
On Monte Carlo methods for Bayesian inference

Song S. Qian a,�, Craig A. Stow b, Mark E. Borsuk b,1

a The Cadmus Group, Inc., 6330 Quadrangle Drive, Suite 180, Chapel Hill, NC 27517, USA
b Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708, USA

Received 10 December 2001; received in revised form 22 July 2002; accepted 31 July 2002

Abstract

Bayesian methods are experiencing increased use for probabilistic ecological modelling. Most Bayesian inference

requires the numerical approximation of analytically intractable integrals. Two methods based on Monte Carlo

simulation have appeared in the ecological/environmental modelling literature. Though they sound similar, the

Bayesian Monte Carlo (BMC) and Markov Chain Monte Carlo (MCMC) methods are very different in their efficiency

and effectiveness in providing useful approximations for accurate inference in Bayesian applications. We compare these

two methods using a low-dimensional biochemical oxygen demand decay model as an example. We demonstrate that

the BMC is extremely inefficient because the prior parameter distribution, from which the Monte Carlo sample is

drawn, is often a poor surrogate for the posterior parameter distribution, particularly if the parameters are highly

correlated. In contrast, MCMC generates a chain that converges, in distribution, on the posterior parameter

distribution, that can be regarded as a sample from the posterior distribution. The inefficiency of the BMC can lead to

marginal posterior parameter distributions that appear irregular and may be highly misleading because the important

region of the posterior distribution may never be sampled. We also point out that a priori specification of the model

error variance can strongly influence the estimation of the principal model parameters. Although the BMC does not

require that the model error variance be specified, most published applications have treated this variance as a known

constant. Finally, we note that most published BMC applications have chosen a uniform prior distribution, making the

BMC more similar to a likelihood-based inference rather than a Bayesian method because the posterior is unaffected by

the prior. Though other prior distributions could be applied, the treatment of Monte Carlo samples with any other

choice of prior distribution has not been discussed in the BMC literature.
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1. Introduction

Bayesian methods are currently experiencing an

increase in popularity in the sciences as a means of

probabilistic inference (Malakoff, 1999). Among

their advantages are the ability to include prior

information, the ease of incorporation into a
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formal decision analytic context, the explicit
handling of uncertainty, and the straightforward

ability to assimilate new information in contexts

such as adaptive management. The Bayesian

approach has been shown to be particularly useful

for ecological models with poor parameter iden-

tifiability (Reichert and Omlin, 1997).

In a modelling application, Bayesian inference

concerns the estimation of the values of p un-
known model parameters: u: (u1,. . ., up ) about

which there may be some prior beliefs. These prior

beliefs can be expressed as a probability density

function, p(u ), and may be interpreted as the

probability placed on all possible parameter values

before collecting any new data. The dependence of

observations D�/(d1,. . ., dm ) on the p parameters

u can be expressed as the probability density
function, L (D ½u ). This p.d.f. is often referred to

as the likelihood function and is used to update the

prior beliefs on u to account for the new data, D .

This updating is performed using Bayes’ theorem

which can be expressed:

p(u½D)�
p(u)L(D½u)

g
u

p(u)L(D½u)du
(1)

where p(D ½u ) is called the posterior distribution

and expresses the probability of the parameter

values after observing the new data. Because the
denominator in Eq. (1) is a normalizing constant,

Bayes’ theorem is often expressed as:

p(u½D)8p(u)L(D½u) (2)

indicating that the prior expectations are modified
by the likelihood function to yield the posterior

belief.

Once the posterior distribution is available, any

features of u , such as the marginal distributions or

means and variances of the individual ui , as well as

the predictive distribution of future observations,

require integrating over the posterior distribution.

For example, the marginal posterior distribution
of an individual ui can be calculated as

p(ui½D)� g
u�i

p(u½D)du�i (3)

where u�i represents all u ’s except ui .

Most Bayesian inference problems can be suc-
cinctly expressed as the expectation of a function

of interest, g(u ), evaluated over the posterior

distribution:

E(g(u)½D)�g
u

p(u½D)g(u)du (4)

where E denotes the expectation operator.

A major difference between Bayesian methods
and more familiar parameter estimation methods

such as least squares (ordinary and nonlinear), or

maximum likelihood, is that inference using Bayes

theorem is typically made over the whole support

of p(u jD ), not just at single values of u that

optimize a designated objective function (such as

the likelihood function, L (D ju ). This will make

little difference in the conclusion for some simple
models using an appropriate choice for the prior

distribution. However, in some problems a Baye-

sian approach has been shown to lead to very

different conclusions than a classical approach

(Ludwig, 1996; Al-Khatib et al., 2001).

An historical limitation of using Bayesian meth-

ods for scientific inference was that analytical

solutions for the required integrations were avail-
able for fairly limited combinations of model

forms and probability functions (such as the

normal linear model). For most nonlinear models,

or models where u was high-dimensional, the

inability to solve such integrals made the imple-

mentation of Bayes theorem prohibitively difficult.

However, the advent of fast and inexpensive

computing has promoted the development of
several methods for performing Bayesian infer-

ence. We discuss two of the methods that are based

on Monte Carlo sampling in the following sec-

tions. While the two techniques have similar

names, they have some important differences

that we will illustrate with a simple example.

Monte Carlo sampling has been widely used in

ecological modelling for uncertainty analysis (e.g.,
van Horssen et al., 2002; Carroll and Warwick,

2001; Hakanson, 2000; Phillips and Marks, 1996;

Yool, 1999; Annan, 1997), parameter estimation

(e.g., Dilks et al., 1992; Gertner et al., 1999), and

model evaluation (e.g., Hakanson, 1995). The

Markov chain Monte Carlo sampling method
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discussed in this paper differs from the traditional
applications of Monte Carlo in that the parent

distributions of uncertain parameters do not have

to be known explicitly.

2. Markov Chain Monte Carlo

One technique for Bayesian inference that is

commonly used among statisticians is called Mar-

kov chain Monte Carlo (MCMC). MCMC is a
general methodology that provides a solution to

the difficult problem of sampling from a high-

dimensional distribution for the purpose of nu-

merical integration. The idea behind MCMC for

Bayesian inference is to create a random walk, or

Markov process, that has p(u jD ) as its stationary

distribution and then to run the process long

enough so that the resulting sample closely
approximates a sample from p(u jD ) (Gelman et

al., 1995). These samples can be used directly for

parameter inference and prediction. For example,

Monte Carlo integration estimates E (g (u jD )) by

drawing n samples, ui (i�/1,. . ., n ), from p(u jD )

and calculating the mean:

E(g(u½D)):
1

n

Xn

i�1

g(ui): (5)

With independent samples, the law of large

numbers ensures that the approximation can be

made increasingly accurate by increasing the

sample size, n . The result still holds when samples
ui are not independent, as long as the samples are

drawn throughout the support of p(u jD ) in the

correct proportions.

There are many ways of constructing the

appropriate Markov chain, but all of them,

including the Gibbs sampler (Gelfand et al.,

1990; Gelfand and Smith, 1990; Smith and Ro-

berts, 1993; Casella and George, 1992), are special
cases of the general framework of Metropolis et al.

(1953) and Hastings (1970), or the Metropolis�/

Hastings algorithm. Details of the MCMC method

can be found in Gilks et al. (1996). An application

of MCMC in ecological modelling can be found in

Borsuk et al. (2001).

It is worthwhile to note that we only need to
know the the posterior distribution up to a

proportional constant to generate random samples

using the Metropolis�/Hastings algorithm. In other

words, we can use the right-hand-side of Eq. (2)

for generating posterior samples, without the

normalizing constant (the denominator in Eq.

(1)). Additionally, using MCMC we can sample

from the joint posterior distribution of all para-
meters, rather then from the marginal parameter

distributions. As Reichert and Omlin (1997) and

Omlin and Reichert (1999) indicated, multidimen-

sional parameter distributions are important in

model uncertainty analysis and may be crucial in

locating narrow and ‘hard to locate’ highest

probability density regions.

3. Bayes Monte Carlo

A second technique for Bayesian inference has

been presented in the literature under the name

‘Bayesian Monte Carlo’ or ‘Bayes Monte Carlo’

(BMC) (Dilks et al., 1992). Applications to date

using BMC have included ground water flow

modelling (Sohn et al., 2000), air quality predic-
tion (Bergin and Milford, 2000), water resource

management (Venkatesh and Hobbs, 1999), soil

remediation (Dakins et al., 1996), and health risk

assessment (Brand and Small, 1995).

Given a model relating a set of input or

predictor variables, X , to a set of output or

response variables, Y , or Y�/f(X , u ), the BMC

method begins by identifying probability distribu-
tions for the model parameters u that represent the

best estimate of the modeler before comparing

model results to actual observations. In most

applications this has consisted of a uniform

distribution for each uk that covers what is

believed to be the range of plausible values.

Multiple sets of model predictions are then gener-

ated by randomly drawing i�/1,2,. . ., n sets of
samples (ui) from the parameter distributions

using Monte Carlo methods and generating a set

of outputs for each set of parameter draws [Y i�
f (X ; ui)]: Each of these sets of predictions are then

quantitatively compared with actual observations

D using a likelihood function expressing the
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known or expected error structure. For example,
with j�/1,. . ., m observations and corresponding

predictions of a response variable and assuming

independent and normally distributed errors with

mean 0, and variance s2, the likelihood of the ith

Monte Carlo prediction, Yi , is calculated as

L(D½Y i)�
Ym

j�1

1ffiffiffiffiffiffiffiffiffiffi
2ps2

p exp

�
�

(Dj � Y i
j )

2

2s2

�
: (6)

This likelihood value is then combined with the

prior probability of obtaining that prediction (the

joint probability of the set of parameters ui that
generated it) using Bayes’ theorem:

p(Y i½D)�
p(Y i)L(D½Y i)Xn

j�1

p(Y j)L(D½Y j)

(7)

where p(Yi jD ) is the posterior probability of the

model prediction Yi . This calculation is repeated

for all n Monte Carlo samples with the results

interpreted to represent the values of the density

function for the corresponding sampled parameter

values. The posterior mean, variance, and correla-

tion coefficient can be calculated by the usual
methods using the posterior probabilities as

weights (Sohn et al., 2000). The posterior statistics

summarize uncertainty about parameter values

after comparison with the observed data.

While the BMC method has been presented as a

‘straightforward’, ‘objective and statistically rigor-

ous’ method for performing Bayesian analysis

(Dilks et al., 1992), we believe that BMC is not
an effective technique for most applications and

may result in incorrect inference. We make this

claim for several reasons.

First, according to BMC, all Monte Carlo

samples are drawn from the prior parameter

distributions, not directly from the posterior. If

the individual u1,. . ., up are highly correlated or

the prior distributions are very wide, the space
occupied by the most probable region of p(u jD ),

in other words the space we most want to sample,

may be an extremely small proportion of the space

represented by p(u ). At best, this is likely to be

extremely inefficient, resulting in a large number of

wasted model runs. At worst, it is possible that few

or even no samples will be drawn from the most
probable region of p(u jD ). Inferences from such

results will be either uninformative or misleading.

Second, the BMC method presents only the

joint posterior probability and the marginal pos-

terior probabilities of the p individual parameters,

p(u1),. . ., p(up ), are usually not estimated. As a

result, it is not possible to use the Bayesian

credible interval as a means of summarizing
uncertainty.

Third, BMC, as generally applied, involves a

priori specification of the error variance, s2, in Eq.

(6). Dilks et al. (1992) have suggested that the

model error term can be equated with measure-

ment or observation error, and that a value for s2

can be derived from statistical analysis of labora-

tory or field data. However, the assumption that
model predictions deviate from observations only

because of error in the observations implies an

excessive faith in model validity. In reality, model

error can result from imperfect system representa-

tion, inherent randomness, and sub-scale variabil-

ity. Specifying an appropriate value for s2 in

advance is difficult and can strongly influence the

estimation of model parameters.

4. Example application

4.1. Model description

To compare the results and efficiency of the two

methods of Bayesian inference discussed earlier,

we consider a simple example. Borsuk and Stow

(2000) present a mixed-order biochemical oxygen

demand (BOD) decay model of the form

Lt� L0�fL1�N
0 �knt(1�N)g

1

1�N �o; N"1

L0�o; (1�exp(�knt)) N�1

(

(8)

where Lt is the oxygen consumed (BOD exerted,
mg/l) at time t , L0 is the ultimate BOD (mg/l), kn is

the reaction rate constant ((mg/l)(1�N)/days), and

N is the ‘pseudo-order’ parameter. This model is a

generalization of the first-order decay model, with

the order of the reaction, N , left as a free

parameter to be estimated from data (rather than
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set a priori to a value of one, or sometimes two). In
this example u is low-dimensional, consisting of

three model parameters, L0, N , and kn , as well as

the model error variance s2. The low-dimension-

ality makes it possible to use plots in two and three

dimensions to illustrate some of the problems

encountered using BMC. The example also de-

monstrates the difficulties in using BMC method

with highly correlated parameters. We used the
data for wastewater sample 1 in Borsuk and Stow

(2000).

4.2. Sampling methods

MCMC sampling was done using WinBUGS, a

publicly available program for conducting Baye-

sian inference using Gibbs sampling (Spiegelhalter
et al., 1996). We used a uniform (non-informative)

prior distribution for all model parameters so that

the results would be comparable to the BMC

results. The model error variance, s2, was esti-

mated from the data as a free parameter, using a

flat prior. Five thousand sets of the four para-

meters were randomly sampled from the joint

posterior distribution.
The BMC results are based on 10 000 sets of

uniformly distributed random samples of the three

principal model parameters. Prior ranges were 60�/

100, 10�6�/1.0, and 1.0�/4 for L0, kn , and N ,

respectively. We set s2 to 100, based on reported

measurement error values (APHA, 1998), and also

to 0.24, the marginal mode from the MCMC

sampling, to evaluate the effect of alternative fixed
values for s2. Marginal distributions of the three

model parameters are evaluated with the conven-

tional histogram method used in importance

sampling (Tanner, 1993), where the prior range

of each parameter is divided into many equally

spaced bins (we used 20) and the sum of posterior

probability values within each bin is the marginal

posterior probability for the parameter value
represented by the center of the bin.

4.3. Results

The MCMC results show that three principal

model parameters are highly correlated, with only

a small proportion of the prior parameter space

supported by the data (Fig. 1). Bivariate plots

highlight this correlation (Fig. 2a�/c). Marginal

posterior densities indicate the most likely values

and plausible ranges for each model parameter

(Fig. 2d�/f). The marginal posterior density of s2

(Fig. 3) indicates that, as a free parameter, the

error variance is well-determined from the data,

with a plausible range of approximately 0.1�/0.5,

and a mode of 0.24.

Using the BMC method, estimated posterior

probability values for each of the three model

parameters (Fig. 4a�/c) suggest irregular marginal

probability distributions, with adjacent parameter

values having very different probabilities. This

result is not possible for a smooth continuous

model. It is most likely caused by insufficient

number of samples (although 10 000 were used),

because the posterior parameter space as estimated

by MCMC is very narrow compared to the prior

parameter space. The BMC estimated means and

S.D. are not consistent with those from MCMC

(Table 1). With s2 set to 0.24, based on the

MCMC mode (Fig. 3), most BMC samples had a

posterior probability of effectively zero (Fig. 4d�/

Fig. 1. Three-dimensional plot of the 5000 sets of samples from

the joint posterior distribution of the three parameters. Samples

are concentrated around a narrow banana-shaped region,

representing a fraction of the prior parameter space. Each of

the three axes cover only fraction of the their respective prior

range.
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f)). Only one sample was chosen from the plausible

region of the posterior, in 10 000 samples.

5. Discussion

A major problem in the sampling performance

of the BMC is that it does not converge toward the

most probable region of the posterior distribution.

Consequently, it can be extremely inefficient,

rarely sampling from the most probable region
(Fig. 1). This problem is exacerbated when the

parameter values are not well known, and the

prior ranges are made very wide to include all

possible values. When this is the case, the chance

of sampling the important region becomes increas-

ingly small. Conversely, if, for efficiency reasons,

the prior parameter range is kept small, there is a

risk of cutting off important regions. The difficulty

imposed by these conflicting constraints increases

as the dimension of u increases.

MCMC is specifically designed to sample from

the posterior distribution, to eliminate these pro-

blems. The procedure is adaptive, so that it will

converge on the posterior distribution from an

initial starting point. The rate of convergence is

case specific. However, techniques are available to

evaluate whether the MCMC sample chain has

appropriately converged (Brooks and Gelman,

1998).

The choice of an a priori value for s2 has a clear

impact on the sample obtained (Fig. 4). Our choice

of two very different values, 0.24 and 100, was

done not only to provide a contrast, but also to

Fig. 2. Bivariate scatter plots (a�/c) of the 5000 sets of posterior samples and the marginal posterior distributions (d�/f) for the three

model parameters. The shaded vertical lines show the 95% credible intervals. Each x -axis covers only fraction of the respective prior

range.
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indicate the difficulty of picking an a priori value.

Previous works have based the choice for s2 on

estimates of measurement error, and 100 was

based on reported BOD observation error data

(APHA, 1998). However, 0.24, a value well-

determined by the data, is obviously very different.

We recommend that if prior information is avail-

able, it should be expressed, not as a precise value,

but as a prior distribution, so that it is subject to

modification via Bayes theorem.

The most serious problem with the BMC is that

there is no guarantee that the posterior parameter

space is sufficiently covered by the Monte Carlo

sample. As a result, marginal distributions of

model parameters are not guaranteed to be

accurate. The volume of the important region of

the posterior parameter space can be small com-

pared to the volume of the sampled space,

particularly with correlated parameters. In our

example this problem is easy to depict, because the

model is only four-dimensional (see Omlin and

Reichert (1999), for more examples). The ‘curse of

dimensionality’ both exacerbates and obscures this

difficulty in more complex, higher dimensional

models. In principle, the BMC could produce good

marginal estimates, but extremely large Monte

Carlo samples would be required. Even if the

samples cover the posterior parameter space well,

the marginal distributions may still be inadequate
if the sample size is not large enough. For example,

if there are 1000 samples (as commonly used) and

20 histogram bars are used for estimating the

marginal distribution, on average, there are about

50 samples for each marginal probability value.

This is probably not enough. This is the reason

that the marginal parameter distributions appear

irregular. In principle, the BMC could be used to
provide a sample for numerically estimated inte-

gration, but in many instances it would still be very

inefficient, often missing the important region of

the posterior distribution.

The Bayes Monte Carlo method will provide

sound inference under some very limited condi-

tions. If the parameter space is one-dimensional

and the prior range is similar to the plausible
posterior range of the parameter, and s2 is well-

chosen, this approach may work. In one-dimen-

sion each value of the estimated parameter is

associated with a unique posterior probability

value, so the problem of numerical integral

estimation disappears. Otherwise, unless one is

extremely lucky, the BMC will provide poor

estimates.
Finally, we note that the BMC, as implemented

in the literature, is more a likelihood-based

inference than a true Bayesian procedure. Bayes

theorem indicates that the posterior distribution is

proportional to the product of the prior distribu-

tion and the likelihood function (Eq. (2)). All

BMC applications that we could identify in the

literature have used uniform priors, with wide
ranges chosen for each unknown parameter.

Because uniform priors were used, the posterior

parameter distribution was proportional to the

likelihood function. Thus, evaluation of the pos-

terior could be accomplished by just substituting

Monte Carlo samples into the likelihood function.

For any other choice of prior this would be

incorrect. Additionally, the relative weights ap-
plied to the Monte Carlo samples would require

modification if any other distribution besides a

uniform was used to draw the Monte Carlo

samples. While the treatment of Monte Carlo

samples has been well explored elsewhere (Ge-

weke, 1989), it has not been addressed in the BMC

literature.

Fig. 3. Posterior marginal distribution of the model error

variance s2.
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We encourage the continued implementation of

Bayesian techniques for inference in the ecological/

environmental sciences. The incorporation of un-

certainty will become increasingly important as the

necessity to evaluate management alternatives

drives our need for ecological prediction (Clark

et al., 2001). Bayesian methods provide an explicit,

straightforward means of incorporating uncer-

tainty into modelling and forecasting. However,

incorrect numerical implementation can negate the

advantages of a Bayesian approach and result in

misleading inference.

Fig. 4. Marginal posterior probability distributions of the three model parameters calculated using the BMC procedure. (a)�/(c) are

based on an error variance of 100 and (d)�/(f) are based on an error variance of 0.24. Note that each x -axis covers the entire respective

prior range.

Table 1

Comparison of estimated means and S.D.

Ultimate BOD Order Rate coefficient

Mean S.D. Mean S.D. Mean S.D

MCMC 66.53 1.27 1.77 0.10 0.0021 0.00085

BMC (s2�/100) 78.27 10.67 2.69 75.57 0.067 78.2

BMC (s2�/0.24) 62.52 �/ 1.47 �/ 3.29�/10�5 �/
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