver Invert observes a green object and experiences a 

phenomenally indistinguishable perceptual state. Chalmers and Thompson hold that, in both 

cases, the resulting percept is veridical. Nonvert‟s percept correctly attributes redness, while 

Invert‟s percept correctly attributes greenness. Chalmers and Thompson also hold that the two 

percepts share a uniform phenomenal content. The content represents red as used by Nonvert and 

green as used by Invert. Similarly, Chalmers and Thompson hold that a single phenomenal 

content might represent circularity as used by one perceiver and non-circular ellipticality as used 

by a phenomenological twin suitably embedded in a sufficiently different environment. 

There may be many good reasons for positing phenomenal contents. However, Bayesian 

perceptual psychology makes no use of such contents. The science delineates explanatory 

generalizations dictating how perceptual states that represent certain environmental properties 

induce other perceptual states that represent certain environmental properties. Bayesian models 

describe how the perceiver, exercising standing capacities to represent specific environmental 

properties, executes perceptual inferences yielding estimates of specific environmental 

properties. To illustrate, let us follow Thompson (2010) by considering phenomenological twins 

embedded in such different environments that one twin‟s percept P represents circularity while 

the other twin‟s qualitatively indistinguishable percept P* represents non-circular ellipticality. 

There may be many worthy explanatory projects that type-identify P and P*. But Bayesian 
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perceptual psychology does not type-identify the two percepts. The science studies perceptual 

estimation of environmental conditions. P and P* estimate radically different environmental 

conditions: P estimates circularity, while P* estimates non-circular ellipticality. The science 

features no explanatory generalizations that assimilate these two percepts, because the relevant 

generalizations are tailored to specific shapes. Phenomenological overlap per se is irrelevant to 

the current science. What matters is representational overlap. 

Similarly, suppose that Nonvert observes a red object, while spectrally inverted Invert 

observes a green object. Chalmers and Thompson associate the resulting qualitatively 

indistinguishable percepts with a shared phenomenal content. In contrast, Bayesian perceptual 

psychology does not type-identify the percepts. Bayesian models treat surface color perception 

as involving estimation of reflectance. Explanatory generalizations cite representational relations 

to specific reflectances. Current Bayesian models of Nonvert describe how retinal illumination 

C(λ) induces an estimate of illuminant I(λ), subsequently inducing an estimate of reflectance 

R(λ). Current Bayesian models of Invert describe how different retinal illumination C*(λ) 

induces an estimate of a different illuminant I*(λ), subsequently inducing an estimate of a 

different reflectance R*(λ). Reflectance-estimate R(λ) as used by Nonvert and reflectance-

estimate R*(λ) as used by Invert may be associated with the same phenomenology. But this 

phenomenological overlap is irrelevant to the science. No explanatory generalizations type-

identify the relevant perceptual processes. At no level of description does current science 

assimilate Nonvert‟s color perception and Invert‟s color perception.
17

 

                                                 
17

 As noted in §4, one might hold that the final percept represents color but not reflectance. However, this suggestion 

provides no support for phenomenal content. If one perceives a surface as a specific color, then one‟s percept is 

veridical only if the surface has that color. Since Invert‟s percept is veridical, and since the perceived surface is 

green, Invert does not perceive the surface as red. So Nonvert perceives a surface as red, while Invert does not 

perceive a surface as red. There is no basis here for type-identifying the relevant percepts. 
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Bayesian perceptual psychology individuates perceptual states by citing representational 

relations to specific environmental properties. Taxonomization through phenomenal content 

ignores these representational relations. I conclude that phenomenal content is an armchair 

construct with no grounding inside contemporary science. Readers must judge for themselves 

whether philosophical energy is better expended studying this armchair construct or analyzing 

our current best science of perception.
18

 

 

§7. Formal syntactic computation 

 I now want to consider the relation between Bayesian perceptual psychology and the 

popular philosophical view that mental activity involves computation over formal syntactic types 

in the language of thought (Egan, 2003), (Field, 2001), (Fodor, 2008), (Stich, 1983). The 

paradigm here is a Turing machine manipulating formal syntactic items, such as stroke marks, 

inscribed in memory locations. A formal syntactic type may have a meaning. But it could have 

had a different meaning, just as the English word “cat” could have denoted dogs. Depending on 

the perceiver‟s causal or evolutionary history, a formal syntactic type that represents some distal 

property could just as easily have represented some other distal property. Formal syntactic 

manipulation is not sensitive to such changes in meaning. Transition rules governing mental 

computation allude solely to “local” syntactic properties of mental states, without citing 

representational relations to the external environment. 

                                                 
18

 One can individuate perceptual states through the environmental properties they represent without individuating 

them through the environmental particulars they represent. Burge (2010) introduces an individuative scheme for 

perceptual content along these lines. To illustrate, suppose that a percept attributes convexity to object O. According 

to Burge, any percept expressing the same content must also represent convexity. But a percept might express that 

same content while attributing convexity to a distinct object O*. Or a percept expressing that same content may 

involve a referential illusion, in which case it does not successfully attribute convexity to any object. 
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 Field and Stich combine the formal syntactic picture with eliminativism. They urge 

scientific psychology to eschew any talk about representational content. Egan and Fodor 

combine the formal syntactic picture with intentional realism. In particular, Fodor urges 

scientific psychology to delineate causal laws that cite representational content. He holds that 

intentional laws are implemented by syntactic mechanisms. So Fodor assigns a central role to 

representational content in additional to formal syntactic manipulation. 

Egan (2003) argues that perceptual psychology postulates formal syntactic manipulation. 

She defends her conclusion by analyzing the writings of Marr (1982). I set aside whether Egan 

correctly describes Marr‟s work, which was historically important but is now outdated.
19

 I claim 

that the formal syntactic picture finds no support within current perceptual psychology, as 

epitomized by Bayesian modeling. Current perceptual psychology individuates mental 

computations in representational rather than formal syntactic terms (Burge, 2010, pp. 95-101). 

For instance, Bayesian models of shape perception describe a computation whereby the visual 

system reallocates probabilities over hypotheses about distal shape. Each hypothesis is 

individuated partly by its representational relation to a specific distal shape. Transition rules 

governing the computation derive from Bayesian norms. Of course, the transition rules 

characterize initial sensory inputs (such as retinal inputs) physiologically rather than 

representationally. Crucially, though, the rules use representational vocabulary to characterize 

the perceptual states caused by initial sensory inputs. The rules do not cite formal syntax when 

characterizing sensory inputs (which are described physiologically) or ensuing perceptual states 

(which are described representationally). Bayesian models do not cite formal syntactic items 

divested of representational import.
20

 

                                                 
19

 Silverberg (2006) argues convincingly that Egan misinterprets Marr. 
20

 (Rescorla, forthcoming) relates these points to the computational models employed within CS and AI. 
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A complete science of perception must illuminate the neural mechanisms that implement 

Bayesian computation.
21

 Thus, a complete theory should include non-representational neural 

descriptions. But should it include non-representational syntactic descriptions? Syntax is 

supposed to be multiply realizable, in the sense that systems with wildly different intrinsic 

physical constitutions can satisfy the same syntactic description (Fodor, 2008, p. 91). Systems 

may be homogeneous under syntactic description but heterogeneous under neural description. 

Should a good theory posit formal syntactic types that are multiply realizable and that 

underdetermine representational content? There may be many good reasons for positing formal 

syntactic types with these features. Yet no such types figure in current perceptual psychology. 

The science contains no explanatory generalizations that ignore both the neural substrate and 

representational relations to the distal environment. Eliminativist versions of the formal syntactic 

picture conflict with current perceptual psychology. Intentional realist versions of the formal 

syntactic picture are consistent with but unsupported by current perceptual psychology. 

A common rejoinder is that we can reinterpret intentional explanations in formal 

syntactic terms, without explanatory loss. In this vein, Field (2001, pp. 72-82, pp. 153-156) 

proposes a version of Bayesian modeling on which subjective probabilities attach to formal 

syntactic items individuated without regard to meaning or content. He claims that this framework 

can preserve any alleged explanatory benefits offered by intentional explanation. 

Field‟s proposal is revisionary regarding contemporary psychology. Current science 

individuates perceptual states representationally. Field proposes an alternative scientific 

framework that individuates perceptual states in formal syntactic terms. Whether an alternative 

hypothesis subserves equally good explanations is not a question to be settled a priori. 

Proponents must first develop the alternative hypothesis in rigorous mathematical and empirical 
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 For discussion of possible neural mechanisms, see (Clark, forthcoming) and (Knill and Pouget, 2004). 
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detail. Field must reconstruct current science, expunging any apparent reference to 

representation. Yet he does not indicate how to execute the needed reconstruction for a single 

real case study. He does not demonstrate through a single real example that his approach can 

replicate the explanatory benefits offered by intentional explanation within Bayesian psychology. 

Thus, Field‟s proposal amounts to an unsupported conjecture that we can gut perceptual 

psychology of a central theoretical construct without explanatory loss. We have no reason to 

believe this conjecture, absent detailed confirmation.
22

 Generally speaking, we cannot radically 

alter how a science individuates its subject matter while preserving the science‟s explanatory 

shape. We should not expect that we can transfigure the taxonomic scheme employed by current 

Bayesian models while retaining the explanatory benefits provided by those models. 

Philosophers defend the formal syntactic picture through various arguments. One popular 

argument emphasizes explanatory generality (Egan, 2003, 2010), (Stich, 1983, pp. 160-170). 

Following Egan (2010), consider a creature Visua whose perceptual states represent some 

environmental property (such as depth). Imagine a neurophysiological duplicate Twin Visua 

embedded in such a radically different environment that its corresponding perceptual states do 

not represent the same property.
23

 A formal syntactic theory can type-identify the doppelgangers. 

We cannot type-identify the doppelgangers if we classify perceptual states through 

representational relations to the environment. Shouldn‟t we prefer the more general theory? 

Assessing the merits of this argument is a large task that lies beyond our main focus. The 

key point for present purposes is that Bayesian perceptual psychology does not type-identify 
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 The details of Field‟s discussion raise further doubts about the conjecture. He claims that there is no viable 

interpersonal notion of type-identity for mental representation tokens (2001, p. 75, fn. 3). In other words, Field‟s 

favored taxonomic scheme cannot type-identify the mental states of distinct creatures. This result is incompatible 

with current perceptual psychology, which routinely type-identifies the perceptual states of distinct creatures. How 

could any serious science of perception do otherwise? 
23

 Not everyone accepts that there exist creatures Visua and Twin-Visua satisfying these assumptions. In particular, 

Segal (1991) denies that perceptual states of neurophysiological twins can represent different environmental 

properties. For the sake of argument, I grant Egan‟s description of the thought experiment. 
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Egan‟s putative neurophysiological twins. The science explains how the perceptual systems of 

terrestrial animals transit from sensory input to hypotheses that represent specific environmental 

properties. It studies terrestrial animals endowed with standing capacities to represent specific 

environmental properties. Its scope is not intergalactic. It does not seek to accommodate 

chimerical creatures imagined by philosophers. Whatever the putative explanatory benefits of 

formal syntactic explanation, our actual best science of perception individuates perceptual states 

partly through representational relations to specific environmental properties. 

 

§8. An abstract mathematical description? 

To bolster my assessment, I will now examine more carefully the role that probability 

theory plays within Bayesian modeling. Interested readers can consult any standard probability 

theory textbook for the technical background to my discussion. 

Probability theory, as axiomatized by Kolmogorov, posits a sample space Ω whose 

elements are possible “outcomes.” Kolmogorov‟s axioms place no restrictions on elements of Ω. 

If Ω is discrete, then we can assign probabilities directly to its elements. If Ω is continuous, then 

we instead assign probabilities to privileged subsets of Ω. We introduce a -algebra over Ω (i.e. 

a set of subsets of Ω that contains Ω and is closed under countable union and complementation in 

Ω). A probability measure assigns a probability (a real number) to each element of the -algebra. 

A random variable is a measurable function from Ω to the real numbers ℝ.
24

 A 

probability measure and a random variable jointly induce a probability distribution: an 

assignment of probabilities to privileged subsets of ℝ. The probability distribution “mimics” the 
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 A function X: Ωℝ is measurable just in case, for every Borel set Bℝ, X
-1

(B) belongs to the -algebra. One can 

generalize the definition of random variable to include functions from Ω to mathematical structures besides the real 

numbers. For ease of exposition, I focus on real-valued random variables. Consideration of generalized random 

variables would not alter my main conclusions. 
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probability measure by replacing Ω‟s elements with real numbers.
25

 The probability distribution 

exists entirely within the realm of abstract mathematical entities. By citing the random variable 

and the probability distribution, we vastly increase the elegance and utility of our mathematical 

formalism. In particular, we can now apply real analysis to probabilistic modeling. 

When Ω is continuous, we can often introduce a probability density function (pdf), which 

carries each element of ℝ to a probability density (also drawn from ℝ). A famous example is the 

Normal (or Gaussian) distribution, whose associated probability density function looks like this: 

 

The probability that a random variable attains a value within some region is found by integrating 

the pdf over that region. In other words, the probability assigned by the probability distribution 

to a region equals the integral of the pdf over that region.
26

 A pdf is a purely mathematical entity, 

just like a probability distribution. 

To apply probability theory to psychological modeling, we must specify the nature of the 

underlying sample space Ω. When we seek to model perception, we should construe Ω‟s 

elements as perceptual estimates or hypotheses. For instance, if we are modeling depth 

perception, then we should construe each element of Ω as a perceptual estimate of some 

particular depth. One might gloss “perceptual estimates” as mental representations, or Russellian 

propositions, or Fregean senses, or sets of possible worlds, and so on. The key point is that we 
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 Let P be a probability measure, let X: Ωℝ be a random variable, and let Bℝ be a Borel set. Then we define a 

probability distribution PX by PX(B) = P(X
-1

(B)). 

26
 If P is a probability distribution, and if ρ(x) is an associated pdf, then P([a, b]) = 

b

a
dxx)( . 
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individuate perceptual estimates at least partly through the environmental properties that the 

estimates represent. As I have argued, this is how the science typically individuates perceptual 

estimates. Once we have introduced an underlying sample space, we can also introduce 

appropriate random variables. To illustrate, suppose that Ω contains depth-estimates. Then we 

can introduce a random variable D that maps each depth-estimate h to a real number D(h). 

Depending on our choice of D, the real number D(h) might be the depth estimated by h as 

measured in meters, or as measured in feet, and so on. 

In practice, Bayesian perceptual psychologists rarely highlight the underlying sample 

space Ω. Typical models, including all the models described in this paper, instead emphasize 

probability distributions or pdfs. For instance, Jacobs (1999) posits a pdf defined over a random 

variable corresponding to depth. A pdf is a purely mathematical entity. By specifying it, we do 

not specify a unique sample space Ω. The pdf is consistent with numerous sample spaces. 

At first blush, the scientific emphasis on probability distributions and pdfs may seem to 

undermine my representationalist interpretation of Bayesian perceptual psychology. Consider 

once again Visua, whose perceptual states represent depth, and doppelganger Twin Visua, whose 

corresponding states do not represent depth. According to Egan, explanatory generalizations of 

perceptual psychology should and do apply uniformly to Visua and Twin Visua. We can 

supplement the generalizations by specifying the environmental properties represented by Visua 

or Twin Visua. But the generalizations themselves ignore environmental representata. The 

generalizations constitute an “abstract mathematical description” equally consistent with diverse 

distal interpretations (Egan, 2010, p. 256). Initially, Bayesian models may seem to offer precisely 

what Egan demands: “abstract mathematical descriptions” that prescind from environmental 

representata. After all, Bayesian models emphasize pdfs, and a pdf is a purely mathematical 
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entity: a function from real numbers to real numbers. Shouldn‟t we conclude that Bayesian 

models of depth perception describe Twin Visua just as well as Visua? 

Any such conclusion would be mistaken. I concede that a Bayesian perceptual model has 

an abstract mathematical form. I concede that, in principle, this abstract form encompasses 

diverse chimerical creatures. Nevertheless, the model describes statistical inferences over 

perceptual hypotheses, which it individuates partly through representational relations to specific 

environmental properties. Bayesian perceptual psychology does not pursue explanatory 

generalizations framed at an abstract mathematical level. Just as physics uses abstract 

mathematics to articulate generalizations over physical state-types, perceptual psychology uses 

abstract mathematics to articulate generalizations over representational mental state-types. 

The central issue here is the notion of random variable. A random variable is a function 

from a sample space Ω to the real numbers ℝ. Thus, a random variable is defined only given a 

sample space. Ultimately, any Bayesian perceptual model featuring a random variable 

presupposes an appropriate sample space Ω. Perceptual models cite random variables only so as 

to illuminate probability assignments to environmental state estimates. The goal is to describe a 

statistical inference over estimates about the perceiver’s environment. The random variable is a 

valuable device for describing this statistical inference. But it is simply a tool for formulating 

rigorous, elegant explanatory generalizations concerning perceptual estimates. 

 As evidence for my position, I cite alternative measurement units. Our mapping from 

depth-estimates to real numbers depends upon our choice of units. The metric system yields one 

random variable. The British system yields another. Our choice of random variable reflects our 

measurement units. Thus, the specific mathematical parameters enshrined by a random variable 

are mere artifacts of our measurement system. The parameters lack any explanatory significance 
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for scientific psychology. We may use metric units to measure depth, but the perceptual system 

almost certainly does not. Psychological significance resides in the state estimate, not the 

mathematical entities through which we parameterize state estimates. Our ultimate concern is the 

probability measure over environmental state estimates, not the probability distribution over 

mathematical parameters. To privilege the latter over the former is to read our own idiosyncratic 

measurement system into the psychological phenomena. We must not conflate our measurement 

units with the environmental states that we use the units to measure. 

I conclude that Bayesian perceptual psychology offers intentional generalizations 

governing probability assignments to environmental state estimates. We articulate the 

generalizations by citing probability distributions and pdfs over mathematical entities. But these 

purely mathematical functions are artifacts of our measurement units. They reflect our 

idiosyncratic measurement conventions, not the underlying psychological reality. They do not 

yield any explanatorily significant level of non-representational psychological description. They 

are tools for describing how the perceptual system allocates probabilities over a hypothesis space 

whose elements are individuated representationally. A Bayesian perceptual model has an abstract 

mathematical form, but this abstract mathematical form does not secure any explanatorily 

significant level of non-representational description. 

What if we identify the privileged measurement units used by the perceptual system? 

Can‟t we assign explanatory priority to a pdf defined over those units? And won‟t the resulting 

theory be non-representational? 

One problem with this suggestion is that the perceptual system may not employ 

measurement units. In Peacocke‟s (1992) terminology, perceptual representation may be “unit-

free.” As far as we know, for example, the visual system may form a depth-estimate without 
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denominating that estimate in feet, meters, or any other measurement units (although we use 

units to describe the estimate‟s truth-condition). Admittedly, we may eventually discover that the 

perceptual system employs measurement units. It is difficult to anticipate how such a discovery 

might impact perceptual psychology. At present, the matter is speculative. All we can say for 

sure is that current Bayesian models do not attribute measurement units to the perceptual system. 

Current science posits probabilistic updating over perceptual hypotheses. It individuates the 

hypotheses partly through the specific environmental properties they represent. 

 

§9. Open questions 

 Bayesian perceptual psychology raises numerous further questions, many on the border 

between philosophy and science. A few examples: 

What neural mechanisms implement, or approximately implement, the computations 

posited by Bayesian models? 

Does the Bayesian paradigm generalize from perception to cognition? 

Can Bayesian models illuminate the relation between normativity and intentionality? 

Can Bayesian models illuminate what it is to represent the external world? 

Philosophers who pursue these questions will discover an imposing scientific literature that 

rewards intensive foundational analysis.
27
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