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Preface 

To some ears, II computational philosophy of science" will sound like the 
most self-contradictory enterprise in philosophy since business ethics. On 
the contrary, central philosophical issues concerning the structure and 
growth of scientific knowledge can be greatly illuminated by drawing on 
ideas and techniques from the field of artificial intelligence. This book uses 
PI, a computer program for problem solving and induction, to illustrate the 
relevance of computational ideas to questions concerning the discovery, 
evaluation, and application of scientific theories. 

The first part of the book is concerned with computational models 
of scientific thinking, and should appeal to those interested in artificial 
intelligence and cognitive psychology as well as to philosophers. Later 
chapters tum to more traditional philosophical issues, concerning the rela­
tion between how reasoning is done and how it ought to be done, truth, 
the justification of scientific methods, and the difference between science 
and pseudoscience. Some of the general conclusions about the nature of 
scientific method are applied to the particular fields of psychology and 
artificial intelligence. The book concludes with a highly speculative chapter 
concerning what computational models might add to our understanding of 
two key aspects of the process of inquiry: the interrelations of theory and 
experiment, and the importance of group rationality in science. 

I have tried to make this book accessible to an interdisciplinary reader­
ship by clarifying philosophical and computational terms as they arise. To 
provide background for readers of different fields without interrupting the 
argument, appendix 1 contains four tutorials providing essential philoso­
phical, computational, and psychological introductions. Each chapter con­
cludes with a summary of its most important claims. 

The book is offered in the hope that it will be read without arbitrary 
categorizations of what is philosophy, artificial intelligence, or psychology, 
and in the conviction that an understanding of scientific reasoning can only 
come through interdiSciplinary cooperation. 
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Chapter 1 

Computation and the Philosophy of Science 

Epistemology without contact with science becomes an empty scheme. 
Science without epistemology is-insofar as it is thinkable at all­
primitive and muddled. 
(Albert Einstein, 1949, pp. 683ff.) 

1.1. A New Approach 

Philosophy of science and artificial intelligence have much to learn from 
each other. The central questions that can benefit from a multidisciplinary 
investigation include 

1. What are scientific theories? 
2. What is scientific explanation and problem solving? 
3. How are theories discovered and evaluated? 
4. How do theoretical concepts become meaningful? 
5. What are the roles of theorizing and experimentation in the process 
of scientific inquiry? 
6. How can descriptive studies of how science is done be relevant to 
nonnative judgments about how it ought to be done? 

This book presents an integrated set of answers to these questions 
within a computational framework. Here is a preliminary sketch of what is 
proposed in later chapters. 

1. Theories are complex data structures in computational systems; 
they consist of highly organized packages of rules, concepts, and 
problem solutions. 
2. Explanation and problem solving are computational processes 
mediated by the rules, concepts, and problem solutions that can con­
stitute theories. 
3. The discovery and evaluation of theories are subprocesses that are 
triggered in the context of explanation and problem solving. 
4. Theoretical concepts are meaningful because of their generation 
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2 Chapter 1 

by discovery processes and because of their connections with other 
concepts. 
5. Theorizing and experimentation play complementary roles in sci en­
tic inquiry, with neither dominant. 
6. Descriptive studies of how science is done can provide an essential 
contribution to the determination of how science ought to be done. 

Fleshing out these vague claims will proceed in later chapters. To sub­
stantiate them, I shall describe an artificial intelligence program for problem 
solving and induction, shOWing how its operation helps to illustrate the 
processes by which scientific theories are constructed and used. I shall 
argue that richer philosophical accounts of scientific problem solving, dis­
covery, and justification can be developed using the resources of artificial 
intelligence than are possible with the traditional techniques of logic and 
set theory. I do not pretend to have solved the numerous difficult problems 
concerning such topics as explanation and justification that are addressed 
here; but I do hope to show that a computational approach offers ideas and 
techniques for representing and using knowledge that surpass ones usually 
employed by philosophers. Before launching into computational details, I 
want to situate the enterprise I am calling II computational philosophy of 
science" in relation to more familiar fields. 

1.2. Artificial Intelligence, Psychology, and Historical Philosophy of Science 

Artificial intelligence (AI) is the branch of computer science concerned with 
getting computers to perform intelligent tasks. In its brief three decades 
of existence, AI has developed many computational tools for describing 
the representation and processing of information. Cognitive psychologists 
have found these tools valuable for developing theories about human 
thinking. Similarly, computational philosophy of science can use them for 
describing the structure and growth of scientific knowledge. 

To a large extent, then, the concerns of AI, cognitive psychology, and 
computational philosophy of science overlap, although philosophy has a 
greater concern with normative issues than these other two fields. We must 
distinguish between descriptive issues, concerning how scientists do think, 
and normative issues, concerning how scientists ought to think. Cognitive 
psychology is dedicated to the empirical investigation of mental processes, 
and is interested in normative issues only to the extent of characterizing 
people's departures from assumed norms (see Nisbett and Ross, 1980, for 
a recent survey). Similarly, artificial intelligence understood as cognitive 
modeling can conAne itself to the descriptive rather than the normative. AI, 
however, is also sometimes concerned with improving on the performance 
of people and therefore can be interested in what is optimal and normative. 
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ComputaHon and the Philosophy of Science 3 

For philosophy of science, discussion of normative questions is inescapable, 
although we shall see in chapter 7 that descriptive and normative issues are 
intimately related. 

Current research in AI divides roughly into two camps, which have 
colorfully been characterized as "neats" and "scruffies". The distinction is 
based largely on attitudes toward the importance of formal logic in under­
standing intelligence. The neats, such as John McCarthy (1980) and Nils 
Nilsson (1983), view logic as central to AI, which then consists primarily 
of constructing formal systems in which logical deduction is the central 
process. In contrast, scruffy AI, represented, for example, by Marvin Min­
sky (1975) and Roger Schank (1982), takes a much more psychological 
approach to AI, claiming that AI is more likely to be successful if it eschews 
the rigor of formal logic and investigates instead the more varied structures 
and processes found in human thought. Using the computer programmers' 
term for a complex and unsystematically put together program, Minsky 
remarks that the brain is a "kluge". A third influential approach to AI, the 
production systems of Newell and Simon (1972), falls somewhere between 
the neat and scruffy camps. Psychologists range from neats who emphasize 
the role of logic in thinking (Braine, 1978; Rips, 1983) to scruffies who 
deny that logic is at all central (Johnson-Laird, 1983; Cheng et al., 1986). 

Philosophy also has its neats and scruffies. No one was ever neater than 
the logical positivists, who used the techniques of formal logic to analyze 
the nature of theories and other key problems. It is therefore not surprising 
that formally inclined philosophers are displaying a growing interest in 
such AI endeavors as algorithmic analysis and logic programming (Gly­
mour, Kelly, and Scheines, 1983). But this trend reflects the relation only of 
neat AI to neat philosophy of science. Since any computer implementation 
requires formalization, which was the hallmark of the logical positivists, 
one might suppose that any artificial intelligence approach to the phi­
losophy of science would falI within the positivist camp. This conclu­
sion, however, sorely underestimates the intellectual resources of artificial 
intelligence. 

In the 1950s and 1960s, philosophy of science saw a rebellion against 
logical positivist accounts of science, led by such writers as Hanson (1958) 
and, especially, Kuhn (1970b). (For a sketch of developments in the phi­
losophy of science, see tutorial A in appendix 1.) Critics argued that the 
positivists' emphasiS on formal models had led them farther and farther 
away from the practice of actual science. Many philosophers of science have 
since adopted a methodology that avoids formalization, instead giving less 
precise descriptions of the methods of scientists based on historical case 
studies. Kuhn, for example, drew heavily on such examples as Lavoisier's 
theory of oxygen and Einstein's theory of relativity to back his account of 
the growth of science. 
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4 Chapter 1 

Historical philosophy of science has contributed to a much more rich and 
subtle account of the nature of science than could be developed within the 
framework of the logical positivists. But it has lacked one of the most 
appealing features of the positivist program: analytical rigor. Kuhn de­
scribed scientific revolutions as the surpassing of one paradigm by another, 
but the central concept of a paradigm was left notoriously vague. Similarly, 
Laudan's (1977) influential work on science as a problem-solving activity 
never said much about the nature of problem solving. 

These gaps can be filled in by computational philosophy of science, 
which this book places at the intersection of scruffy AI and historical 
philosophy of science. By offering detailed computational analyses of the 
structure and growth of knowledge, I hope to show that postpositivist 
philosophy of science can have some rigor in its scruffiness. 

Hanson and Kuhn both made use of ideas from gestalt psychology 
in developing their alternatives to logical positivist accounts of science. 
Computational philosophy of science is even more closely tied with psy­
chology, by virtue of the link between scruffy AI and current cognitive 
psychology, which increasingly employs computational models as theoret­
ical tools. These three fields can collaborate in developing a computational 
account of how human scientists think. Many researchers in philosophy of 
science and artificial intelligence would prefer to leave psychology out of 
the picture, and science may indeed someday he performed by computers 
using processes very different from those in humans. But for now, at least, 
science is a human enterprise, and understanding of the development of 
scientific knowledge depends on an account of the thought processes of 
humans. Hence computational philosophy of science overlaps as much with 
cognitive psychology as it does with scruffy AI. Even its normative pre­
scriptions about how science ought to be done should take human cogni­
tive limitations as starting points, according to the view developed in 
chapter 7. 

Computational philosophy of science and much of current cognitive 
psychology employ computational models, hut why? In the next section I 
shall sketch the methodological advantages of using computer programs 
for understanding thinking. 

1.3. Why Write Programs? 

There are at least three major gains that computer programs offer to cogni­
tive psychology and computational philosophy of science: (1) computer 
science provides a systematic vocabulary for describing structures and 
mechanisms; (2) the implementation of ideas in a running program is a 
test of internal coherence; and (3) running the program can provide tests 
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Computation and the Philosophy of Science 5 

of foreseen and unforeseen consequences of hypotheses. Current cogni­
tive psychology is permeated with computational notions, such as search, 
spreading activation, buffer, retrieval, and so on. The birth of cognitive 
psychology in the 1960s depended on the computer metaphor that pro­
vided for the first time a precise means of describing rich internal structures 
and processes. In the 1970s, the interdisciplinary field of Cognitive Science 
brought together researchers from diverse fields, all concerned with under­
standing the nature of mind, having in common primarily the hope that 
computational models would help. 

The computational analysis of mind depends on these correspondences: 

Thought Program 

Mental structures --- Data structures 
Processes Algorithms 

Behaviorists argued that any speculation about the contents of mind 
was metaphysical baggage, but the computer made it possible to be con­
crete about postulated mental structures and processes, even if the problem 
of verifying their existence remained difficult. A program can be understood 
as a set of data structures along with a set of algorithms that mechanically 
operate with the data structures. The structures can be very simple-say, 
just a list of elements such as (1 2 3). Or they can become much more 
complex as in the list processing language LISP, where it is easy to create 
structures that consist of organized lists embedded within other lists. 
Algorithms-well-defined procedures-can then be written that operate 
on those data structures, creating new ones. (For a quick introduction 
to the role of data structures and algorithms in programming, see tutorial 
C.) 

Similarly, the currently most developed and plausible view of mind 
postulates internal mental structures or representations accompanied by 
processes for using those representations (Gardner, 1985). By writing pro­
grams that have data structures corresponding to the postulated represen­
tations and algOrithms corresponding to the postulated processes, we can 
develop detailed models of mind. To be run on a computer, a program has 
to be explicit, and the exercise of working out the coordinated structure 
and processes will normally lead to the development of a richer and more 
complex model than unaided speculation would provide. Much can be 
learned about a scientific domain by attempting to analyze it within a 
complex representational scheme. Moreover, chapter 2 argues that the 
computational approach makes available richer data structures than would 
otherwise be considered. Philosophers in particular have tended to restrict 
their deliberations to a narrow set of structures-sentences or propo­
sitions-and a narrow sort of process-deduction. As we shall see, there 
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6 Chapter 1 

is a lot more to computation than deduction, making possible the investi­
gation of less constrained processes, such as those underlying scientific 
discovery. 

Because mental processes are postulated to be computational, the com­
puter is potentially an even more powerful tool for psychology than it is 
for such fields as economics and meteorology that use weak simulations in 
contrast to psychology's strong simulations. In a weak simulation, the 
computer functions as a calculating device drawing out the consequences 
of mathematical equations that describe the process simulated. A computer 
can valuably simulate a business cycle or a hurricane, but no one contends 
that it has an economic depression or high winds. In a strong simulation, 
however, the simulation itself resembles the process simulated. For exam­
ple, a wind tunnel used to study the aerodynamics of cars is a strong 
simulation, since the flow of air over the car in the tunnel is similar to the 
flow of air over the car on the highway. In contrast, a computer model of 
the car's aerodynamics would only be a weak simulation. Whereas for most 
fields computers will only provide weak simulations, psychology has the 
possibility of strong simulations, if the computational theory of mind is 
correct. 

Of course, merely characterizing data structures and processes in compu­
tational tenns does not tell us how the mind operates. But even getting the 
program to run provides a test of sorts. Some noncomputational psychol­
ogists tend to assume that anything can be programmed, but this is no 
more credible than the assumption of some computer scientists that any 
psychological data can be got by a clever experimenter. To run, a computer 
program has to have at least a coherent interrelation of structures and 
algorithms. In addition, the threat of combinatorial explosion puts a severe 
constraint on the realizability of programs: if the program requires expo­
nentially increasing time to run, it will quickly exhaust the resources of the 
most powerful computers. So developing a computer simulation provides 
a valuable test of the internal coherence of a set of ideas. 

A psychological model should be more than internally coherent: we 
want it to account for experimental data about how people think. But 
sometimes, if a model is complex, it is not easy to see what its conse­
quences are. Cognitive models, like many models in the social sciences, 
often postulate many interacting processes. The computer program enables 
a researcher to see whether the model has all and only the consequences 
that it was expected to have. Comparison of these consequences against 
experimental observations provides the means of validating the model in 
much greater detail than pencil-and-paper calculations might allow. Com­
putational philosophy of science can benefit from the same model-forming 
and model-testing benefits that AI provides to cognitive psychology. 
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Thus computational philosophy of science is intimately tied with cognitive 
psychology and artificial intelligence. If the cognitive sciences suggest a 
revision of standard views of the structure and growth of knowledge, one 
would expect those views to have immediate epistemological significance. 
But since the split between philosophy and psychology in the second half 
of the nineteenth century, most philosophers have developed epistemo­
logical views in complete independence from the work of empirical psy­
chologists. The mingling of philosophical and psychological discussions was 
branded as "psychologism". 

The most principled reason for philosophers' fear of an association with 
psychology is that the nonnative concerns of philosophy will be diluted or 
abandoned. Consider the following argument against psychologism, akin 
to ones offered by Frege (1964) and Popper (1972). Epistemology, the 
argument runs, is as unconcerned with psychology as is logic. Psychology 
describes what inferences people do make, but logic is concerned with what 
inferences people should make, with the normative rather than the descrip­
tive. Similarly, epistemology is the normative theory of objective knowl­
edge, and need not take into account what psychology detennines to be the 
nature of the belief systems in individuals. Propositions, or sentences ex­
pressing them, can be conclusions of arguments and can be written down in 
books for public scrutiny. To examine the structure of individual belief sys­
tems would only be to encourage a kind of subjectivism that abandons the 
traditional noble concerns of epistemology-justification and truth-for a 
vapid relativism. (Relativism is the philosophical view that truth is relative 
and may vary from person to person or time to time, with no objective 
standards.) 

However, a concern with psychology need not engender epistemolog­
ical skepticism. Haack (1978) recommends a weak psychologism, according 
to which logic is prescriptive of mental processes. This position is distin­
guished from both antipsychologism, which is the Frege/Popper view that 
logic has nothing to do with mental processes, and strong psychologism, the 
view that logic is descriptive as well as prescriptive of mental processes. 
('Weak" and /I strong" here have no connection with their use in the 
last section concerning simulation.) Weak psychologism uses empirical 
psychology as a starting point, since it presupposes an empirical account of 
the mental processes about which to be prescriptive. But it goes beyond 
mere description of actual mental processes to consider what sorts of 
inferential practices are normatively correct. Hence weak psychologism can 
escape the charge of relativism that is the chief motivation for resistance to 
admitting the relevance of psychology to epistemology. Escape requires, 
however, an account of how descriptive empirical matters are relevant to 
but do not fully answer prescriptive questions. 
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8 Chapter 1 

Knowledge is both private and public, inhabiting the brains of particular 
thinkers, but also subject to intersubjective communication and assess­
ment. Weak psychologism aims to capture both these aspects. The real 
test between weak psychologism and antipsychologism consists in seeing 
which framework can develop a comprehensive and rich account of human 
knowledge. This book can be viewed as a computationally oriented attempt 
to describe some possible results of a weak psychologistic research pro­
gram. Kindred attempts include the naturalistic epistemology of Quine 
(1969), the genetic epistemology of Piaget (1970), the epistemics of Gold­
man (1978, 1986), and the evolutionary epistemology of Campbell (1974). 
The last of these is criticized in chapter 6. 

I share with such authors the view that philosophical method should be 
more akin to theory construction in science than to the sort of conceptual 
analysis that has been predominant in much twentieth-century philosophy. 
No precise analyses of individual concepts will be offered, because there 
are grounds for doubting whether such analyses are to be had (see sections 
2.3.1 and 4.4), and because the larger enterprise of describing systematic 
connections among such processes as explanation and hypothesis forma­
tion is much more interesting. 

1.5. Overview 

Exploration of computational philosophy of science begins in the next 
chapter, with a discussion of the basic structures and processes relevant to 
an understanding of scientific knowledge. The artificial intelligence pro­
gram PI provides a concrete example of how knowledge can be organized 
and used in problem solving. Chapter 3 then develops a computational 
account of the nature of scientific theories and explanations. Chapter 4 
describes how abductive inference can be computationally implemented, 
providing an account of several kinds of scientific discovery. It also dis­
cusses how new concepts can be fonned and acquire meaning. In chapter 
5, I develop an account of theory evaluation as inference to the best 
explanation and describe its implementation in PI. Chapter 6 uses the ideas 
about discovery and evaluation of theories developed in earlier chapters 
to criticize the Darwinian model of knowledge development offered by 
evolutionary epistemologists. The next three chapters shift concern to 
normative matters. Chapter 7 develops a model for reaching normative 
conclusions from descriptive considerations, and the model is applied in 
chapter 8 to the problems of justifying inference to the best explanation 
and defending scientific realism. Chapter 9 discusses the normative prob­
lem of distinguishing science from pseudoscience. Finally, in chapter 10 I 
offer some speculative suggestions about what computational philosophy 
of science may be able to contribute to questions concerning the relation of 
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theory and experiment and the role of group rationality in science. I have 
added three appendices to fill in details that would have distracted from the 
main argument. The first consists of four tutorials providing background 
information concerning the philosophy of science, logic, data structures 
and algorithms, and schemas. The second provides a summary of the 
structure of the computer program PI discussed in chapters 2-5, and the 
third presents a sample run of PI. 

1.6. Summary 

Computational philosophy of science is an attempt to understand the 
structure and growth of scientific knowledge in terms of the develop­
ment of computational and psychological structures. It aims to offer new 
accounts of the nature of theories and explanations, and of the processes 
underlying their development. Although allied with investigations in arti­
ficial intelligence and cognitive psychology, it differs in having an essential 
normative component. 
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Chapter 2 

The Structure of Scientific Knowledge 

This chapter begins a computational analysis of scientific knowledge by 
discussing how such knowledge can be represented and used in computer 
programs. Artificial intelligence provides a new set of techniques for repre­
senting different parts of the scientific corpus, including laws, theories, and 
concepts. To present concretely the need for complex representations of 
these essential ingredients of scientific knowledge, I shall describe PI, a 
running program for problem solving and induction. 

2.1. Structure and Process 

In the last chapter, we saw that that there are good reasons for the dramatic 
influence of computational ideas in psychology. From artificial intelligence, 
psychology has gained a new stock of ideas concerning representations 
and processes, as well as a new methodology of testing ideas using com­
puter simulation. This and later chapters will exhibit similar reasons for a 
computational approach to epistemology and the philosophy of science. 

The case for the epistemological relevance of computation rests on a 
simple but extremely important point: Structure cannot be separated from 
process. We cannot discuss the structure of knowledge without paying 
attention to the processes that are required to use it. This point is familiar 
to most practitioners of artificial intelligence, but is new to philosophers, 
who have in this century had a relatively simple view of the structure of 
knowledge. Since the pioneering work of Frege and Russell, formal logic 
has been the canonical way of describing the structure of knowledge. In 
first-order predicate calculus, a simple atomic sentence such as "Fred is 
angry" is represented by a predicate and an argument such as A(f). AI use 
of the predicate calculus is less cryptic, so that the same sentence is 
represented by angry (Fred). More complex sentences are built up using 
connectives like and, or, and if-then, and by quantifiers such as some and 
all. For example, the sentence, "All criminals are angry." can be represented 
as (for all x)(if criminal(x) then angry (x». Predicate calculus has many 
strengths as a starting point for representing knowledge, but we shall see 
below that it does not provide sufficient structure for all processing pur-
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poses. (Readers in need of a brief introduction to predicate calculus should 
consult tutorial B.) 

In twentieth-century philosophy, the most studied technique for using 
knowledge is deduction in logical systems, in which rules of inference can 
be precisely defined. For example, modus ponens is the rule of inference 
that licenses the inference from if p then q and p to q. But there must 
be more to a processing system than deduction. If a system is large, assem­
bling the relevant information at a particular time can be highly prob­
lematic. In epistemological systems based on logic, a corpus of knowledge 
is generally taken to consist of all the deductive consequences of a set of 
statements, even though the set of consequences is  infinite. For more realis­
tic systems, it becomes crucial to ask the question, What shall we infer 
when? So even in a system designed to do deduction, we need processes 
that take into account what infonnation is available and what rules of 
inference are appropriate. 

In any system designed for learning as well as performance, for acquisi­
tion of knowledge as well as its use, nondeductive processes are required. 
Scientific discovery is  multifaceted, requiring diverse processes for generat­
ing concepts, forming general laws, and creating hypotheses. Such pro­
cesses depend, we shall see, on complex representations of concepts and 
laws. 

My concern in this book is with scientific knowledge. Hence the next 
section will discuss what kinds of structures and processes are most impor­
tant for characterizing scientific knowledge. Then I shall describe a com­
prehenSive processing system to illustrate in much greater detail how 
structure and process are interrelated. 

2.2. Scientific Knowledge 

To represent scientific knowledge, we need to find a formal expression for 
at least three kinds of information: observations, laws, and theories. Philos­
ophers of science have differed on the relative importance of these aspects 
in the development of scientific knowledge. On one simple account of how 
science develops, scientists start by making experimental observations, and 
then use these to generate laws and theories. On an equally simple and 
misleading account, scientists start with laws and theories and make predic­
tions that they then check against observations. In most scientific practice, 
there is rather an interplay of hypotheses and observations, with new 
observations leading to new laws and theories and vice versa ( see chapter 
10). To describe the process of science computationally, we need to be able 
to formalize observations, laws, and theories in structures that can be part 
of computer programs. In addition, I shall argue that it is  also necessary to 
use a rich representation of scientific concepts. Formalization is necessary 
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but not sufficient for representation, since we could formalize a body of 
scientific knowledge in predicate calculus or set theory without it being 
represented in a form that is computationally usable. Formalization and 
representation must go hand in hand, putting the knowledge into a form 
that can be processed. 

A particular observation that a specimen, call it specimenl7, is blue can 
easily be represented in predicate calculus as blue (specimenl 7). More 
complex observations concern relations between objects, which predicate 
calculus can represent by allowing more than one argument. For example, 
that one specimen is observed to be to the left of another can be repre­
sented by left-of (specimenl 7, specimen4l). Relations become even 
more important if temporal information is also to be added: we can for­
malize the information that specimen 27  was blue at time t by writing 
blue (specimenl7, t). So predicate calculus appears to be an excellent way 
of representing observations, particularly about relations. Any representa­
tion of scientific knowledge will have to be able to distinguish between x 
being to the left of y, and y being to the left of x, which predicate calculus 
does very handily by contrasting left-of (x, y) with left-of (y, x). 

Science obViously does more than just collect observations. A central 
aim is to organize observations by means of laws. In physics, these can be 
highly general, as in the law that any two objects have a gravitational force 
between them. In the social sciences and in much of twentieth-century 
physics it is common to speak of effects rather than laws, indicating a 
statistical relation rather than full generality. General laws can naturally be 
represented by quantified expressions in predicate calculus. For example, 
the simple law that copper conducts electricity becomes (for all x) (if 
copper(x) then conducts-electricity(x». It might seem, then, that pre­
dicate calculus is all we need for laws too. 

But that conclusion neglects the important point about process made 
above. If all we wanted to do with laws was to use them in logical 
deductions, then predicate calculus might be fine. But laws have many 
important additional roles to play. They are discovered using observations, 
serve to predict new observations, help enormously in problem solving 
and explanation, and are explained by theories. To function in all these 
processes, it is useful to give laws a more complex representation such as 
that used for rules in the system PI discussed below. 

From a logical point of view, theories look just like general laws. New­
ton's theory of gravitation, for example, says that between any two bodies 
there is a force. This could be represented by the rule, If x is a body and y 
is a body, then there is a force z between x and y. But theories differ from 
laws in their origins and explanatory roles. Whereas laws are generalized 
from observations, theories are evaluated by seeing how well they explain 
laws (see chapter 5). Moreover, since theories go beyond what is observed 
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law law 

observation observation observation obsecvation 

Figure 2.1 

Hierarchical organization of observations, theories, and laws. 

to postulate entities such as electrons, quarks, and genes, they cannot 
be discovered in the straightforward empirical way that laws are. Since 
theories play different roles, they may need a richer kind of representation 
to function in different processes. We shall need, for example, to keep track 
of the explanatory successes of a theory in order to evaluate it in compari­
son with other theories. 

The general view of the structure of scientific knowledge that I am 
proposing here is common in current philosophy of science. It has three 
layers, consisting of observations, which are generalized into laws, which 
are explained by theories. In simplest terms, the resulting structure looks 
like that depicted in figure 2.1. A concrete example is a theory of light, such 
as the particle theory of Newton or the wave theory that replaced it in the 
nineteenth century. These theories were intended to explain general laws, 
such as that light reflects and refracts in certain ways, which were in tum 
based on particular observations. Psychologists similarly propose theories 
about how people process information in order to explain experimental 
effects, which are statistical generalizations from the observed results of the 
experiments. (Critics of this three-layered view have maintained that all 
observation is "theory-laden"; see section 5. 7.) 

Representation of observations, laws, and theories requires the use of 
predicates like blue, copper, or electron. From the perspective of predicate 
calculus, there is nothing mysterious about such predicates: they are just 
marks on paper, simple syntactic units. (Logicians distinguish between 
syntax, semantics, and pragmatics. Syntax is concerned with the properties 
that symbols have just by virtue of their form. Semantics concerns the 
relations of symbols to the world, and pragmatics deals with the use of 
symbols. See Morris, 1938.) From a semantic point of view, predicates 
appear to be straightforward, because model theory due to Tarski provides 
a semantics for predicate calculus in the form of a definition of truth (see 
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tutorial B). Predicates are associated with sets of objects in a domain, 
interpreted as those objects of which the predicate is true. However, we 
shall see in chapter 4 that model-theoretic semantics is inadequate as a 
theory of meaning of scientific predicates. 

Scientists are more aware of the value of concepts than logicians. With­
out appropriate concepts, formation of useful laws and theories is impos­
sible. For example, Einstein and Infeld ( 1938, p. 133) include the following 
exclamation in their discussion of the physical concept of a Held: UHow 
difficult it would be to find these facts without the concept of a field! The 
expression for a force acting between a wire through which a current flows 
and a magnetic pole is very complicated. In the case of two solenoids [coils 
of wire] we should have to investigate the force with which two currents 
act upon each other. But if we do this, with the help of the field, we 
immediately notice the character of all those actions at the moment when 
the similarity between the field of a solenoid and that of a bar magnet is 
seen." To understand the importance of concepts in this kind of discovery 
and in scientific thinking in general, a richer representation of concepts than 
mere predicates will tum out to be necessary. In particular, chapter 4 will 
describe how the development of theoretical concepts requires that con­
cepts have a rich internal structure. 

2.3. Structure and Process in PI 

To be more concrete about the importance of rich representations, I shall 
now outline an artificial intelligence program called PI, which stands for 
"processes of induction" and is pronounced "pie". PI implements in the 
programming language LISP a general model of problem solving and 
inductive inference developed in collaboration with cognitive psychologist 
Keith Holyoak. The intention in describing PI is not to propose is as a 
canonical language for doing science; its limitations will be described. Nor 
is PI claimed to constitute in itself a solution to the host of difficult 
problems in the philosophy of science concerning explanation, justification, 
and so on. Rather, I present it as an illustration of how representation and 
process interact and of how an integrated general account of scientific 
discovery and justification can begin to be developed within a computa­
tional framework. Supplemental descriptions of the operation of PI can be 
found elsewhere (Holland et al., 1986; Thagard and Holyoak, 1985), and 
appendices 2 and 3 contain much more detailed information about PI's 
implementation in LISP. 

2.3.1. Knowledge Representation 
PI represents particular results of observation and inference by messages, 
which are similar to sentences in predicate calculus and to what are called 
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"facts" in production systems. A message is a list that includes the following 
infonnation: predicate, argument, truth-value, confidence, and message­
name. For example, the observation that the planet Mars is red is repre­
sented by the list (red (Mars) true 1). A similar structure can also represent 
simple hypotheses. The infonnation that Mars is hypothesized to be devoid 
of life could be represented by the list (has-life (Mars) projected-to-be­
false .7 hypothesis-26). In addition to the obvious truth values true 
and false, PI also allows more tentative. projected values. The number .7  
indicates how confident the system is in the message, while the message 
name can be used to store additional information, for example, about the 
evidence for the hypothesis. Thus PI's messages, although starting with a 
structure derived from predicate calculus, add more information that will 
play an important role in problem solving and inductive inference. 

Laws are represented by rules, which are if-then statements such as If x 

is copper then x conducts electricity. Even more than for messages, it 
turns out to be useful to add much more structure than a statement in 
predicate calculus would have. For a start, we want to give rules names to 
keep track of their successes and failures. Past successes and failures are 
summed up in a quantity called strength, which in PI is a number between 
o and 1. As we shall see below, it is important for problem solving that 
rules be attached to concepts, so the full profile of the above rule about 
copper might be 

Name: 
Data-type: 
Concepts-a Hached-to: 

Rule-22 
rule 
copper 

Condition: 
Action: 
Strength: 

If x is copper 
Then x conducts electricity 
.7  

LISP programmers will recognize this as a property list of the atom Rule-
22. Pascal programmers can think of it as a record with various fields. Basic 
and Fortran programmers will have to think of it as a more complex kind 
of array than they are used to. Logicians usually call the condition of a rule 
its "antecedent" and the action of a rule its "consequent" . Complex condi­
tions and actions make possible the representation of mathematical laws. 
Newton's law F = rna becomes, If x is force and y is mass and z is accelera­
tion, then x = y times z. 

Concepts in PI are still more complicated, in that they are represented by 
rich structures akin to the frames of Minsky (1975). A frame represents a 
typical kind of object or situation (see tutorials C and D for background). 
Each of PI's concepts includes information about its place in a hierarchical 
network of concepts: dogs, for example, are kinds of animals and have 
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collies and Labradors as subkinds, so that the concept of dog has animal 
as a superordinate and collie and Labrador as subordinates. Moreover, 
concepts include messages to the effect that various objects fall under 
the concept. Most important, concepts have attacked to them rules that 
describe general properties. Here is the representation of the concept of 
sound that is used in PI's simulation of the discovery of the wave theory of 
sound: 

Name: 
Data-type: 
Activation: 
Superordinates: 
Subordinates: 
Instances: 
Activated-by: 

Rules: 
Rule 0: 
Rule-I: 
Rule-2: 
Rule-3: 

Rule-4: 
Rule-5: 
Rule-6: 

sound 
concept 
o 
physical phenomenon, sensation 
voice, music, whistle, animal sounds 

If x is heard, then x is a sound. 
If x is a sound, then x is transmitted by air. 
If x is a sound and x is obstructed, then x echoes. 
If x is a sound and y is a person and x is near y, 
then y hears x. 
If x is a sound, then x spreads spherically. 
If x is a sound, then x is a sensation. 
If x is a sound, then x is a physical phenomenon. 

The sentential characterization of the rules given above is merely illus­
trative. Each of the rules here attached to the concept of sound has con­
siderable internal structure. Here is how PI represents Rule-3: 

Name: 
Data-type: 
Concepts-attached-to: 

Rule-3 
rule 
sound 

Conditions: 

Action: 
Slot: 
Status: 
Strength: 
Activation: 

Old-matches: 
Current-match: 
Satisfies-goal?: 

(sound ($x) true) 
(person ($y) true) 
(near ($x $y) true) 

(hears ($y $x) true) 
person-effect 
default 
. 7  
o 

nil 
nil 
nil 
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Projection-status: nil 
Current-value: 0 
Action-instances: nil 

The conditions, actions, slot, status, confidence, and strength are all set up 
by the programmer. The other properties of the rule, from Old-matches on 
down, are initially empty but get filled in by the program as it proceeds. 
For example, it is crucial to keep track of old matches-what messages 
have previously matched all the conditions and led to firing of the rule-to 
stop the same rule being applied over again in the same inference and 
preventing other rules from firing. In rule-based systems, this is called 
"refraction". Satisfies-goal? is used to keep track of whether firing a rule 
would satisfy a problem's goal, in order to ensure that such a rule will fire. 
Current-value gets calculated when the conditions of a rule are matched 
and determines whether the rule will be selected as one of the rules to be 
fired, taking into account such factors as the strength and degree of activa­
tion of the rule. Action-instances are the actions of the rule with variables 
bound when the conditions are matched against messages. Appendix 2 
provides an outline of the LISP functions for firing rules in PI. 

Note that rules such as Rule-3 do not constitute a strict analysis or 
definition of "sound". They express what is typical of sounds, not what is 
universally necessary and sufficient for being a sound. Dictionaries are of 
little help in forming such definitions, as the following typical dictionary 
entry shows (Guralnik, 1976, p. 1360): 

sound 1. a) vibrations in air, water, etc. that stimulate the auditory 
nerves and produce the sensation of hearing. b) the auditory sensation 
produced by such vibrations. 

In the first place, this definition is highly theoretical, in that it relies on the 
scientific view that sounds are vibrations. In the second place, it turns out 
to be quite circular, since the dictionary defines "auditory" in terms of 
"hearing", and "hearing" in terms of perceiving sounds. Such circularity is 
no problem for the account of meaning discussed in chapter 4. 

Rules generally specify what is characteristic of typical objects, not what 
is universally true of them. Through the critiques of Wittgenstein (1953) 
and Putnam (1975) in philosophy, Rosch (1973) in psychology, and Min­
sky (1975) in artificial intelligence, the traditional notion of concepts as 
defined by necessary and sufficient conditions has been discredited. Witt­
genstein pointed out that there are no definitions that capture all and only 
the instances of complex concepts such as "game". Such definitions are 
rarely to be found outside mathematics. The experiments of Rosch and 
others showed that peoples' concepts are organized around prototypes: a 
robin, for example, is a more prototypical bird than an ostrich. Minsky 
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argued that for computational flexibility concepts should be represented as 
frames that describe typical or idealized instances. Accordingly, the rules in 
PI provide a rough description of what is typical of sounds, not a definition 
of them. The traditional notion of concepts as fully defined generates a 
misleadingly strict account of their meaning, a point that will be important 
for later discussions of how concepts become meaningful (chapter 4) and of 
incommensurability of conceptual schemes (chapter 5). 

Why does PI use messages, rules, and concepts with so much structure? 
The justification for complicating these structures is simply to be able to 
use them in complex processes: they support a far more elaborate and 
interesting model of problem solving and inductive inference than would 
otherwise be possible. The question of whether a computational model 
of thinking must have separate structures corresponding to concepts is con­
troversial, and the important cognitive architectures of Anderson (1983) 
and Laird, Rosenbloom, and Newell ( 1986) do not have them. I shall argue 
that they are an important part of a theory of cognition. 

2.3.2. Problem Solving 

Problem Solving and Spreading Activation of Concepts PI's central activity is 
problem solving. Given a set of starting conditions and goals, it fires rules 
that will lead from the starting conditions to the goals. Here is PI's simple 
representation of the problem of explaining why sound propagates and 
reflects: 

Name: 
Data-type: 
Start: 
Goals: 
Problem-type: 
Activation: 

explain-sound 
problem 
(sound ($x) true) 
(reflect ($x) true) (propagate ($x) true) 
explanation 
1 

The solution to such a problem is a sequence of rule firings, in this case 
leading from the supposition that some $x is an arbitrary instance of sound 
to the conclusion that it reflects and propagates. Once the system has the 
wave theory of sound, the explanation can be a straightforward application 
of the rules that sounds are waves and that waves propagate and reflect. 
However, deciding what rules to fire depends on many nonlogical issues, 
such as what rules are available from memory, what rules are strongest in 
the sense of having the best record of success, and what rules appear to be 
most relevant to the current situation. (For a detailed discussion of the 
operation of these factors in rule-based systems, see Holland et al., 1986). 

When people solve problems, only some of the relevant information is 
available to them in memory at any given time. PI models the varying 
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accessibility of elements in the memory of an individual scientist by a 
process of spreading adivation of concepts and rules. At any given time, 
only some of the total set of concepts are adive and only some of the total 
set of rules are available for firing. Rules are attached to concepts: as we 
saw, attached to the concept of sound are rules such as that if x is sound 
and y is some person near x, then y hears x. Also attached to the concept 
of sounds are messages encoding fads about particular sounds, such as that 
a particular sound is loud. PI matches all the rules from adive concepts 
against all the messages from active concepts; rules whose conditions are 
matched then become candidates for firing. Any number of rules can be 
fired at a time, which simulates parallel processing. (Parallelism is computa­
tionally and epistemological important; see chapter 10.) When a rule is 
fired, the concepts used in its adion become adive. So if the rule "If x is a 
dog, then x has fur" is matched by the message "Lassie is a dog", then the 
new message "Lassie has fur" will be produced, and, equally important, the 
concept of fur will become active. Hence at the next timestep, new sets of 
messages and rules about fur will become adive. Activation can also spread 
backward from the goal to potentially useful concepts and rules. In addi­
tion, in the current version of PI (in contrast to the version described in 
Holland et al., 1986), activation spreads automatically up and down the 
conceptual hierarchy, for example, from sound up to its superordinates 
sensation and physical phenomenon and down to its subordinates music, 
voice, whistle, and bang. The process of rule firing and spreading adi­
vation of concepts continues until the goals of the problem have been 
accomplished. This process is summarized in figure 2.2. 

PI solves the problem of explaining the propagation and reflection of 
sound by forming a wave theory of sound. Just how this occurred to the 
ancient Greek or Roman who first discovered the wave theory of sound is 
unknown, but fragments from Chrysippus (5amburski, 1973) and Vitruvius 
(I960) suggest that an association was made between sound and water 
waves. PI has simulated various ways in which the concept of sound and 
wave might have become simultaneously active, for example, through 
associations from sound to music to instruments to strings to vibrations to 
waves. PI's solution of the problem of explaining why sound propagates 
and reflects proceeds by rule firings and spreading activation, including 
activation of the concept of a wave that makes possible formation of the 
hypothesis that sound is a wave. One chain of associations from sound to 
wave that has been simulated in PI is depicted in figure 2.3. Rule firings are 
indicated by arrows, and spreading of activation to subordinates and super­
ordinates is indicated by vertical lines. In this simulation, activation spreads 
from sound down to its subordinate music, and down again to instrumental 
music. Then the rule that instrumental music is played by an instrument 
fires, and stringed-instrument is activated as a subordinate of instrument. 
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Two rules then fire: stringed instruments vibrate, and what vibrates moves 
up and down. Finally, the link that waves are a kind of moving up and 
down leads to activation of the concept of a wave. See appendix 3 for a 
fuller description of PI's run on this example. Clearly, this is only one of 
many chains of association that might have occurred when the wave 
theory of sound was initially discovered by the ancient Greeks. Moreover, 
in a more realistic simulation, many other activations and rule firings would 
also occur simultaneously with the ones just described. Nevertheless, the 
simulation gives some idea of how an association between sound and wave 
might occur during an attempt to explain why sound propagates and 
reflects. 

Analogical Problem Solving Problem solving can be greatly facilitated by 
the use of past successful problem solutions. Keith Holyoak and I have 
adapted PI's mechanism of direct spreading activation to provide an anal­
ysis of how old problem solutions can be used to solve new problems 
(Holyoak and Thagard, 1986). The two key questions in analogical prob­
lem solving are (1) How, while solving a problem, does one retrieve rele­
vant existing problem solutions? (2) How, once a relevant problem solution 
is found, does one exploit the analogy between them? In PI, directed 
spreading activation provides similar answers to both these questions. 

We now have running a highly Simplified simulation of the ray problem 
of Duncker (1945). The ray problem consists of figuring out how to use a 
ray source to destroy a tumor inside a patient, when radiation at full 
strength will destroy flesh between the source and the tumor, leading to 
the death of the patient. Subjects have great difficulty coming up with a 
solution to this problem (Gick and Holyoak, 1980, 1983), but their per­
fonnance is greatly improved when they are first told of an analogous 
problem. The fortress problem consists of trying to figure out how an army 
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can capture a fortress when a frontal attack by the whole army is impos­
sible. One solution is to split up the army and have it attack the fortress 
from different sides. This solution suggests an analogous solution for the 
ray problem, leading to irradiation of the tumor with lower intensity rays 
from different directions. 

Our current simulation models analogical problem solving in the follow­
ing steps. First, the base problem (here the fortress problem) must be 
solved, and its solution stored by association with the concepts mentioned 
in its problem deSCription. The solved fortress problem, for example, is 
represented by the following structure: 

Name: 
Data-type: 
Start: 

Goals: 

Activation: 
Concepts-attached-to: 

Rules-used: 
Effectors: 

capture -fortress 
problem 
(army (obj-I) true) 
(fortress (obi-2) true) 
(road (obj_3) true) 
(between (obi-3 obj-I obj-2) true) 

(capture (obi-I obi-2) true) 
(destroyed (obi_I) false) 
I 
(army fortress roads between capture 
destroyed) 
rule-I-army, etc. 
(split (obi_I) true) 
(move-separately-to (obj_I obj-2) true) 

Second, solution of the target problem (here the ray problem) is 
attempted. This begins directed spreading activation in two directions: 
forward from concepts mentioned in the starting conditions of the target 
problem by rule-firing, and backward from the concepts mentioned in the 
goal conditions. Third, this process of rule-firing leads to activation of 
concepts to which the fortress problem has been attached. Figure 2.4 shows 
one possible path of activation that PI has been used to simulate. Here an 
association from ray to shoot to shoot-bullet to gun to weapons to fight to 
conflict to battle to army leads to activation of the concept army. Some of 
these associations are by firing of rules, such as that rays can shoot, while 
others are by subordinate/superordinate relations, for example, from fight 
to its superordinate conflict and down to another subordinate, battle. 
Thanks to PI's simulated parallelism, at the same time an association from 
the goal of destroying the tumor leads from destroy to defeat (since one 
way of destroying something is to defeat it) and then to conquer and 
capture. Since the stored solution of the fortress problem is attached to the 
newly activated concepts of army and capture, it gradually accumulates 
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Spreading adivation from the ray problem to the fortress problem. 

activation. When its degree of activation exceeds a threshold, PI triggers 
an attempt to exploit the analogy in more detail. 

Exploitation of an analogy requires noticing correspondences between 
the two problem solutions and figuring out how to use key steps in the first 
problem solution to suggest a solution to the target. The fourth step, then, 
is to set up a mapping between the two problem solutions that highlights 
the analogous components. PI derives this mapping &om the record of 
spreading adivation, since it notices what concepts were responsible for 
the activation of any newly activated concept. It is therefore able to trace 
back from army to determine that it was activated by ray, establishing that 
the ray source in the ray problem and the army in the fortress problems are 
analogs. Of course, the activation path to army involved other concepts 
too, but ray is the only concept that was activated as part of the target 
problem deSCription. 

Establishment of the analogous components makes possible the fifth 
step, performing analogous actions in the target problem. PI stores with a 
problem solution a list of 1/ effectors", the actions that were projected to be 
performed that led to the solution of the problem. In the fortress problem, 
the effectors were the splitting up of the army and its moving separately to 
the fortress. Using the already established mapping, PI then determines 
that a solution to the ray problem might be found by accomplishing the 
two subgoals of splitting up the ray and moving its components separately 
to the target. At this point, the attempt to solve the ray problem by the 
standard processes of rule-firing and spreading activation is resumed. Now 
the new sub-goals prOVide a decomposition of the previously iIl-strudured 
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ray problem. The analogy with the fortress problem does not provide a 
complete solution to the ray problem, but it does suggest potentially key 
steps in its solution. 

After PI solves a problem analogically, producing one solution using a 
previous one, it constructs an analogical schema, which is an abstraction 
from the two previous solutions (for an introduction to the psychological 
notion of a schema, see tutorial D). Since the fortress problem has contri­
buted to a solution to the ray problem, PI examines the statement of the 
two problems to see what they have in common. Using the rules stored 
with the concepts of the respective problems, it attempts to derive an 
abstract version of the two problems. In the fortress and ray problems, 
there is enough similarity to produce the following structure: 

Name: 
Data-type: 
Start: 

Goals: 
Effectors: 

capture-fortress/ destroy-tumor 
problem schema 
(force ($x) true) 
(target ($y) true) 
(overcome ($x $y) true) 
(split ($x) true) 
(move-separately _to ($x $y) true) 

This structure is then associated with the relevant concepts, such as force, 
and is available for future analogical problem solving. The schema, how­
ever, is potentially much more usable than the two problems from which it 
was formed, since it will be easier to map a new concrete problem to this 
abstraction than to the fortress or ray problems. Any new problem whose 
concepts sufficiently activate the concepts of force, target, and overcome 
will be be able to exploit the possible solution of splitting the force. 

The processes just described simulate many of the experimental results 
of Duncker (1945) and of Gick and Holyoak (1980, 1983). Holyoak and 
Thagard (1986) describe how this model can account for such experimental 
results as the effectiveness of hints in problem solving, the efficacy of 
problem schemas, and the fact that structural similarities (ones that play 
a causal role in determining solutions) are more important than surface 
similarities in analogical transfer. 

Ertralogical Processes A logician will naturally ask, Why bother with all 
this spreading activation? Why not just take the logical consequences of 
current beliefs and add them to the set of beliefs7 We have already seen 
that no finite memory could handle such a procedure. A system must not 
clutter up a finite memory with useless facts. Still, one might argue that it 
would be more elegant to consider, at each timestep, all of the messages and 
rules stored in memory. The computational problem with this suggestion 
is simply that there are too many of them in a large system such as a human 
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being. What appear to be limitations on human memory-our inability to 
think of all relevant matters at a given time-may in fact be crucial to 
thinking, since we would not be able to draw any conclusions at all if we 
were overwhelmed with information. A problem-solving system must have 
the capacity to focus attention on inferences that past experience shows to 
provide likely avenues of solution. In PI, the spreading activation mechanism 
is intended to show how problem solving can be focused on relevant rules 
and promising analogies. 

It should now be clear why concepts have to be so complex. They play 
in PI the crucial role of spreading activation, determining what information 
is available at any time as they become active or cease to be active through 
decay if they are not used. They organize together various messages and 
rules. Their role in analogical problem solving is central, both for finding 
useful analogies by spreading activation and for exploiting them using 
activation haces. 

In chapter 3, I argue that we cannot understand theories and explana­
tions in science without taking into account the kind of complex processes 
of problem solving and learning that PI is being used to study. If this is 
corred, then the computational analyses given above are of more than 
psychological interest, being equally essential for philosophical under­
standing of scientific knowledge. 

Thus PI needs complex data structures in order to be able to implement 
processes that effectively control problem solving and induction. Contrast 
logic programming, using the language Prolog (Clocksin and Mellish, 
1981). For many applications, Prolog is useful because of its logic-like 
syntax and its deduction mechanism. Expressions in Prolog are similar to 
ones in predicate calculus, although they must also be understood as 
programming instructions. For example, the statement "All copper con­
ducts eledricity" is represented in Prolog as conducts-electricity (x) � 

copper (x). Procedurally, this has the interpretation, If you want to show 
that something conducts electricity, first show that it is copper. For exam­
ple, if the data base contained the assertion copper(specimen47) and the 
system were asked if conducts-electricity(specimen47), it would use the 
above rule to deduce that indeed specimen 47 conducts electricity. Deduc­
tion is by a resolution theorem prover: Prolog conjoins the negations of the 
expression to be proved with the set of expressions already asserted and 
tries to derive a contradiction. If a contradiction is derived, then the asser­
tion in question is considered proven and is added to the data base. 

It is earier to write reasoning programs in Prolog than in LISP because 
the inference machinery is already in place. A resolution theorem prover 
can of course be written in LISP, or any other programming language, but 
Prolog has the advantage of providing the programmer with an inference 
mechanism from the start. However, for producing cognitive models of the 
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sort needed for computational philosophy of science, the advantage is 
illusory. Feigenbaum and McCorduck (I983, p. 122) maintain, liThe major 
successes of AI have come from mastering the methods by which knowl­
edge can be used to control the search for solutions to complex problems. 
The last thing a knowledge engineer wants to do is to abdicate control to 
an 'automatic' theorem-proving process that conducts massive searches 
without step-by-step control exerted by knowledge in the knowledge base. 
Such uncontrolled searches can be extremely time-consuming." PI uses 
complex data structures like concepts and rules to provide greater control 
to its problem solving and inductive processes than a simple deductive 
system could have. 

Of course, since Prolog is a full programming language as well as a 
deductive engine, it can be used to produce data structures and processes 
much like those that PI employs in LISP. At that point, however, any 
resemblance between Prolog and logic has been lost and its deductive 
theorem-proving mechanism has ceased to play a serious role in the cogni­
tive model being developed. 

The justification given so far for PI's spreading activation mechanism is 
both psychological. in that it mimics human memory access to some extent 
(see Holland et aL, 1986, chapter 2), and computational, in that it is neces­
sary to limit and focus problem solving. An even stronger computational 
argument arises from the na�ure of induction. The reshicted activation of 
concepts, rules and messages turns out to be crucial for directing and 
constraining the making of inductive inferences. 

2.3.3. Induction 
I argued above for the necessity of constraining deduction to control what 
deductive inferences get made when. Constraints are even more essential 
for inductive inference, that is, inference to conclusions that do not follow 
necessarily from what is already known. Induction is inherently riskier than 
deduction, since it can lead to conclusions that are not only useless but 
false. At least in deduction, what follows from true premises has to be true, 
whereas induction unavoidably involves a kind of leap. You may have 
observed myriad instances of copper conducting electricity, but generaliz­
ing that all copper conducts electricity still introduces uncertainty. 

It might seem less than optimal to design a system that restricts atten­
tion to only a fraction of all the information stored in memory. In discus­
sions of induction, philosophers such as Camap (1950) and Harman (1973) 
have advocated total evidence conditions, according to which one's induc­
tive inferences should take into account all evidence relevant to the conclu­
sion. Such a requirement is clearly computationally unfeasible, since it 
would require a comprehensive search through all information stored. We 
need more practical means of bringing relevant information to bear. 
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problem 

solving 

Figure 2.S 
Problem solving and induction in PI. 
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induction 
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Moreover, in making inductions, we do not want to be concerned only 
with reaching well-warranted conclusions: we want to produce rules that 
will be useful for future use in problem solving and explanation. I could, for 
example, induce that all the tiles on my ceiling have between 1,000 and 
2,000 specks on them, but why bother? Similarly, you are unlikely to be 
-devoting much time to generalizing about the number of lines or words on 
each page of this book. Induction should take into account the goals of the 
system. (See Holland et a1., 1986, chapter 1, for a fuller discussion of the 
pragmatics of induction; compare the discussion in Harman, 1986, of the 
importance of interests in reasoning.) 

Hence PI only performs induction in the context of problem solving. At 
each step in an attempted problem solution, PI monitors the currently 
active list of messages, rules, and concepts. Thus no inductive inferences 
will be made that are not relevant to the current problem-solving situation. 
Depending on the current state of activation, PI triggers attempts at vari­
ous kinds of inductive inference, currently including generalization, abduc­
tion, and concept formation; see figure 2.S, which supplements figure 2.2. 

I shall treat generalization very briefly, since it is discussed at length 
elsewhere (Holland et aL, 1986, chapter 8). If PI's list of active messages 
includes the information that some object falls under two concepts, then 
the attempt is made to see if this holds generally. For example, the mes­
sages (copper (specimen14) true 1) and (conducts-electricity (speci­
men14) true 1) will trigger attempts to generalize that all copper conducts 
electricity and that anything that conducts electricity is copper. Additional 
information stored with the concepts of copper and conducts-electricity 
are then used to determine whether either generalization is warranted. The 
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attempt to generalize will quickly be terminated if a check of the relevant 
concepts determines that there are counterexamples to the possible gen­
eralization or that the generalization has already been formed. Otherwise, 
PI considers whether there is enough evidence to warrant the general­
izaHon, taking into account both the number of instances in common 
and background knowledge about the variability of the kinds of things 
involved. Variability is important in determining how many instances you 
require before being satisfied that a generalization is acceptable. For exam­
ple, you will be more Willing to generalize from a few instances that a new 
metal conducts electricity than you will be willing to generalize that a new 
kind of bird has a particular color, since birds are more variable with respect 
to color than metals are with respect to electrical properties. 

Generalization in PI has much in common with traditional confirmation 
theory, which analyzes how laws can be confirmed by their instances 
(Hempel, 1965), but there are also important differences. First, PI does not 
consider confirmation of laws in isolation, but sees generalization as 
triggered during the scientific activity of problem solving; this adds a 
pragmatic, goal-directed component that aids in avoiding the notorious 
paradoxes of confirmation theory (Holland et at, chapter 8). Second, PI 
considers not just confirming instances, but also background knowledge 
about variability. To do this, it requires information stored in concepts 
concerning superordinate and subordinate relations. Generalization, for 
example, that crows are black requires knowing that crows are a kind of 
bird and that black is a kind of color, as well as what other kinds of birds 
and colors there are (the algorithm that PI uses is sketched in appendix 2). 
Thus PI's problem-solving and knowledge representation resources take it 
well beyond what can be done in standard confirmation theory. 

Additional kinds of learning-concept formation and abduction-will 
be discussed in later chapters. Chapter 4 describes the role that abduction 
plays in forming hypotheses and the importance of concept formation by 
conceptual combination for the creation of theoretical concepts. The crucial 
point to keep in mind here is that PI never wastes time trying to form all 
possible hypotheses or all possible concepts. Abduction and conceptual 
combination are triggered only when relevant rules and concepts are 
active. Concentration on what is relevant and important is brought about 
through control of spreading activation by the process of problem solving. 

2.3.4. Limitations of PI 
PI has many desirable features of a model of the cognitive processes of 
scientists, but it also has clear limitations. The simulations run so far have 
been small, with none using more than 60 rules or concepts, so only a small 
part of domain knowledge is captured in them: see appendix 3 for an 

Copyrighted Material 



30 Chapter 2 

example. A more strenuous test of the model will require simulations that 
involve formalization of large amounts of domain knowledge, with no 
preselection of concepts and rules to assure desired solution paths. The 
current problem solutions employ virtually no knowledge about space, 
time, and causality, which are important for problem solving and explana­
tion (see section 3.5 .2). Some of the mechanisms that PI does employ, such 
as its particular kind of spreading activation by rule firing and subordinate/ 
superordinate relations, have yet to be tested by psychological experi­
ments. Its generalization mechanism is only capable of inferring very sim­
ple qualitative laws, since it lacks the heuristics for forming mathematical 
laws found in the BACON program (Langley et aI., 1987) and the ability 
to use domain knowledge to guide the search for rules found in the 
Meta-DENDRAL program (Buchanan and Mitchell, 1978). PI's implemenfa­
tion of analogical problem solving also needs improvement; a much supe­
rior method for mapping from one analog to another has been developed 
(Holyoak and Thagard, 1987) but has not yet been integrated with PI. 
Further limitations of PI concerning the discovery and justification of 
hypotheses will be pointed out in chapters 4 and 5. Nevertheless, PI 
provides a starting computational &amework for investigating questions 
concerning scientific knowledge. 

2.4. Expressive and Procedural Equivalence 

Despite the above arguments for the importance of concepts in the repre­
sentation of knowledge, I except that some skeptics will maintain their 
dispensability on the general grounds that their content can be translated 
into simpler structures. In the mid-1970s, there was a flurry of activity 
in artificial intelligence employing Minsky's vague but suggestive frame 
notion. Hayes (1979) pointed out that there is a natural translation &om 
frame representations to predicate calculus: a frame can be transformed 
into a conjunction of sentences in predicate calculus, with each sentence 
representing the information in one slot in the frame. Thus all the infor­
mation in PI's concepts and rules could be translated into sentences jon 
predicate calculus. 

However, the existence of such a translation does not in the least 
undermine the importance of having rich representations of rules and 
concepts. Compare two systems of numerals: the Arabic numerals I, 2, 3 
and the Roman numerals 1, II, III. If the Roman numerals are augmented 
with the rather handy numeral 0, there is an obvious translation from 
Arabic numerals into Roman numerals, so that one might argue that the 
lwo are not interestingly different. But consider our algorithms for doing 
multiplication and long division. We learn at an early age how to divide, 
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say, 4 6  into 5 98, along these Hnes: 46 goes into 59 once, with a remainder 
of 13, and 46 goes into 138 3 times, so the answer is 13. Compare trying 
to divide XLIV into DXCVIII. The Roman representation does not lend 
itself nearly so easily to a simple algorithm for long division. Thus although 
we might say that Roman and Arabic numerals are expressively equivalent 
because they can be intertranslated and thus have the same content, it 
would be a mistake to say that they are procedurally equivalent, since they 
are not equally suited for all procedures. 

The simple distinction between expressive and procedure equivalence 
has many applications. Given expressive equivalence between two systems 
and a procedure in one of them, we can always find a corresponding 
procedure in the other. But the procedure found may be very inefficient. 
For Roman numerals, instead of trying to get an algorithm for long divi­
sion directly, we could simply translate into Arabic numerals, use our 
familiar algorithm, then translate back. Obviously, however, this process 
will take much extra time, so it does not challenge the superiority of Arabic 
numerals. Similarly, the procedures in &ame systems can be more efficient 
for particular kinds of inferences than those found in less specialized logic 
systems. Any digital computer is computationally equivalent to a Turing 
machine, which is an extremely simple device consisting of only a tape 
with squares on it and a head that can write D's and l's in the squares. So 
anything that can be done computationally on a digital computer can be 
done on a Turing machine. But this fact is not of much interest for under­
standing intelligence because Turing machines are slow and torturous to 
program. The design of intelligent systems, whether by natural selection or 
human engineers, unavoidably takes into account speed of operations. 
Hence the current wave of research on how parallel architectures for 
computers can speed up processing is highly relevant for understanding the 
nature of mind (see chapter 10 and Thagard, 1986). 

The distinction between expressive and procedural equivalence is also 
important for theoretical psychology. Debates have raged over whether 
the mind employs mental images in addition to propositions, and whether 
it employs large structures called "schemas" in addition to simpler propo­
sitions (see tutorial D). Some theorists have argued that since the content 
of any image or schema can be translated into propositions, there is no 
need to postulate the additional structures. But images and schemas might 
have procedures associated with them that would be much more difficult 
to perform in a purely propositional system; images, for example, can be 
rotated or otherwise manipulated in systematic ways. Hence empirical 
evidence can be found, using factors such as speed of processing and 
qualitative differences, to support the existence in human thinking of more 
complex structures like those found in PI's rules and concepts. 
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2.5. Summary 

An understanding of scientific knowledge will require the representation of 
observations, laws, theories, concepts, and problem solutions . For a full 
description of the roles that these play in such activities as problem solving 
and discovery, it is necessary to use representations with more structure 
than a logical model would admit. PI's concepts require much internal 
structure because of the ways they duster information together and spread 
activation through the system during problem solving. The expressive 
equivalence of two systems does not imply procedural equivalence, and 
procedural questions are crucial for understanding the development and 
application of scientific knowledge. 
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Chapter 3 

Theories and Explanations 

Scientific theories are our most important epistemic achievements. Our 
knowledge of individual pieces of information is little compared to theories 
such as general relativity and evolution by natural selection that shape 
our understanding of many different kinds of phenomena. We might be 
tempted to think of ordinary knowledge as changing and growing merely 
by additions and deletions of pieces of information, but theoretical change 
requires much more complex global alterations. But what are these entities 
that constitute the most impressive part of our knowledge? 

Researchers in philosophy of science over the past fifty year have 
employed three different kinds of approaches to the problem of the 
nature of scientific theories. Following the traditional semiotic classification 
defined in chapter 2, I shall call these syntactic, semantic, and pragmatic 
approaches. The logical positivists took scientific theories to be syntactic 
structures-sets of sentences, ideally given an axiomatic formalization 
in a logistic system (Hempel, 1965, pp. 182-183). In the past decade, a 
semantic (set-theoretic) conception of theories has become increasingly 
popular; this conception abstracts from particular syntactic formulations of 
theories and interprets them in terms of sets of models, in the Tarskian 
sense explained in tutorial B. Another recent trend, popular among philos­
ophers with a more historical bent, has been pragmatic in that it considers 
theories as devices used by scientists in particular context. Philosophers 
who construe theories pragmatically include Kuhn (1970b), who empha­
sizes the role of paradigms in historical communities, and Laudan (1977), 
who stresses the role of theories in solving empirical and conceptual 
problems. 

The next sections describe some of the strengths and weaknesses of 
these three approaches. I shall argue that a fully adequate account of 
scientific theories must be pragmatic: formalistic concentration on merely 
syntactic or semantic features of theories unavoidably neglects some 
of their essential features. However, the historically oriented pragmatic 
accounts of Kuhn and others have failed to develop adequate philosophical 
analyses because they have been unable to add much content to vague 
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notions such as paradigms and problem solutions. A more powerful prag­
matic account can be developed using computational ideas. I shall construe 
a theory as a complex of data structures of the sort described in the last 
chapter, and argue that the result is practically, historically, and philosophi­
cally superior to syntactic and semantic approaches. 

3.1. Requirements of an Account of the Nature of Theories 

What should we demand of an account of the nature of scientific theories? 
I propose that an account needs to be adequate at three different but related 
levels: practical, historical, and philosophical. We want an account that (1) 
serves to describe the everyday practice of scientists in using theories, (2) 
accommodates the ways in which theories are developed historically, and 
(3) gives rise to philosophically satisfactory treatments of such crucial 
issues in the philosophy of science as the nature of explanation. 

To be practically adequate, an account must show how theories can 
function in the diverse ways scientists use them in explanation, problem 
solving, conceptual development, and so on. Use in these intellectual 
operations entails that a theory must be a psychologically real entity, 
capable of functioning in the cognitive operations of scientists. Such func­
tioning is not a purely individual matter, for a theory must be capable of 
being shared by members of a scientific community and learned by new 
members. If philosophy of science is to be philosophy of science rather than 
abstract epistemology, it must become psychologistic in that its account of 
the structure of scientific knowledge recapitulates how knowledge is struc­
tured in individual minds. Practical adequacy requires that an account must 
be broad enough to characterize the uses of both mathematical theories, 
such as Newton's mechanics, and primarily qualitative ones, such as Dar­
win's theory of evolution. 

To be historically adequate, an account must be able to describe how 
theories develop over time, in a way faithful to the history of science. It 
must be suffiCiently flexible to depict how theories are discovered and 
undergo conceptual change, while elucidating the notion of sameness of 
theories. The account must also be capable of describing the dynamic rela­
tions among theories, such as reduction or replacement of one theory by 
another and explanatory competition between theories in the same domain. 

To be philosophically adequate, an account of the nature of scientific 
theories must contribute to plausible and rigorous solutions to other central 
problems in the philosophy of science. Most immediately, an account must 
suggest an analysis of the nature of scientific explanation. Closely related, 
we need a detailed treatment of scientific problems and their solutions. We 
ought to be able to show how a theory can be employed realistically, as 
purportedly true, but also how it can be construed instrumentally, as a 
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device useful for prediction and other operations. We ought also to be able 
to give an account of how a theory is confirmed and justified as more 
acceptable than competing theories. Finally, an account of the nature of 
theories should suggest an answer to the difficult question of how theoret­
ical terms are meaningful. 

3.2. Critique of Prevailing Accounts 

To begin the argument that a computational account can be more practi­
cally, historically, and philosophically adequate than alternatives, let us 
briefly review the shortcomings of the positivist, set-theoretic, and Kuhnian 
accounts. 

3.2.1. The Positivist Syntactic Account 
Consider first the doctrine of the logical positivists that a theory is an 
axiomatic set of sentences. Many critics have pointed out that this view has 
little to do with the ways in which most scientific theories are used. 
Rigorous axiomatizations are rare in science, and we should be skeptical of 
maintaining as an ideal what is so r�rely realized. Moreover, the utility 
of achieving full axiomatizations is doubtful, since axiom systems are 
awkward tools for performing the tasks of problem solving and explana­
tion. Of course, formalization of some sort will be necessary for any 
computational implementation of scientific knowledge, but it will have 
to be directed toward procedural issues rather than logical rigor. The 
emphaSiS on syntax that is endemic to the view of theories as axiom 
systems leads to the neglect of semantic considerations crucial to the 
understanding of conceptual development, and to the neglect of prag­
matic considerations that are crucial to justification and explanation. 
Axiom systems could be said to be psychologically real if we viewed scien­
tists as solving problems by straightforwardly making deductions from 
sets of propositions, but we saw in the last chapter the need for a 
much richer approach. In sum, the positivist account is not very practically 
adequate. 

The most influential criticisms of the positivist account have come from 
historians and historically oriented philosophers (Kuhn, 1970b; Toulmin, 
1953; Hanson, 1958). They charge that logical positivists neglected the 
dramatic extent of conceptual change in the history of science, a neglect 
stemming in part from the supposition that the meaning of theoretical 
tenns derives from partial interpretation through observational conse­
quences. To mention one example, Kuhn (1970b, pp. 101ff.) argues that 
the replacement of Newtonian mechanics by Einstein's theory of relativity 
does not fit the precise model of reduction as deduction of one set of 
sentences from another. The dynamics of theories are not well represented 
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by the positivist account. Discovery was explicitly excluded as a topic in 
the philosophy of science by positivists such as Reichenbach (1938), who 
distinguished between the context of discovery and the context of justifi­
cation. But we shall see in chapters 4 and 5 that a computational approach 
can give an integrated account of discovery and justification. 

The philosophical adequacy of the positivist account has been called 
into question by sustained criticisms of the allied views of explanation 
and confirmation. The deductive-nomological model of explanation, which 
construes an explanation as a deduction from a set of sentences including 
laws, has been criticized for failing to provide sufficient or necessary condi­
tions for explanation (see tutorial A for a summary of the deductive­
nomological model). Confirmation theory has foundered on the intractable 
paradoxes of Goodman (1965) and Hempel ( 1965), which have been given 
a pragmatic dissolution elsewhere (Holland et al., 1986, chapter 8). I argue 
in chapter 5 that the justification of scientific theories is better represented 
by a model of inference to the best explanation than by the hypothetico­
deductive model of confirmation, and show how well the computational 
account of theories meshes with inference to the best explanation. Another 
major problem with the positivist account concerns the meaning of theoret­
ical terms. It has been challenged concerning the viability of the notion of 
partial interpretation, and even more fundamentally concerning the ten­
ability of the distinction between theoretical and observational terms. Dis­
cussion of the issue of the meaning of theoretical terms will be found in 
chapter 4. 

3.2.2. Kuhn's Paradigms 
T. S. Kuhn's notion of a paradigm has replaced the positivist account 
of theories in many discussions, particularly in the social sciences. Most 
generally, a paradigm is a conceptual scheme representing a group's shared 
commitments and providing them with a way of looking at phenomena 
(Kuhn, 1970b). This notion is flexible enough to have much practical and 
historical applicability, but it is too vague to help with philosophical prob­
lems about explanation, justification, and meaning. Despite a professed 
desire to avoid total subjectivity, Kuhn has not succeeded in describing 
how paradigms can be rationally evaluated, or how different paradigms can 
relate to the same world, or even what it is for a paradigm to be used in 
solving a problem. Masterman ( 1970) has distinguished no fewer than 
twenty-one senses of "paradigm" in Kuhn's writings. No accounts have 
been given of how paradigms can be discovered or modified. Kuhn's ideas 
about the structure of scientific knowledge are nevertheless rich and sug­
gestive; later sections of this chapter show how they can be fleshed out in 
computational terms. 
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3.2.3. The Set-Theoretic Conception 
Recently, a powerful set-theoretic conception of theories has been pnr 
posed and developed by several authors (Suppes, 1967; Suppe, 1972, 1977; 
van Fraassen, 1972, 1980; Sneed, 1971; Stegmuller, 1979). Unlike the 
positivist and paradigm accounts this conception has not yet received a 
sustained critical analysis, nor will one be attempted here. 

On the set-theoretic conception, a theory is a structure that serves to 
pick a class M of models (in Tarski's sense-see tutorial B) out of a class of 
possible models Mp. On the positivist view, we would think of M as those 
elements of Mp that satisfy the axioms of the theory. But without such 
specification we can talk generally of a theory as a structure (K, I), where 
K is said to be the core of the theory consisting of the pair (M, Mp) such 
that M is a subset of Mp' and I is the set of models that are intended 
applications of theory, with 1 a subset of Mp. A theory construed as such a 
structure cannot be said to be true or false, but it can be used to make the 
empirical claim that the models that constitute the intended applications 
of the theory are among the models picked out by the theory: I is a subset 
of M. 

The set M is characterized through the definition of a set-theoretic 
predicate P. We define "x is a P" (e.g., "x is a group" or "

X is a classical 
particle mechanics") by stating in informal set theory a series of axioms 
characterizing those objects that fall under the predicate P. An empirical 
claim then has the form "a is a P" where a is an intended application. 

This approach to the nature of theories does appear to have several 
advantages over the positivist account. Use of informal set theory rather 
than formal syntax facilitates the rigorous reconstruction of scientific 
theories, since the more flexible set-theoretic characterization of a predicate 
is easier to execute than axiomatization in formal syntax. Moreover, use of 
set theory avoids the linguistic relativity of having a theory characterized 
in a specific fonnal language. (My computational approach similarly does 
not attach any particular significance to the representation language that PI 
uses to formalize scientific knowledge. The point of the computational 
model is not to have a canonical account of scientific knowledge, but only 
an approximation to what is in the scientist's head: what matters are the 
data structures, which might be implemented in any number of languages.) 
Most important, the work of Sneed and Stegmuller suggests that the 
set-theoretic formalisms can deal more richly with the dynamics of theory 
development than syntactic ones. 

However, we must question whether the elegant formal reconstructions 
offered by the set-theoretic approach are what is desired in an account of 
the nature of scientific theories. My primary objection concerns practical 
adequacy: what is the relation between the model-theoretic structures 
described above and the cognitive structures employed by scientists? Like 
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the positivist account, the set-theoretic account offers a highly idealized 
description of theories. Such idealizations may be useful in dealing with 
isolated philosophical problems, but they hardly serve to characterize the­
ories as used by scientists. A theory should bear some relation to how 
scientists do research, and the set-theoretic account abstracts too far from 
conceptual realities. This is especially clear if one looks at less mathematical 
theories than the examples from physics discussed by Stegmiiller and 
Sneed, such as Darwin's theory of evolution. Of course, mathematical 
theories are highly important in science, in fields as disparate as population 
genetics and microeconomics as well as physics. But even in those fields we 
need a technique of representing conceptual connections that goes beyond 
set-theoretic formalization. The set-theoretic conception is insufficiently 
semantic: meaning connections require characterization in more elaborate 
terms. And it is even worse off than the syntactic conception in failing to 
suggest an account of such processes as problem solVing and discovery, 
since it says nothing about how parts of models are transformed. 

Connected with its practical inadequacy, the set-theoretic account faces 
philosophical limitations. Its abstraction from pragmatic matters of context 
and epistemic organization creates large impediments to giving satisfactory 
treatments of explanation and inference. In particular, the notion of expla­
nation is not captured adequately by set-theoretic isomorphism (d. van 
Fraassen, 1980). 

3.3. A Computational Account of the Nature of Theories 

3.3.1. Rules and Concepts 
Chapter 2 described how PI represents knowledge using rules organized by 
concepts. I now want to show how such structures can contribute to an 

account of the nature of scientific knowledge that is both reasonably 
precise and suffiCiently rich to account for the various roles of scientific 
theories. 

Focusing on rules alone might suggest that in PI theories are nothing 
more than syntactic structures akin to the sets of sentences that, according 
to the logical positivists, constitute scientific theories. Moreover, the­
oretical problem solving and explanation might be thought to have the 
straightforward deductive character emphasized by the positivists, since 
rule firing is at root an application of modus ponens, inference from if p 
then q and p to q. Then we might be tempted say that all that is needed 
for a computational account of theories is to treat them as rules in a 
deductive system such as Prolog or a simple production system. 

That conclusion, however, would neglect the points made in the last 
chapter about the importance of concepts in clustering rules together and 

Copyrighted Material 



Theories and Explanations 39 

helping to control the processing of information during problem solving 
and learning. Concepts would be unnecessary if we could consider all 
possible deductions from all existing rules, but we have seen that that is 
not computationally feasible. People seem to have, and programs seem to 
need, the ability to organize knowledge in ways that allow it to be applied 
in appropriate situations. Concepts not only organize rules for efficient 
application; they also organize the storage of problem solutions in ways 
crucial for analogical problem solving. 

Similarly, it would be a mistake to argue as follows: "A computer 
program is, for the computer on which it runs, a purely syntactic entity, so 
there is no real difference between any computational account and the 
syntactic accounts of the logical positivists." Here there is a confusion of 
levels. Of course a program is a syntactic entity, but processing can be 
guided by data structures that are best understood in semantic and prag­
matic terms. The semantics come from the interrelations of rules and 
concepts, and from the world (see chapter 4 for a discussion of meaning); 
and the pragmatics come from the crucial role that goals and context play 
in determining the course of processing. 

To be more concrete, let me describe a simple but important theory, the 
wave theory of sound, whose discovery has been simulated in PI (see 
chapter 4). This theory goes back to the ancient Greeks, probably originat­
ing with the Stoic Chrysippus (Sam bur ski, 1973), although the first sys­
tematic discussion I have been able to find is by the Roman architect 
Vitruvius around the the first century A.D. (Vitruvius, 1960). Vitruvius used 
the wave theory to explain several properties of sound that were important 
for building amphitheaters: sound spreads out from the source, and if it 
encounters a barrier it can be reflected back, constituting an echo. These 
facts to be explained are represented in PI by simple rules: 

If x is sound, then x propagates. 
If x is sound, and x is obstructed, then x reflects. 

At first blush, the wave theory of sound might seem to be merely 
another simple rule, something like 

If x is sound, then x consists of waves. 

But there are two key respects in which the wave theory of sound differs 
from the simple rules about sound propagating and reflecting. First, as the 
discussion of theory evaluation in chapter 5 will make clear, the basis for 
accepting the wave theory of sound is different from the basis for accepting 
the other rules, which are derived from observations by generalization. 
Second, part of the wave theory of sound is postulation of the novel idea 
of sound waves, which were not observable, so that the concept of a sound 
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explanation-problem 

----... wave 

propagates 

sound-wave 

Figure 3.1 
Structure of the wave theory of sound. 

wave could not be derived from observation. What constitutes the wave 
theory of sound is thus a complex of rules and concepts. 

Equally important, the wave theory of sound includes a record of its past 
successes-here the successful explanation of why sound propagates and 
why it reflects. An explanation or solved problem solution may be com­
plicated, but keeping track of it may be immensely useful in the future for 
solving similar problems. A theory, then, is not an explicit data structure 
like a rule or concept, but a set of associated structures. For the wave 
theory of sound, these include 

Wave theory of sound: 

Concepts: sound, wave. 

Theoretical concept: sound-wave. 

Rules: If x is sound, then x is a wave. 
If x is sound, then x is a sound-wave. 

Problem solution: Explanation of why sound propagates. 
Explanation of why sound reflects. 

Figure 3.1 depicts the complex of interlinked structures that make up the 
wave theory of sound, after the attempt to explain why sound reflects 
and propagates has led to formation of the rule that sounds are 
waves. The new concept sound-wave, formed by conceptual combination 
(see section 4.3), is a subordinate of the concepts of sound and wave. The 
new solution of the problem of explaining why sound reflects and prop­
agates is stored with attachments to the concepts of sound, propagates, 
and reflects. 
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3.3.2. The Importance of Schemas 

Theories and Explanations 4 I 

In chapter 2, I described how PI forms problem-solving schemas and how 
this greatly improves problem-solving performance. This facilitation is 
especially clear for theories, which invariably provide rich explanatory 
schemas. Remember that the primary function of a theory is to explain 
different laws, which in turn generalize many observations. A theory will 
typically involve a narrow set of principles that are applied in similar ways 
to explain each law. and by extension the particular events that fall under 
the laws. 

Kitcher (1981) describes how theoretical explanation consists of pro­
viding unifications of phenomena using problem-solving schemas. He 
describes how Darwin explained many different phenomena using similar 
patterns based on evolution by natural selection. Darden (1983, p. 156) 
has further shown the power of an even more general selection schema, 
applicable beyond artificial and natural selection, with the following 
components: 

I. An array of variants is generated. 
2. Selection of a subset of variants occurs. 
3. After selection, the pool of variants is different. 

This is a powerful explanatory schema that has been applied in many 
domains, including the development of knowledge (see chapter 6). 

Similarly, Newton explained many phenomena using a schema that 
Kitcher (p. 517) describes roughly as follows: 

1. The force on ex is p. 
2. The acceleration of ex is y. 
3. Force = mass' acceleration. 
4. (Mass of ex) . (y) = p. 
5. � = O. 

To quote Kitcher (1981, p. 517), "The filling instructions tell us that all 
occurrences of 'ex' are to be replaced by an expression referring to the body 
under investigation; occurrences of I P' are to be replaced by an algebraic 
expression referring to a function of the variable coordinates and of time; 
'I" is to be replaced by an expression which gives the acceleration of the 
body as a function of its coordinates and their time-derivatives; '�' is to be 
replaced by an expression referring to the variable coordinates of the body, 
and '()' is to be replaced by an explicit function of time." This pattern can 
be instantiated to apply to many different kinds of mechanical phenomena. 
Kitcher's schema is more mathematically complicated than PI is currently 
able to handle, but its general function is the same as such problem-solving 
schemas as the convergence schema that PI derives from its solutions to the 
ray and fortress problems. 
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As we saw with the convergence schema, problem schema formation 
involves a kind of abstraction. Such abstractions are important in scientific 
explanations, where idealizations are often used. Scientists talk blithely of 
inclined planes without friction, falling objects without air resistance, and 
ideal gases. On the view of scientific theories as axiom systems, it can be 
hard to understand such utterances. But idealization makes sense if one sees 
a theory as part of a processing system that uses default rules and abstract 
problem-solving schemas to generate explanations. 

The view just described also has the virtue of being compatible with the 
empirical results of Chi, Feltovich, and Glaser (1981). They found that 
experts differed significantly from novices in the ways in which they 
categorized physics problems, and theorized that experts' abilities were a 
result of their possession of superior problem schemas. Whereas novices 
tend to categorize problems by surface features, such as "blocks on inclined 
planes", experts tend to classify according to the major physics principle 
governing the solution to each problem. During problem-solving experi­
ments, experts take longer to classify problems than novices, but their 
classifications are much more effective in leading to solutions. Knowledge 
of physics here obviously goes well beyond knowledge of a set of sen­
tences encompassing the principles of physics, since novices are familiar 
with those principles too. What novices lack is the procedural knowledge 
about how and when to apply those principles, knowledge that is most 
appropriately coded in problem schemas. 

3.4. Practical Adequacy of the Computational Account 

In the last section, theories were analyzed as complexes of rules, concepts, 
and problem solutions. The practical adequacy of such an account is best 
shown by its ability to explain experimental results of problem solving 
better than alternative models. But it is also interesting to see how the 
model serves to give an account of more anecdotal phenomena. 

To start, let us return to Kuhn's notoriously vague notion of a paradigm. 
Kuhn (1970b) often used the term "paradigm" to refer to a theory or 
world-view, as in the Newtonian paradigm. This usage has become wide­
spread, but it is different from the pre-Kuhn understanding of a paradigm 
as a standard pattern or example, for instance, of a verb declension. In the 
postscript to the second edition of The Structure of Scientific Revolutions, 
Kuhn regrets using the term "paradigm" both for a scientist's general 
world-view and for the concrete examples of problem solutions that, Kuhn 
had argued, were largely responsible for the construction of the world­
view. He characterizes this latter conception of paradigms as "the central 
element of what I now take to be the most novel and least understood 
aspect" of the book (1970b, p. 187). He offers the term "exemplar" for the 
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concrete problem solutions that he came to see as the "more fundamental" 
sense of "paradigm" (Kuhn, 1977, p. 298). 

Kuhn rejects the common view that students learn a scientific field by 
learning a theory plus rules for applying it to problems. Rather, they learn 
a theory by doing the problems, solving subsequent problems by modeling 
them on previous solutions-exemplars. Learning a theoretical formula 
such as "F = rna" is of minor importance compared to learning the complex 
�anipulations needed to solve various problems about free fall, the pen­
dulum, and so on. Students who claim to know the formulas but to be 
unable to do the problems are missing the point: knowing the theory is 
being able to do the problems. By working away at standard problems, 
students eventually assimilate what Kuhn calls a "time-tested and group­
licensed way of thinking" (Kuhn, 1970b, p. 189). 

A computational model such as PI can capture both the exemplar and 
the world-view aspects of scientific practice. PI's mechanisms for solving 
and storing problems make possible just the kind of analogical problem 
solving that Kuhn points to. Exemplars are successful problem solutions 
that are stored with relevant concepts. If much use of such exemplars has 
taken place, they can be abstracted and stored as problem schemas like the 
abstraction from the ray and fortress problems described in section 2.3.2. 
A full-blown conceptual network with many stored problem solutions 
would constitute a paradigm in Kuhn's larger sense, providing a kind of 
world-view, a systematic way of approaching problems in the world. The 
existence of such a network need not remain a vague hypothesis, since they 
can be simulated in computational models with a sufficiently rich set of data 
structures, including concepts and problem solutions. It then becomes pos­
sible to address more precisely such philosophical issues as the alleged 
incommensurability of rival theories (chapter 5) and the methodological 
conservatism of proponents of a theory (chapter 8). 

This completes my case for the practical adequacy of the computational 
approach to scientific theories, although the account of scientific discovery 
in chapter 4 is also relevant. Historical adequacy is discussed in chapters 4, 
5, 6, and 8. The attempt to show that a computational account of theories 
is more philosophically adequate than alternatives now begins with a 
discussion of scientific explanation. 

3.5. Explanation 

Explanation of observed phenomena is one of the most important scientific 
activities. Much contemporary work in the philosophy of science has 
concerned providing necessary and sufficient conditions for a scientific 
explanation. The main focus of this discussion has been Hempel's (1965) 
powerful deductive-nomological model of explanation, described in tuto-
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rial A. I shall not attempt to summarize all the criticisms of that model here, 
but shall instead develop an alternative conception of explanation con­
sonant with the computational approach to theories outlined above. Since 
most concepts in natural language are not susceptible to definition in terms 
of necessary and sufficient conditions, it would be folly to attempt to 
provide such conditions for explanation. Indeed, the view of concept for­
mation associated with the processing views I have been discussing sug­
gests that conceptual analysis must take the form of characterizing what 
holds typically of a notion rather than universally. 

The term 1/ explanation" is highly ambiguous. Hempel and many others 
use it to refer to a syntactic structure consisting of deductively related 
sentences including explanans and explanandum. In informal discourse, we 
often mean by "explanation" a theory that figures in an explanation in the 
Hempelian sense: Newtonian theory is an explanation of the tides. I want 
to exploit a third sense of the term, in which explanation is not an explana­
tory structure, nor something that explains, but a process of providing 
understanding. Explanation is then something that people do, not an eternal 
property of sets of sentences. (Note: This sense of "explanation" is to be 
distinguished from a sense becoming common in AI concerning 1/ explana­
tion-based learning", in which an explanation is a description of how a 
program achieved some result.) 

3.5.1. Understanding 
Explanation is a process of providing or achieving understanding, but what 
is understanding? Most generally, to understand a phenomenon is to fit it 
into a preViously organized pattern or context. But this characterization is 
uninformative without specification of the nature of the patterns and con­
texts. Much of the plausibility of the deductive-nomological model of 
Hempel derives from the precise way a logistic system, in which a theory 
is a set of sentences and explanation is deduction from these axioms, 
provides a structured and well understood context. We shall see how a 
computational account can provide richer sorts of structure and context. 

On one computational view, to understand an event is to retrieve from 
memory a knowledge structure that the event instantiates (d. Schank and 
Abelson, 1977). To understand a sentence like "John pushed his cart to the 
checkout counter and took out the soap," a subject must activate a structure 
(frame, script. schema) that describes typical behavior in a supermarket. The 
slots in the SUPERMARKET frame are matched with the information 
provided in the sentence, and then the additional information contained in 
the frame can be used to answer questions about John's behavior described 
in the sentence. An adequate program would be able to answer "Why 
did John take the soap out of his cart?" by applying the knowledge 
incorporated in the summoned frame, that in a supermarket one typically 
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wheels a cart �o a counter, puts the items in the cart onto the counter, and 
then pays for the items. Deriving an answer to the question is relatively 
easy computationally once the appropriate frame has been found. The key 
step in achieving understanding is the procedural one of retrieving a frame 
that matches �he central aspects of the event to be explained. Here, expla­
nation is not by reference to implied laws or unspecified statistical general­
izations, but by application of a structure that describes typical occurrences. 
Understanding is achieved primarily through a process of locating and 
matching, rather than deduction. 

This account would be fine if we had precompiled frames for all events 
to be explained. But it cannot account for our ability to give explanations 
for unique or unusual events. Suppose we want to explain why John took 
off all his clothes in the supermarket. The supermarket frame and the 
undressing frame will not be much help. For increased flexibility, Schank 
(1982) proposed that knowledge must be organized into smaller structure-s 
he calls "memory organization packets". PI gains flexibility by attaching to 
concepts various rules, which can, once activated, work independently to 
generate an explanation. Thus PI's explanations involve both matching to 
a situation, as relevant concepts are activated, and deduction, as rules are 
fired. This process can be described as the application of a constructed 
"mental model" to a situation (Holland et al., chapter 2). 

3.5.2. &planation and Problem Solving 
In PI, explanation is a kind of problem solving, and description of how the 
program works should help in showing the relations between these two 
important scientific activities. A problem is specified by giving its starting 
conditions and its goals to be accomplished. A problem solution is a set of 
steps, simulated or actually carried out. that lead from the starting condi­
tions to the goal. In PI, the simplest kind of explanation problem is one in 
which the goals are not states to be reached, but states known to be true. 
Nevertheless, the process of rule-firing to generate the goals is the same, 
with one important difference: whereas in problem solving PI does pro­
jected adions, in explanation PI forms hypotheses that can lead to an 
explanation. To be concrete, imagine that your problem is to help your 
department chair figure out how to get to Chicago. You can project 
various actions that will take him or her from your department to Chicago. 
Structurally, we have 

PROBLEM: 

START: N is chair of the Taxidenny Department. 

GOAL: N is in Chicago. 

In a more realistic problem, the set of starting conditions would be signifi-
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cantly larger, and the goals would include additional constraints on what 
would constitute a problem solution. 

The analogous explanation would have a similar structure, with an 
"explanandum"-what is to be explained-instead of the goal: 

EXPLANATION-PROBLEM: 

START: N is chair of the Taxidermy Department. 

EXPLANANDUM: N is in Chicago. 

Here you would try to use what you know about N, about your depart­
ment, and about Chicago to generate an answer to why N is in Chicago. 
The same general mechanisms of spreading activation and rule-firing that 
enable PI to figure out how to get N to Chicago will also generate an 
explanation of why N is there, except that, instead of producing projected 
actions, the program generates possible hypotheses (such as that N is at a 
conference) that might provide an explanation. Further discussion of how 
PI generates hypotheses is in chapter 4. 

The structural similarity between explanation and problem solving is 
clear at the level of explanation of padicular facts, such as N's location. But 
scientific explanation concerns not only particular facts, but also general 
laws. The sort of explanation and problem solving so far discussed is a 
significant part of everyday scientific practice, but from a global, epistemic 
point of view another level of explanation is more important. This is the 
explanation of general patterns of events, rather than the occurrence of 
particular events. Such explanation has usually been understood as the 
deduction of empirical generalizations from axiomatized theories. Kepler's 
laws of the motions of planets are said to be derivable from Newtonian 
mechanics; optical refraction is explained by deriving Snell's law from 
either the wave or particle theories, and so on. Let us return to an example 
that is simple enough for PI to deal with. The wave theory of sound has to 
explain the general law that sound propagates, whose simplest expression 
is a rule with the condition (sound (x) true» and the action (propagates 
(x) true). To explain such a rule is simple. PI creates a problem using an 
arbitrary object x: 

EXPLANA TION-PROBLEM: 

START: x is sound. 

EXPLANANDUM: x propagates. 

Thus explanation even of laws can be undertaken in PI by the various 
mechanisms of problem solving (see section 2.3.2 and appendix 2 for 
details). It is easy within the computational framework to block trivial 
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explanations, such as that x propagates just because it is sound, or prop­
agates because it propagates. 

But there is more to explanation than the discussion of problem solving 
so far would suggest. To adapt an example from Bromberger (1966), we 
could assign a student a problem of calculating the height of a flagpole 
given the length of its shadow, trigonometric formulas, and the law of the 
rectilinear propagation of "light. The student's calculation that the flagpole 
was n feet high would solve the problem, but it would not explain why the 
flagpole is n feet high. The calculation does not provide us with an under­
standing of why the flagpole has the height it does. 

Such understanding requires more contextual features, and it is easy to 
see how a system such as PI could provide these. We have much back­
ground information about flagpoles, in particular about the causes of their 
construction. Presumably, the flagpole concept would contain a rule that 
flagpoles are manufactured objects. Activating the concept of manufac­
tured objects would make available the rule that designers and factories 
produce such objects. Hence we would be led by PI's sub goaling process 
to look for designers and factories that produced the flagpole, and even 
farther back for an explanation of why the designers planned as they did. 
The rules about trigonometry and the behavior of light would not nor­
mally get activated at all. Setting up the problem with them as part of the 
starting conditions is a bad joke. 

Although it is unlikely that it would produce such a derivation, PI does 
not currently have the resources to reject a derivation of the height of 
the flagpole using its shadow as a nonexplanation. Its problem-solVing 
apparatus would, if it had the relevant knowledge and if the appropriate 
explanation based on human design were not found, arrive at and accept 
the shadow account. The problem is that PI currently lacks sufficient 
understanding of causality. As Brody ( 1972) argues, it is plausible to 
suppose that what distinguishes real explanations from the flagpole exam­
ples and other counterexamples to the deductive-nomological model is the 
reference to a causal or essential feature. Similarly, Hausman (1982) has 
argued that causal asymmetries are the key to seeing why the flagpole's 
height cannot be explained using the length of its shadow: our background 
knowledge tells us that the heights of flagpoles determine the lengths of 
shadows, not vice versa. PI needs to be able to acquire a kind of knowledge 
that it currently lacks, involving high level knowledge of what kinds of 
things cause what. Acquisition of such "causal schemas" will require an 
ability to distinguish between accidental generalizations based on mere 
cooccurrence of things and genuine causal connections. Such performance 
will require a much deeper understanding of causality than PI or any other 
AI program currently has, taking into account such factors as temporal 
priority and patterns of interconnectedness of kinds of events (Hausman, 
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1984). The advantage of a computational approach over a much more 
austere syntactic one is that it should be possible to enrich PI to be able to 
acquire and use such knowledge. 

Critics have used the flagpole example to argue that the deductive­
nomological model of explanation is too loose, but they have also accused 
the model of being too strict in always requiring laws. PI can get by with 
much looser kinds of explanations, since the rules it uses in its explanations 
need not be general laws: they need only express default expectations 
about what will happen. 

Obviously, the account sketched so far does not even come close to 
providing sufficient conditions for a good scientific explanation. Theology, 
astrology, and anything you like can be said to provide explanations in the 
loose sense of using rules and concepts to generate conclusions. People 
have conceptual systems for all sorts of mythologies and ideologies, and 
we want to distinguish the explanations provided by these from the expla­
nations rightly valued in science. However, this task concerns epistemo­
logical matters that go beyond the issue of the structure of theories and 
explanations. I do not think that we can in general distinguish on structural 
grounds between the systems and explanations of science and those of 
pseudoscience and nonscience. As we shall see in chapter 9, demarcation is 
a complicated matter of the historical context of a discipline, including the 
presence of competing theories and the record of the discipline over time. 
Theology and astrology differ from scientific systems with respect to 
validation, not structure. A full account of explanation would include a 
description of the epistemic conditions that a system of concepts and rules 
have to meet before we honor it as being fully explanatory. Candidates for 
such conditions include truth, confirmation, and being the best available 
theory. Chapter 5 shows how these conditions might be applicable to 
systems such as PI. In this paragraph, I have been using the honorific sense 
of II explanation"· in which we say that only a good (true, acceptable, 
confirmed) theory explains. The previous discussion was intended to cap­
ture the more general sense of II explanation" in which we can talk of a false 
theory explaining. 

I have gone into some detail about explanation to show how a computa­
tional account can contribute to philosophical understanding. The attempt 
to demonstrate the philosophical superiority of a computational account of 
theories continues in later chapters that consider the processes by which 
theories are discovered and justified. 

3.6. Summary 

A scientific theory can be construed as a computational system of concepts, 
rules, and problem solutions. This construal has several advantages over 

Copyrighted Material 



Theories and Explanations 49 

standard accounts of theories as axiom systems or set-theoretic structures. 
In particular, we are able to describe how a computational system directs 
the everyday practice of the scientists in problem solving, using schemas 
acquired from past problem solutions. In these terms, the complex func­
tions of Kuhn's paradigms can be understood. At a more philosophical 
level, we are also able to provide a cognitive account of theoretical expla­
nation as problem solving using explanatory schemas. 
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Chapter 4 

Discovery and the Emergence of Meaning 

4.1. Introduction 

Theories differ hom empirical generalizations in that they serve to explain 
such generalizations and do so by postulating nonobservable entities. Hence 
theories cannot be discovered directly by observation, since they have 
concepts that are not found in observation and they are not themselves 
generalizations of observations. We are thus faced with two severe prob­
lems: How can theories be discovered, and how can the concepts. they 
employ be meaningful? This chapter will propose computational answers 
to both these questions. 

Whereas researchers in artificial intelligence and cognitive psychology 
have mostly concentrated on learning from observations, philosophers of 
science have long been concerned with the problem of theoretical knowl­
edge. Originally, the logical positivists hoped to reduce theoretical knowl­
edge to epistemologically unproblemic observational knowledge, but the 
attempt ultimately failed (Hempel, 1965, chapter 4). More recently, there 
has been much discussion of whether there could be a "logic of discovery". 
Reichenbach (1938) proposed a sharp distinction between the context of 
discovery and the context of justification. He claimed that the philosophy of 
science should be concerned only with questions of confinnation and 
acceptance that belong in the context of justification, and that the topic of 
discovery should be relegated to psychology and sociology. Some philos­
ophers have resisted this restriction (Hanson, 1 958; Nickles, 1980a, b), but 
the relation between justification and discovery has remained unclear. 

A description of PI's simulation of both the discovery and the justifica­
tion of theories will show how discovery and justification blend together, 
requiring a rejection of Reichenbach's sharp distinction between a logic of 
justification and a psychology of discovery. As chapter 1 suggested and 
chapter 7 argues, there need be no sharp division between logic and 
psychology. The link between discovery and justification of theories comes 
through a form of reasoning that Peirce (1931-1958) called "abduction", 
(Note for nonphilosophers: "Peirce" is pronounced "purse".) Abduction is 
inference to a hypothesis that provides a possible explanation of some 
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puzzling phenomenon. We shall see how abduction can be both a compo­
nent in the discovery of hypotheses and a key ingredient in their justi6ca­
tion. Later sections in this chapter describe how new theoretical concepts 
can be formed by PI's mechanisms of conceptual combination. Finally, I 
shall give a general account of how meaning can emerge in a processing 
system such as PI. 

4.2. Abduction 

Most people with an interest in inference have heard of induction and 
deduction, but Peirce's abduction is not widely known, although a few 
writers in both philosophy and artificial intelligence have studied it. Yet 
abduction is a pervasive phenomenon, both in science and in everyday 
life. Let me start with a simple example. I was recently on a plane to 
Atlanta, and could not help noticing a group of six young men, obviously 
traveling together. Three were black, three were white, and they seemed to 
be vying with each other for who could dress most outrageously. One was 
wearing a gold lame jacket with black leather pants and white spats, while 
another had a Mohawk haircut, army boots, a gold earring in one ear, and 
a turquoise pair of miniature scissors stuck through the other. With no 
conscious deliberation, I found myself thinking: this must be a rock band. 
For that was the obvious explanation of the presence of an interracial 
group of outrageously dressed young men. Abdudively, I formed the 
hypothesis that they were a rock band and had some confidence in it 
because of what it explained. 

Or consider two events that were widely in the news in February of 
1986. When the space shuttle exploded, everyone wanted to know why, 
and people from NASA experts to TV weathermen began to generate 
hypotheses about what went wrong. Eventually, evidence mounted that 
implicated the rocket booster rings as the cause, but in the early stages of 
the investigation that was only one of many hypotheses that were enter­
tained and served to direct collection of evidence. Similarly, when a woman 
died in New York State as the result of Tylenol capsules containing cya­
nide, police and other concerned people quickly generated hypotheses to 
explain the presence of cyanide in the capsules. Initially, suspicion focused 
on her boyfriend, with the hypothesis that he had dodored the capsules; 
but when cyanide was found in other bottles of Tylenol in other loca­
tions new hypotheses about the possibility of a company employee with a 
grudge against the manufacturer were considered. 

Hypothesis formation is ubiquitous in everyday life, especially when we 
form hypotheses to explain the behavior of other people, postulating 
various motives or states of mind. When our friends are exhibiting unusual 
behavior, we attribute it to various causes, including their personality, their 
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moods, or events that have recently happened to them. Scientists also 
frequently form hypotheses to account for puzzling fads such as the 
motions of the planets or the extinction of the dinosaurs. 

As Peirce noticed and as psychologists such as Gregory (1970) and Rock 
(1983) have subsequently confirmed, abduction plays a role even with 
relatively simple visual phenomena. Many visual stimuli are impoverished 
or ambiguous, yet people are adept at imposing order on them. We readily 
form such hypotheses as that an obscurely seen face belongs to a friend of 
ours, because we can thereby explain what has been observed. 

4.2.1. Discovery or Justification? 
Whether abduction is a mechanism for discovery or for justification has 
been controversial, and Peirce himself changed his mind on the question 
(Thagard, 1977c, 198 1). Before the 1890s, he discussed a form of inference 
he called "hypothesis", characterized as follows: "Hypothesis is where we 
find some very curious circumstance which would be explained by the 
supposition that it was the case of a certain general rule, and thereupon 
adopt that supposition" (Peirce, 1931-1958, vol. 2, para. 624). Later, how­
ever, he replaced hypothesis in his classi6cation of kinds of inference with 
abduction, which only "furnishes the reasoner with the problematic theory 
which induction verifies" (ibid., para. 776). Editors of Peirce's works have 
clouded the transition in his thought by including discussions of hypothesis 
under the heading of abduction, obscuring his shift from the belief that 
inference to an explanatory hypothesis can be a kind of justification to the 
weaker view that it is only a form of discovery. 

One major reason for Peirce's transition was that he noticed the clear 
weakness of the method of hypothesis.' Often we can form a hypothesis 
that explains some puzzling fact, but that should not be accepted because 
of the possibility of other explanations. Merely having a theory that 
explains some facts is far from a guarantee of truth (d. Achinstein, 1971). 
Hence he decided that what he called induction, in which predictions are 
made and tested, was the only source of justification. In chapter 5, I shall 
argue that Peirce's abandonment of what he called the method of hypoth­
esis was unnecessary: what was needed was a richer account of how the­
ories can be justified by what they explain. 

The program PI has provided a means of investigating in some detail the 
interacting processes of discovery and justification of hypotheses, so I shall 
now explain how abduction works in PI. "Abduction" is becoming an 
increasingly popular term in artificial intelligence (PopIe, 1977; Reggia, 
Nau, and Wang, 1983; Charniak and McDermott, 1985), but its meaning is 
being stretched beyond what Peirce intended, to cover various kinds of 
hypothesis evaluation as well as hypothesis formation. PI is also capable 
of evaluating hypotheses (chapter 5) but here we shall concentrate on 

Copyrighted Material 



54 Chapter 4 

mechanisms for generating hypotheses in the first place. Four kinds of 
abduction have been implemented in PI: simple, existential, rule-forming, 
and analogical. Simple abduction produces hypotheses about individual 
objects, such as the rock musicians and the space shuttle. Existential abduc­
tion postulates the existence of previously unknown objects, such as new 
planets. Rule-forming abduction produces rules that explain other rules, 
and hence is important for generating theories that explain laws. Finally, 
analogical abduction uses past cases of hypothesis formation to generate 
hypotheses similar to existing ones. 

4.2.2. Simple Abduction in PI 
Previous chapters described how PI solves problems by a process of rule 
firing and spreading activation of concepts. During problem solving vari­
ous kinds of induction take place. (I am using "induction" in the broad sense 
of any kind of inference that expands knowledge in the face of uncertainty; 
abduction, then, counts as a kind of induction.) Crucially, PI does not make 
all the possible inductions that it might. As Holland et al. (1986, chapter 1) 
argue, any realistic learning system must be highly pragmatic, constraining 
its inferences to those that have a good chance of being useful to the 
system. Indeed, systems must even be pragmatic about the deductions that 
they make, since it is crucial to avoid the combinatorial explosion that 
unbridled deduction would produce. PI constrains deduction by only con­
sidering rules and matches that emanate from active concepts. Similarly, it 
constrains induction by only focusing on the sets of currently active rules, 
messages, and concepts. We saw in chapter 2 that PI does not attempt to 
make all possible generalizations, but only those that are triggered in the 
context of problem solving. 

Similarly, simple abduction is triggered by the current state of activation, 
taking into account what rules are active as well the active messages. Recall 
from the last chapter that some problems are explanation problems: their 
goals consist of finding an explanation for a set of messages. Abduction is 
appropriate when the system has some message to be explained and there 
is a currently active rule that would explain it if some additional supposi­
tion were made. Suppose you are wondering why a young man, Michael, is 
dressed outrageously, so that you set yourself the problem of explaining 

(dresses-outrageously (michael) true). 

An explanation can be found for this puzzling fact if you manage to 
activate the rule, If x is a rock musician, then x dresses outrageously. Notice 
that this rule does not have to be universally true; a default expectation will 
suffice to provide a rough explanation. We are not yet concerned with 
justifying the hypothesis that Michael is a rock star-that will require 
more machinery to be introduced in chapter 5. All that matters now is that 
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abduction enables you at least to form for the sake of further evaluation the 
hypothesis that Michael is a rock musician. PI handles examples such as 
these by searching through the set of currently active rules for potential 
explanations of a fact to be explained. Just as Peirce suggested, the form of 
inference is 

q is to be explained. 
If p then q. 

Therefore, hypothetically p. 

Putting in this way, however, makes it seem as if nothing new could ever 
be discovered, since we would have to already have thought of p to think 
that if p then q. However, if a general rule is used, some originality is 
possible. The inference about Michael runs 

(dresses-outrageously (michael) true .9) is to be explained. 
If (rock-musician (x) true) then (dresses-outrageously (x) true) is 
a currently active rule. 

(rock-musician (michael) projected-true). 

Obviously, the hypothesis that Michael is a rock musician was not pre­
viously fonned, but came to be only as the result of the abduction. More 
generally, the inference pattern is 

G(a) is to be explained, i.e., why a is G. 
If F(x) then G(x), i.e. all Fare G. 

Therefore, hypothetically, F(a), i.e., a is F. 

The hypothesis that a is F was not previously formed. 
PI's simulation of the discovery of the wave theory of sound uses this 

kind of abduction. We saw in chapter 2 how the attempt to explain an ar­
bitrary instance of sound propagation leads to activation of the concept of 
wave and hence makes available the rule that waves propagate. Then the 
following abduction is made: 

(propagates ($x) true) is to be explained. 
If (wave ($x) true) then (propagates ($x) true) is a currently active 
rule. 

(wave ($x) projected-true). 

Here I am including as part of the variable the dollar sign, "$", which 
indicates in PI that the variable is universal, referring to anything; PI also 
uses another kind of variable discussed in the next section. The truth value 
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"projected-true" indicates that the hypothesis is to be taken as highly 
tentative. But there is at least some initial plausibility to the hypothesis that 
the instance of sound is a wave, since that supposition would explain why 
it propagates. 

Simple abduction in PI encompasses cases more complex than the ones 
just described, for PI can deal with n-place relations like "loves" as well as 
I-place predicates, and will form hypotheses from any number of condi­
tions. If the rule has the form 

If A & B & C & D then E. 

where E corresponds to a fact to be explained, then all of A, B, C, and 0 
can be hypothesized. For example, if PI had active the rule that if x is a rock 
musician and on hard drugs, then x dresses outrageously, it  would hypoth­
esize both that Michael is a rock musician and on hard drugs. If any of A, 
B, C, and 0 are already known, there is  clearly no need to hypothesize 
them, and if one of them them contradicts what is known, the abduction 
of the rest of the group is blocked. If several hypotheses are abduced 
together, this fact is noted, because the number of such cohypotheses is 
important in evaluating hypotheses. Briefly, preferred hypotheses are those 
that explain many facts and do so without many cohypotheses. Description 
of how this works in PI and how it applies to important cases of scientific 
theory evaluation"is provided in chapter 5. 

The two crucial elements in the formation of a hypothesis are the 
abstract form of abductive inference, as shown by the above structure, and 
the role of spreading activation in making available the relevant rule. 
Abduction can be thought of as a kind of logical inference, but spreading 
activation has a more purely psychological flavor. But recall that spreading 
activation in PI is not an uncontrolled, random process like spreading 
activation in other psychological models, such as that of Anderson (1983). 
Rather, activation occurs as the result of rule-firing that has a logical 
component, since firing the rule if A then B, will lead to activation of the 
concept B. Once again a sharp logic/psychology distinction would obscure 
more than it reveals. 

4.2.3. Existential Abduction 
Most discussions of abduction have considered only simple abduction, but 
there are several additional ways in which explanatory hypotheses can be 
formed besides the one just described. An important class of inferences 
involves the postulation of the existence of some previously unobserved 
thing. For example, Pasteur's investigation of communication of diseases 
led him to postulate the existence of undetected infectious agents, later 
identified as viruses. Nineteenth-century astronomers observed that the 
orbit of Uranus diverged from what was expected from Newtonian 
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mechanics, and correctly hypothesized the existence of Neptune to explain 
the discrepancy. 

In PI, existential abduction operates similarly to simple abduction, using 
a search through active rules for possible explanations of given explananda. 
(As tutorial A reviews, in philosophy of science an explanandum is some­
thing to be explained, and the plural is explananda.) In its very simple 
version of the abduction of the existence of Neptune, PI is given the 
explanandum 

(perturbed (uranus) true). 

The attempt to explain it leads to activation of the rule 

If (planet ($x) true) & (planet ($y) true) & (near ($x, $y) true) 
then (perturbed ($x) true). 

This says that if one planet is near another, it will have a perturbed orbit. 
The rule naturally leads to the formation of two hypotheses: 

(planet ('oy) projected-true) 
(near (uranus, %y) projected-true). 

These say that there may be some planet near Uranus, where the "%" 
corresponds to the existential quantifier in predicate calculus, so that "%X" 
is read "there is an x". Of course, there was no guarantee that there really 
was a planet near Uranus: a similar abduction that was made about a planet 
between Mercury and the sun proved erroneous. But forming the hypoth­
esis is often invaluable for suggesting further investigations. 

More generally, existential abduction is performed when the conditions 
of rules include relational predicates that have arguments some of which 
are not bound using information in the explanandum. Formally, if the 
problem is to explain why object 0 has property F, i.e., to derive (F (0) 
true), then a rule of the form 

If (R ($x, $y) true) then (F ($y) true), 

which says that if x is in relation R to y, then the y is F, generates the 
hypothesis 

(R (% x, 0) projected-true), 

that is, that there is some x that has relation R to o. As in simple abduction, 
PI is capable of performing existential abduction with rules with any 
number of conditions and n-place predicates. 

Other historically important inferences can naturally be understood as 
cases of existential abduction. In the early history of chemistry, seven­
teenth-century researchers postulated the existence of phlogiston to explain 
combustion. Experiments suggested that objects that were burned lost 
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weight, so it was supposed that they contained a substance, phlogiston, 
that was given up during combustion. The existential abduction to the 
existence of phlogiston was something like 

Why x lost weight is to be explained. 
If x contains a substance y that is given off, then x loses weight. 

Therefore, there is some substance y contained in x that was 
given off from it. 

Later more careful experiments using sealed jars determined that in fad 
objects gain weight during combustion, explanation of which suggests the 
existential abduction that there is some substance (oxygen) that combines 
with objects during burning. (For more on this case, see Thagard, 1987.) 

Existential abduction is also important in metaphysics. Given the task of 
explaining why the world is complex, and the rule that says that things that 
have designers that made them are often complex, PI will hypothesize that 
there is something that designed the world. Chapter 5 will have much more 
to say about evaluation of hypotheses such as these. 

4.2.4. Abduction to Rules 
So far, I have only been discussing abduction to messages, corresponding 
to propositions such as that Michael is a rock musician. How then do we 
get abduction to theories, which are themselves rules? The simple schema 
above to infer F(x) from if F(x) then G(x) and G(x) does not indicate how 
we might infer a general rule. Even more problematically, theories some­
times consist of sets of rules, and it is unclear how we can infer a whole set 
of rules at once by abduction. I shall now describe two ways of using 
abduction to get rules. The first is problematic and does not seem to play 
any role in theory formation. In it, we postulate the rule that all A are B to 
explain why a particular A is B. The second is a combination of abduction 
and generalization, and we shall see the role that it plays in PI's simulation 
of the discovery of the wave theory of sound. 

Here is the unsatisfactory kind. Consider an apparently straightforward 
kind of abduction to rules from facts. Suppose you want to explain why 
Michael dresses outrageously and you already know that he is a rock 
musician. You might naturally fonn the hypothesis that all rock musicians 
dress outrageously, because you could then explain why Michael does. The 
form of inference is then 

Michael dresses outrageously. 
Michael is a rock musician. 

All rock musicians dress outrageously. 
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The inference sounds reasonable in this particular case, but adding such a 
form of inference to PI produced too many weak hypotheses. I introduced 
a triggering condition that. given a message to be explained and another 
active message about the same individual, generated an explanatory rule 
such as the one about rock musicians. The problem arose in larger simula­
tions that too many rules were being generated, producing much clutter. 
For example, if you know ten additional facts about Michael, say, that he 
reads mysteries, plays football, watches "Miami Vice" on television, and 
so on, each will generate a new hypothetical rule. To weed out the over­
abundance of hypotheses, it is necessary to do just what PI does for 
generalization: consider counterexamples, number of instances, and vari­
ability. But then abduction to rules from facts is redundant, since the rule 
that it forms can be arrived at more adequately by generalization, to which 
explanation is irrelevant. Contrary to the claims of Harman (1973, 1986), 
not all induction is inference to an explanation. One can generalize that all 
copper conducts electricity by considering examples of copper that con­
duct electricity along with background knowledge about variability, with­
out worrying directly about explanation. Hence, the general mechanism of 
abduction to rules from messages has been excised from PI, with no ap­
parent loss since rules about observables can be formed by generalization. 

However, abduction to messages can still play an important role in 
producing new rules. Recall from the last chapter how PI sets out to find 
explanations of rules of the form If x is F then x is G. What PI does is to 
start with some arbitrary object x that is F and try to explain why x is G. 
This gets things down to the level of explaining messages, and abduction 
to other messages can produce other hypotheses about x. Abduction to 
rules works like this: if PI forms the abduction that the F that is x is also H, 
because that would explain why is G, it can naturally generalize that all F 
are H. This is much more restricted than the general abduction to rules that 
I rejected above, since it is triggered only when there has been explanation 
of a message by another that contains a universal variable representing an 
arbitrary instance. 

Let me be more concrete by returning to how PI simulates the discovery 
of the wave theory of sound. As we saw, PI's task of explaining why sound 
propagates and reflects gets translated into the problem of explaining why 
an arbitrary x that is sound also has the properties of propagating and 
reflecting. Activation spreads from the various concepts activated as part 
of the starting conditions and goals. Once the concept of wave is active, 
abduction furnishes a possible explanation of why x propagates and reflects, 
using the mechanism of simple abduction described above. Now we have 
the messages that x is a wave and that x is sound, with the former 
produced by simple abduction, so abductive rule formation is triggered and 
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produces: All sounds are waves. See appendix 3 for a full trace of this 
process. 

Thus PI comes up with the theoretical hypothesis that sound is a wave 
by abduction and abductive rule formation. Later in this chapter I describe 
a mechanism for forming the theoretical concept of a sound wave, and 
chapter 5 will discuss how PI evaluates the wave theory of sound in 
comparison with alternative theories that can also be discovered in the way 
just described. PI also forms a particle theory of sound by abduction from 
the rules that particles reflect and propagate. 

The discovery of the wave theory of sound depends on noticing an 

analogy between sound and waves, but the analogy is unusually tight. 
Abduction produces the hypothesis that sound is a wave, not just that 
sounds are similar to waves. Looser analogies are also important in the 
formation of hypotheses. 

4.2.5. Analogical Abduction 
The combination of abduction and abductive rule formation just described 
suffices to fonn simple, unitary explanatory rules such as that all sounds are 
waves. But hypothesis formation seems sometimes to be considerably 
more complex. Sherlock Holmes trying to solve a murder may form a 
whole complex of hypotheses, not only about who the murderer is but also 
about the method and the motives. PI models a simple form of such 
inference, arguing that Moriarty is the criminal because that supposi­
tion, along with various rules about the crime, explains the evidence. But 
Holmes may simultaneously form the hypotheses that Moriarty was the 
criminal and that he had a particular motive. Formation of such complex 
hypotheses most plausibly derives from analogy: Holmes knows that in 
similar cases in the past criminals have performed acts with certain kinds of 
motives. 

Varieties of analogical abduction are clearly important in science. Han­
son (1961) described how scientists frequently go in search of particular 
hypotheses knowing that there are certain kinds of hypotheses that are 
likely to be useful since they have worked in related cases. Once a theory 
has established itself, scientists frequently want to use similar kinds of 
explanations. For example, the great success of Newtonian mechanics made 
most scientists of the eighteenth and nineteenth centuries strive to give 
mechanical explanations of phenomena. In the cases of abduction described 
so far, hypotheses have been directly or indirectly generated using the 
conditions of rules whose actions are relevant to what is to be explained, as 
when the rule that waves propagate was used to explain why something 
propagates. Some hypotheses, however, are formed by much greater leaps, 
using past knowledge. If you are trying to explain a fact that has some 
similarity to something already explained, you may naturally consider a 
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similar type of explanation. The search for explanations may therefore 
benefit from analogical reasoning. We shall now briefly review how ana­
logical problem solving operates in PI and then describe how it has been 
adapted to yield new hypotheses by analogical abduction. 

Recall the discussion of analogical problem solving in the last chapter, 
which described how PI can solve a new problem by applying actions that 
worked in a former problem solution. Similarly, past problem solutions can 
suggest complexes of hypotheses that will provide an explanation in a new 
case. Analogical abduction is like analogical problem solving except that 
hypotheses are generated instead of subgoals. In PI, if the problem to be 
solved consists of finding an explanation, the mapping found between 
analogous problem solutions generates hypotheses for the new explana­
tion problem analogous to those that proved to be explanatorily successful 
in the earlier problem. These new hypotheses may then lead to a solution 
to the new problem. 

Suppose you are a detective trying to solve a crime involving the 
murder of a rich woman. You may be reminded of another case in which a 
rich woman was murdered, and in which the hypothesis that she was 
murdered by her philandering husband turned out to be true. Because of 
the similarity of the cases, you may form the hypothesis in the new case 
that a philandering husband was responsible. Such a hypothesis will be 
flimsy in the absence of further evidence, but may be invaluable in suggest­
ing what evidence to gather. The form of reasoning here is, Hypothesis H 
was the right explanation in case C1 that is like the current case C2 in many 
respects, so an analog of H might work in C2. 

The reasoning that led Darwin to discover the theory of evolution by 
natural selection appears to have been based on analogical abduction. He 
often cited the analogy with artificial selection by breeding as important 
for development of his ideas about natural selection (Darwin, 1969, 1958). 
We can imagine the analogical abduction working roughly as follows. We 
know that Darwin was familiar with many cases of breeding, in which, for 
example, new kinds of pigeons and dogs were produced. If asked how a 
particular breed such as the collie came about, he could use rules derived 
from previous known cases to suggest that there must have been some 
breeder or breeders who selected the desired traits until the breed of collie 
resulted. Darwin made the great leap of seeing that species are similar to 
breeds, going against the generally accepted view that species were created 
individually by God. Just as collies arose as the result of breeding, we can 
generate the analogous hypothesis that the species of dogs also arose 
through a kind of selection by some unknown agent. This analogical 
hypothesis needs further development, which Darwin got by another anal­
ogy, this time with Malthus' views on human population growth, which 
suggested how nature could select. 
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PI's mechanism of analogical abduction has been used to simulate the 
first part of this reasoning. PI is given a rule summarizing existing knowl­
edge that breeders working with existing breeds that undergo some varia­
tion have managed to produce new breeds: 

If z is a breed, x is a breeder, y is a breed, y varies, x selects from y, 
and y becomes z, 

then z developed. 

When asked to solve problem 1 by explaining the development of the 
breed collie, PI performs the existential abduction that there was a breeder 
that selected from another breed to produce collies, producing hypotheses 
with existential variables: 

(breeder (%x) true) (breed (%y) true) (varies ('roy) true) 
(selects-from (%x 'roy) true) (becomes ('roy collie) true) 

Then PI is set problem 2, to explain the existence of a species, dog. It does 
this by a simple abduction using the rule, If x developed, then x exists. 
Hence PI hypothesizes that the species dog developed. Problem 3 consists 
of explaining why it developed, but the rule about breeding cannot be used 
to generate an existential abduction of the sort that explained the develop­
ment of collies, since the knowledge that dogs are species and not breeds 
conflicts with what would be hypothesized from the rule. However, the 
attempt to solve the problem of the development of dogs leads to activa­
tion of the analogous problem of the development of collies.  As in ana­
logical problem solving, PI uses the trace of spreading activation to deter­
mine what is analogous in the two explanation situations. The key step 
accomplished in the mapping is that dog and collie are analogous. PI 
accordingly infers that dogs came about because something selected from 
a predecessor of dogs, producing the hypotheses 

(breeder (%u) true) (breed (Ofoz) true) (varies (Ofoz) true) 
(selects-from (% u Ofoz) true) (becomes ('Yoz dog) true) 

Whereas in ordinary analogical problem solving analogy is used to con­
struct new subgoals for the current problem based on what worked in the 
past, analogy in explanation problems is used to construct new hypotheses 
based on hypotheses that worked in similar problems. In both cases, poten­
tially useful analogs are retrieved by spreading activation and mapped 
together by the trace of activation between analogous concepts. 

Thus analogical abduction can be important for generating hypotheses 
that involve more substantial leaps than simple, existential, or rule-forming 
abduction. The laUer depend on having relevant rules already formed, 
whereas analogy can bring into association ideas that produce hypotheses 
that are much more daring. Such hypotheses will be even more speculative 
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and in need of evaluation than ones that come by simpler methods, but 
would never have arisen if analogy were not available to provide for a 
higher degree of creativity. 

The recent work at Yale on the Swale project can be understood as an 
investigation of analogical abduction (Kass, 1986; Leake and Owens, 1986). 
Swale was a horse who died just a week after winning a major race, and 
SWALE is a program that finds explanations for his death using stored 
structures called II explanation patterns". One such pattern concerns the 
death of Jim Fixx, who died while jogging. The program attempts to 
explain an anomalous event by retrieving a relevant pattern from memory, 
but if there is not an exact fit it is capable of "tweaking" the pattern, that 
is, modifying it to apply more exactly to the current situation. The forma­
tion of an explanation to account for Swale's death involves retrieval of 
an eAplanation of something similar, just as when PI forms hypotheses by 
analogy. From preliminary description, SW ALE appears sophisticated in its 
ability to use causal knowledge stored in explanation patterns to suggest 
appropriate "tweaks", but limited in its capacity to accumulate such causal 
knowledge and explanatory patterns in the first place. 

PI and SW ALE represent two approaches to the understanding of ana­
logical hypothesis formation, and undoubtedly others are possible (Falken­
hainer, 1987) .  A major goal of computational philosophy of science must 
be the development of AI models sophisticated enough to replicate, in 
much more detail than the simple examples I gave above, the thought 
processes underlying major discoveries in science. (See also Langley et aI., 
1987, which, however, is concerned primarily with generalization rather 
than abduction.) I now tum to the question of whether models such 
as PI and those that I hope will be developed will constitute a "logic" of 
discovery. 

4.2.6. Logic of Discovery? 
Hanson ( 1958) advanced the claim that abduction constituted a logic of 
discovery, but later retracted it in favor of a kind of reasoning that suggests 
only kinds of hypotheses (1961). Salmon (1966) argued that there might be 
a logical component to judging the plausibility of a hypothesis, but not to 
the actual thinking of it. In place of Reichenbach's proposed distinction 
between the psychology of discovery and the logic of justification, this 
suggests the triadic distinction 

1. initially thinking of a hypothesis, 
2. judging a hypothesis to be plausible, 
3. judging a hypothesis to be acceptable. 

If PI's operation is at all a good account of scientific thinking, the proposed 
distinction is seriously deficient, for each step blurs into the next. The 
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distinction between initially thinking of a hypothesis and judging its plau­
sibility will not stand up, since, when PI forms a hypothesis, it does so 
because it would furnish a possible explanation using an established rule. 
Hence any hypothesis formed has some initial plausibility. Initial thinking 
depends on spreading activation juxtaposing a fact to be explained with a 
potentially explanatory rule, but the actual formation of the hypothesis is 
by an abductive inference that confers at least initial plausibility to it. The 
hypothesis would not have been formed if it were not a possible explana­
tion: the hypothesis plus the rule used in forming it together can explain 
some puzzling fact. Additional plausibility is achieved by noticing other 
evidence that the hypothesis explained, but such noticing is abductive in 
structure too. Thus formation of hypotheses is far from random, a point 
pursued further in chapter 6's critique of evolutionary epistemology, and 
initial thinking blurs into judgment of plausibility. 

Critics of the idea of a logic of discovery maintain that there can be no 
mechanical methods for generating successful discoveries. They have in 
mind methods such as generating truth tables in propositional logic, where 
you can be sure that in a finite amount of time it will be possible to 
determine whether an arbitary proposition p is a tautology or not. But we 
must be wary of what "mechanical" means in such contexts. The problem 
of deciding whether propositions are tautologies is NP-complete: it is one 
of a class of problems that appear to be intractable in that they require 
exponentially increasing time as the size of the problem, in this case the 
number of atomic sentences in p, increases (Garey and Johnson, 1979). 
Thus there probably is not really any general practical mechanical method 
of determining whether propositions are tautologies. 

PI's discovery techniques are mechanical in a weaker sense-they are 
implemented in a running computer program. Obviously, directed spread­
ing activation and abduction are not guaranteed to find a potentiaHy 
explanatory hypothesis. In PI, as in people, activation may spread to areas 
of memory that are irrelevant, while possibly explanatory rules remain 
dormant. Nevertheless, PI's spreading activation and abdudion are tech­
niques for making the finding of explanatory hypotheses more likely than 
chance. We have to agree with the critics of the idea of a logic of discovery 
that there is no algorithm for making discoveries that guarantees solutions 
to explanation problems. But we can maintain nevertheless that the process 
of discovery is algorithmic, employing many algorithms, such as those 
implemented in PI, which foster but do not guarantee the generation of 
solutions (see tutorial C for clarification of the nature of algorithms). 

Just as initial thinking blends into plausibility assessment, so are both of 
these continuous with justification. We shall see in the next chapter how 
repeated abduction of a hypothesis that explains a whole set of facts can 
contribute to its justification. Alternative hypotheses may proliferate, but 
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PI does not aHempt to weed out competing hypotheses immediately, since 
its simulated parallelism enables it to generate and entertain competing 
hypotheses at the same time. To go back to the example of the outra­
geously dressed man, if the rule that schizophrenics dress outrageously is 
active, PI will hypothesize that Micheal is schizophrenic, leading to com­
parative evaluation of this hypothesis and the rock-musician hypothesis 
using techniques described in chapter 5. 

4.3. Theoretical Concept Formation 

Peirce thought that abduction was a source of new ideas, but this is only 
true of ideas in the loose sense of hypotheses, not in the sense of concepts. 
We saw how the new hypotheses that Michael is a rock musician and that 
the arbitary instance of sound is a wave can be formed by abduction, but 
no new concepts were added in these inferences. PI already had to have 
concepts such as wave and rock musician. 

The problem of how new concepts can arise is particularly great for 
theoretical concepts such as sound wave or electron. Much work in 
machine learning has concerned how concepts can be formed from descrip­
tions of observations. But where do concepts that purport to refer to 
nonobservable entities come from? Positivist philosophers have wanted to 
deny that tenns such as II electron" can be meaningful unless they are 
somehow defined via observations; vestiges of this are still found in many 
psychologists' talk of the need to II operationalize" ideas. In a similar vein, 
antirealist philosophers deny that II electron" is intended to refer to any­
thing at all, but is only a useful device for making predictions. Chapter 8 
discusses scientific realism. Here I want only to consider how a computa­
tional system could construct theoretical concepts. 

PI has a crude mechanism for bottom-up concept formation that is 
described in section 4.4. To produce a new theoretical concept, however, 
we must combine existing concepts in ways that produce concepts whose 
instances are not directly observable. A strict notion of concepts, defining 
them in terms of necessary and sufficient observational conditions, would 
not permit sufficient flexibility to do this. For if there are strict observa­
tional conditions for the application of concepts A and B, there must also 
be observational conditions of a combined comcept A-B, which therefore is 
not a theoretical concept. 

PI's mechanism of conceptual combination is much more flexible. Con­
ceptual combination is triggered on the same occasions as generalization, 
when two active concepts have instances in common. Most possible con­
ceptual combinations, however, are unproblematic and uninteresting. If you 
expect bananas to be yellow, there is nothing notable about the possible 
combination yellow-banana. PI only forms a permanent new combined 
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concept when the original concepts produce differing expectations, as 
determined by the rules attached to them. For example, "striped apple" is 
a useful combination, since you expect apples to be mostly red or green 
rather than striped. Similarly, "feminist bank teller" is an interesting combi­
nation, since feminists are typically expected to have more professional 
occupations and be more politically active than bank tellers (for a discus­
sion of the psychological issues behind these examples, see Holland et aI., 
1986, chapters 3, 4.) 

When two concepts with common instantiations and conflicting expec­
tations are noticed, PI produces a new combined concept with rules that 
reconcile the conflict in the direction of one of the donor concepts. Here is 
how it works in PI's simulation of the discovery of the wave theory of 
sound. The discussion of abduction described how PI constructs the mes­
sage (wave ($x) projected-true) to explain why (sound ($x) true). The 
simultaneous activation of these two messages leads to the construction of 
the concept of a sound wave. As Vitruvius' (1960, p. 138) discussion show, 
this combination requires the reconciliation of conflicting expectations. 
Water waves, the main source of the concept of a wave at the time, flow 
out in a single plane, along the surface of the water. Vitruvius contrasted 
this with the behavior of sound, which spreads spherically in many planes, 
as is obvious because people in the various rows of a theater can all hear 
the speakers. Sound waves have to carry over the known properties of 
sounds rather than the default properties of waves, so the newly con­
structed concept of a sound wave contains a rule that says that sound 
waves spread spherically. The theoretical concept of a sound wave, there­
fore, looks something like this: 

Name: 
Data-type: 
Superordinates: 
Subordinates: 
Instances: 

Rules: RI 

R2 

R3 

sound-wave 
concept 
sound, wave 

x 

Condition: 
Action: 

Condition: 
Action: 

Condition: 
Action: 

x is a sound-wave 
x spreads-spherically 

x is a sound-wave 
x is sound 

x is a sound-wave 
x IS a wave 

Here R I required the complex process of reconciling conflicting expecta­
tions to establish that sound waves spread spherically like sounds instead 
of in a single plane like waves. (Reconciliation in this case depends on the 
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rule that sound spreads spherically being stronger than the rule that waves 
spread in a single plane.) It is unnecessary to carry over to the new concept 
of sound wave the various other rules about sounds and waves, since the 
automatically formed rules R2 and R3 will make possible the relevant 
inferences about sounds and waves. 

Thus a theoretical concept can arise by putting together combinations 
of nontheoretical concepts. More complex kinds of combinations would 
account for theoretical concepts that have played an important role in 
science, such as force, electron, and black hole. The Newtonian idea of 
gravitational force would appear to be derived from the ordinary notion of 
a force familiar from our actions, but involves a nonvisible attraction. The 
combination might therefore be something like: force = nonvisible attrac­
tion from a distance. For the electron, the combination is something like: 
electron = tiny, nonvisible particle with negative charge. The concept of a 
black hole might be something like: object with such an intense gravita­
tional field that no light can escape from it. The last combination, using the 
idea of gravity, shows how theoretical notions, once formed, can enter into 
further combinations. A similar example in cognitive psychology is the 
idea of an unconscious mental process, which combines the observable 
notion of a process with a theoretical one about the mind. 

New theoretical concepts formed by conceptual combination can be 
powerful tools for ongoing scientific investigation. I argued in chapter 2 
that PI's concepts are useful data structures because of their roles in orga­
nizing stored information and directing spreading activation to rules and 
problem solutions. The same applies to theoretical concepts in the phi­
losophy of science: such concepts as "gene", "field", "electron", and "uncon­
scious mental process" have aided scientists to explore difficult domains. In 
AI tenninology, adding new representations such as sound-wave changes 
a problem space and can lead to new ways of solving problems. 

By virtue of conceptual combination and the abductive mechanisms 
described earlier, PI is able to simulate acquisition of simple qualitative 
theories. Acquiring a theory such as the wave theory of sound consists 
of abdudively forming explanatory rules and fonning new theoretical 
concepts by combination. As chapter 3 insisted, however, acquiring a 
theory also encompasses learning applications, encoded in schemas for 
analogical problem solving. PI thus illustrates the acquisition of a theory 
conceived as a complex of rules, concepts, and problem solutions. Taking a 
computational approach to the philosophy of science has enabled a much 
more detailed description of theoretical structures and the processes of 
theory formation than would otherwise be possible. I shall now argue 
that it also makes possible a richer account of the meaing of theoretical 
concepts. 
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4.4. The Emergence of Meaning 

How do words, ideas, sentences, and other representations become mean­
ingful? Since Plato, this has been a central philosophical question, and it  has 
become equally important for the cognitive sciences. The question is par­
ticularly acute for artificial intelligence: accomplishment of AI's ultimate 
goal of producing an intelligent computer presupposes that the symbols 
used in a computer can be as meaningful as those used by humans in their 
thinking. Searle (1980) argues unconvincingly that this goal is unaHainable. 
Here I want to address a narrower question. In the philosophy of science, 
the central question about meaning has concerned theoretical terms: how 
can terms like II electron" that are so far removed from experience be 
meaningful? 

From Hume to Carnap, positivist philosophers saw meaning as emerging 
from experience. The problem with their proposals, however, was that they 
allowed only a limited set of mechanisms by which emergence could take 
place. Hume (1888) contended that meaningful ideas could arise only 
through direct sense experience or simple definitions; Carnap (1928) tried 
to construct empirical definitions of scientific terms, but the project ulti­
mately failed and was abandoned (Hempel, 1965). There is more to mean­
ing than verification, because there is more to conceptual development 
than abstraction and definition. 

As we have seen, AI provides a much richer set of techniques for 
investigating the development of knowledge than were available to the 
positivists. Different kinds of data structures besides sentences are avail­
able, and far more elaborate processes of inference can be modeled compu­
tationally than the positivists could employ. I shall propose that the mean­
ing of a symbol can be understood in terms of the computational me­
chanisms that led to its construdion and guide its use. 

There are many disputes in the philosophy of language about the appro­
priate theory of meaning, and I shall not attempt to resolve them here. On 
one influential view, an account of the meaning of sentences can be given 
by a Tarskian account of the truth conditions of those sentences (Davidson, 
1967; see tutorial B for a sketch of a Tarskian truth definition). But the 
Tarskian approach is no help at all with the current issue, which concerns 
the meaning of particular symbols corresponding to concepts. In a T arskian 
truth definition, a predicate such as blue is associated with a set of objects, 
but there is a lot more to the meaning of that predicate than the set of 
blue objects. The conceptual role semantics defended by Harman ( 1987) pro­
vides a richer account (see also Block, 1986, and Johnson-Laird, 1983). 
On this view, the meanings of symbols are determined by their func­
tional role in thinking, including perception and reasoning. The functional 
relations that determine a symbol's meaning concern both its relation to 
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other symbols and its connection to the external world by perception and 
adion. 

Here is how meaning would emerge in PI if it were equipped by some 
robotic interface to detect simple features in the world. (PI currently has a 
simple simulated world that feeds observations into the system depending 
on location in a grid , but this falls far short of a real interface.) The 
co occurrence of features triggers generalization, forming rules about how 
those features are related to each other. Detection of counterexamples to 
existing rules leads to the formation of more complex rules by specializa­
tion. Simultaneously activation of rules with the same complex of features 
in their conditions leads to the formation of new concepts more elaborate 
than the innate feature detectors represented by a kind of bottom-up 
concept formation. The simple mechanism now used by PI for this purpose 
looks for currently active rules with the same conditions and different 
adions; such pairs of rules indicate that some cluster of properties has 
general predictive value. For example, a new concept will be formed &om 
the following two rules: 

If x is a long-necked, spotted, four-legged thing, then x runs fast. 
If x is a long-necked, spotted, four-legged thing, then x eats leaves. 

The simultaneous activation of these rules shows that the complex of prop­
erties <long-necked, spotted, four-legged) is likely to be useful so PI forms 
the appropriate new conjunctive concept long-necked-spotted-four­
legged analogous to our concept of a giraffe. 

Concepts much farther removed from innate detectors can then be 
formed by combination of old concepts. As new concepts are formed, new 
generalizations and abductions employing those concepts become possible. 
The results are concepts and rules that are not related to the world in any 
direct way, but inherit meaning through the historical process of induction 
of new structures. This process is much more complex than positivists 
allowed, since it includes steps such as abduction and conceptual combina­
tion that permit daring leaps beyond what is observed, leading to theoret­
ical concepts such as sound-wave. How are such concepts meaningful? 

In the conceptual role semantics of Harman, the meaning of a symbol 
consists of its functional role, which in PI is determined by the rules, 
concepts, and messages in which it is used. In PI, the functional role of the 
symbol long-necked-spotted-four-Iegged is established by considering 
all the rules that have that predicate in their conditions or actions, as well 
as the other concepts that are related to it by subordinate or superordinate 
relations. These rules and relations need not prOVide a definition, but only 
expectations about what prototypical giraffes are like. Nor do they provide 
a guaranteed way of verifying perceptually that something is a giraffe, 
since some of the rules may well use predicates built up in ways that make 
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them far removed from experience. But the rules are sufficient to give the 
term long-necked_spotted-four-Iegged a functional role that was not 
built in by an external programmer, having been developed internally by 
the program's own inductive mechanisms. In PI, then, the meaning of a 
term resides in its functional role, which is determined by the rules and 
concepts in which the term occurs. Meaning is not fixed by definitions, 
since there rarely are any. Rather, the role of a concept depends on what 
rules have been formulated using it and what other concepts it is related to 
by rules and subordinate/superordinate relations. 

One advantage of a computational approach is that the notion of con­
ceptual role can be understood much more precisely than by just saying 
that the role of a word is determined by the sentences in which it is used. 
In PI, the computational role of a concept such as giraffe is specified in 
terms of the processes that operate with it, which currently include 

1.  spreading activation to subordinate and superordinate concepts, 
2. activating messages and rules that lead to the firing of rules and the 
activation thereby of additional concepts, 
3. activation of past problem solutions analogous to the current one, 
4. triggering of inductive inferences that can lead to new concepts, 
rules, or messages. 

It should now be easy to see how theoretical concepts can have func­
tional roles just as easily as concepts that are more directly tied to observa­
tion. When PI forms the concept sound-wave, it creates it as a structure 
already tied to other structures by virtue of the conceptual relations that 
sound-waves are a kind of sound and a kind of wave, as well as by rules 
such as that sound waves spread spherically. The concept is thus immedi­
ately ready to function in the inferences of the system, both in problem 
solving and in the triggering of new inductions. 

Let me stress again how little this functioning has to do with definitions 
rather than inductively established connections. Richard Feynman ( 1985, 
p. 191) describes teaching physics in Brazil, where the students had all been 
trained to memorize definitions and formulas. He describes asking a ques­
tion that the students could answer immediately, but then being surprised 
when they failed to answer the same question in a slightly different, more 
applied form. They had acquired definitions of concepts, but not enough 
knowledge to develop full conceptual roles for problem solving. In chapter 
3, we saw that acquiring a scientific theory is a matter not only of learning 
rules, but also of how to apply those rules to various kinds of problems. 
Similarly, acquiring a concept in science or everyday life requires connect­
ing it up in various inductive, hierarchical, nondefinitional ways with other 
concepts. That is how meaning emerges. 
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To conclude my discussion of discovery, I want to consider the role that 
innateness might play in abduction and concept formation. Chomsky's 
(1972) approval of Peirce's ideas about abduction derives in part from some 
similar views they have about innateness. Chomsky argued that our abduc­
tions concerning rules of grammar were heavily guided by innate knowl­
edge concerning language universals. More generally, Peirce maintained 
that abduction to scientiBc hypotheses would be impossible if nature 
had not endowed us with some special faculty for making good guesses. 
Undoubtedly each individual starts out with at least some innate concepts 
produced by evolution, for example, about spatial relations. Perhaps there 
are innate grammatical rules too. The extent of this innate repertoire is an 
empirical question. 

But it may also be that the innate equipment we have for everyday 
problem solving and hypothesis formation is all that we need for language 
and science too. Perhaps something like PI's mechanisms for directing 
spreading activation and triggering inductions suffice to constrain learning. 
That there are preferences for certain kinds of hypotheses based on innate 
knowledge has some plausibility for basic things like moving around in our 
environment and maybe even for language. But it is not at all dear that we 
have any special faculty for guessing right when it comes, say, to theo­
retical physics. In science, we have bootstrapped ourselves sufficiently far 
enough away from the categories that evolution provided us that abduc­
tion and our accumulated knowledge are all we have to work with. For­
tunately, constraining abduction within problem solving may be powerful 
enough without innate preferences for certain kinds of hypotheses. Peirce 
saw the need for constraints on hypothesis formation, but the computa­
tional mechanism of triggering abduction by the current state of activation 
during problem solving may be all that is needed. Indeed, an important part 
of the development of theoretical knowledge in science may be the trans­
cendence of inadequate perceptual categories of space and time in favor of 
more powerful, nonintuitive, non-Euclidean ones. In current subatomic 
physics, many theorists are investigating the properties of spaces with ten 
or more dimensions, and it hard to see how their speculations might be at 
all constrained by biologically evolved preferences for certain kinds of 
hypotheses. Thus even if Chomsky is right in holding that we have innate 
preferences for certain kinds of grammars, there is no current reason to 
adopt Peirce's view that abduction to scientific hypotheses is innately 
constrained. 

Only further empirical investigation will determine the extent to which 
we must postulate innate preferences for certain kinds of hypotheses. At 
least, however, we can be confident in not accepting the strong version of 
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innatism proposed by Fodor ( 1975, p. 82). He argues that learning a 
concept is learning its truth definition: speakers understand a predicate "P" 
if and only if they have learned a definition that specifies the conditions 
under which "x is p" is true. It follows that the language of thought must 
be at least as rich as any natural language, or else it would not be possible 
to use it to learn the truth definition. The discussion of meaning in the last 
sections show that both steps in this argument are weak. First, there is no 
reason to associate understanding of a concept with its truth definition, 
since meaning accrues from conceptual roles arising from the place of a 
concept in various rules and concepts, not just definitions. And second, 
there are various inductive mechanisms in a system like PI for building up 
more and more complicated predicates without having to have them pre­
viously expressed. Fodor assumes that the language of thought is innately 
fixed, but we have seen that learning mechanisms that generate new rules 
and concepts can allow the language of thought to enhance itself. 

4.6. Limitations of PI 

I have freely used PI to show the possibility of a computational under­
standing of the discovery of hypotheses and concepts, but it is important 
to note that PI falls well short of providing a full account. PI has no means 
of interacting with the real world, so any inferences it makes depend on 
preselected symbolic information provided to it by the programmer. Its 
mechanisms for abduction are oversimplified in several respects. First, what 
gets explained by abductive inference may well be more mathematically 
complicated than the simple qualitative messages of PI. Second, abduction 
in PI does not sufficiently use background knowledge to rule out implau­
sible hypotheses. I know, for example, that boomerangs fly out and come 
back, but I am not tempted to form a boomerang theory of sound, since 
knowledge about the kinds of things that boomerangs are and how they 
are used prevents me from identifying sounds with them. 

Conceptual combination in PI is also limited by not taking background 
knowledge sufficiently into account. It  forms the concept of a sound wave 
too mechanically, looking just at the rules for sound and waves, never 
asking the more theoretical question: How could a sound be a wave1 PI's 
conceptual combination mechanism is also limited to dealing with inter­
secting concepts, where concepts A and B are such that any A-B is also A 
and B. But there are more complicated cases of conceptual combination: an 
electron microscope is not something that is both an electron and a micro­
scope. More complicated mechanisms will be required for seeing how 
concepts such as electron and microscope can fit together. 

Development of these additional mechanisms will worsen an already 
serious problem: Why suppose that PI is an accurate model of human 
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thinking? There is at least loose experimental support for PI's mechanisms 
of spreading activation and generalization, but relatively little work has 
been done on psychological processes of abduction and conceptual combi­
nation. Moreover, even though it is consistent with the meagre historical 
record, PI's simulation of the wave theory of sound cannot be said to 
capture how the wave theory was discovered, only how it might have 
been. It would be desirable to run PI on historical cases where we 
have much more information about what the process of discovery really 
involved. 

So there is lots to be done, not only in computational philosophy of 
science but also in cognitive psychology and the history of science, to 
further our understanding of the discovery of hypotheses and concepts. 
But PI provides a start in showing how processes such as abduction and 
conceptual combination can aid in theory formation. 

4. 7. Summary 

A program such as PI can provide insight into how scientific theories can 
be discovered. Abduction-formation of explanatory hypotheses-is the 
primary means for introducing new theories. Active rules in a problem­
solving system whose explananda are goals can suggest hypotheses that 
explain them. New theoretical concepts can be formed by conceptual 
combination. Meaning develops in a system by virtue of inductive mecha­
nisms that establish conceptual roles, and there is no difficulty in attributing 
such roles to theoretical concepts as well as to those whose origins are 
closer to observation. 
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Chapter 5 

Theory Evaluation 

5.1. From Discovery to Evaluation 

The last chapter described how mechanisms such as abduction and concep­
tual combination can lead to the formation of new theories that can explain 
general rules. But we clearly do not want to accept a theory merely on the 
basis that there is something that it explains. Recall the grisly joke about 
the scientist who cut off one of a frog's legs and said, "Jump", and the frog 
jumped. Then he cut off two more of its legs and said, "Jump", and the frog 
more or less jumped. Finally, he cut off the remaining leg and said, "Jump", 
but the frog did not jump. The scientist accordingly abduced that frogs 
with no legs are deaf. Clearly, we want to accept a theory only if it 
prOVides the best explanation of the relevant evidence. 

Although the rubric "inference to the best explanation" is recent, origi­
nating with Harman (1965), the idea that hypotheses are to be accepted on 
the basis of what they explain has a long history, dating back at least to the 
Renaissance (Blake, 1960). The major weakness of the claim that inference 
to the best explanation is an important species of inductive inference is the 
lack of specification of how we determine what hypothesis or theory is the 
best explanation. By what criteria is one hypothesis judged to provide a 
better explanation than another hypothesis? Except for some very brief 
remarks about choosing a hypothesis that is simpler, is more plausible, 
explains more, and is less ad hoc, Gilbert Hannan (1967) only addresses the 
problem as it concerns statistical inference. In later work, Harman (1973, 
1986) talks vaguely of maximizing explanatory coherence while minimiz­
ing change. Keith Lehrer ( 1974, p. 165) has even remarked upon the 
''hopelessness'' of obtaining a useful analysis of the notion of a better 
explanation. 

I shall show, however, that actual cases of scientific reasoning exhibit a 
set of criteria for evaluating explanatory theories. The criteria-" con­
silience" (comprehensiveness), simplicity, and analogy-furnish a broad 
account of the justification of scientific theories, consonant with the earlier 
computational construal of theories. Once again, the system PI will provide 
a computational illustration of some of the key features of scientific reason-
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ing, suggesting answers to such difficult questions as 

1. How do we establish the set of competing theories to be evaluated? 
2. How do we establish the evidence to be used in evaluating the 
theories? 
3. How do we deal with situations where one theory does not explain 
everything that its competitors do, but we prefer it anyway because 
it explains the most important pieces of evidence? 
4. What does it mean to say that one theory is simpler than another? 

5.2. Case Studies of Theory Choice 

To begin the investigation of scientific theory evaluation, I now present 
three important historical cases: Darwin on the theory of evolution, Lavoi­
sier on the oxygen theory of combustion, and Fresnel on the wave theory 
of light. I shall only mention those aspects of the cases relevant to the 
current project of constructing criteria for theory choice. More thorough 
historical documentation was given in Thagard (1977b). The cases are ones 
where scientists have explicitly argued that their theories prOVide better 
explanations than do competing theories. Chapter 7 will discuss the relation 
between such studies of how science is done and the nonnative question of 
how it ought to be done. 

Consider first Charles Darwin's long argument for his theory of the 
evolution of species by means of natural selection. In his book On the 
Origin of Species, he cites a large array of facts that are explained by the 
theory of evolution but are inexplicable on the then accepted view that 
species were independently created by God. Darwin gives explanations of 
facts concerning the geographical distribution of species, the existence of 
atrophied organs in animals, and many other phenomena. He states in the 
sixth edition of his book, "It can hardly be supposed that a false theory 
would explain, in so satisfactory a manner as does the theory of natural 
selection, the several large classes of facts above specified. It has recently 
been objected that this is an unsafe method of arguing; but it is a method 
used in judging of the common events of life, and has often been used by 
the greatest natural philosophers" (Darwin, 1962, p. 476). Many other 
quotations could be given to show that Darwin's argument in On the Origin 
of Species consists of showing that his theory provides the best explanation 
of a range of facts (see 8.1.2). 

One of the greatest advances in the history of chemistry was the devel­
opment by Antoine Lavoisier of the oxygen theory of combustion, which 
replaced the accepted theory based on the hypothetical substance phlogiS­
ton. Lavoisier offered explanations of combustion, calcination of metals, 
and other phenomena where there is absorption of air. He stated, '1 have 
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deduced all the explanations from a simple principle, that pure or vital air 
is composed of a principle particular to it, which forms its base, and which 
I have named the oxygen principle, combined with the matter of fire and 
heat. Once this principle was admitted, the main difficulties of chemistry 
appeared to dissipate and vanish, and all the phenomena were explained 
with an astonishing simplicity" (Lavoisier, 1862, vol. 2, p. 623, my trans­
lation). According to the accepted phlogiston theory, burning objects 
give off the substance phlogiston, whereas according to Lavoisier, burning 
objects combine with oxygen. The main point of Lavoisier's argument is 
that his theory can explain the fact that bodies undergoing combustion 
increase in weight rather than decrease. To explain the same fact, pro­
ponents of the phlogiston theory had to make such assumptions as that the 
phlogiston that was supposedly given off had "negative weight". Because 
the oxygen theory explains the evidence without making such assump­
tions, it can be inferred as the best explanation. 

Other examples of arguments to the best explanation, this time in 
physics, are to be found in the history of the wave theory of light. In his 
Treatise on Light, Christiaan Huygens (1962) argued for his wave theory of 
light by showing how it explains the rectilinear propagation of light, 
reflection, refraction, and some of the phenomena of double refraction. The 
wave theory was eclipsed by Newton's particle theory, but Thomas Young 
attempted to revive the wave theory in three articles published between 
1802 and 1 804. The main improvement of Young's theory over Huygens' 
was the addition of the law of interference, which enabled the theory 
to explain numerous phenomena of colored light (Young, 1 855, vol. 1 ,  
pp. 140-191).  Finally, in a series of articles after 1815, Fresnel attacked 
the particle theory by arguing that the wave theory explained the facts of 
reflection and refraction at least as well as did the particle theory, and that 
there were other facts, involving diffraction and polarization, that only the 
wave theory could simply explain. He wrote to Arago, "Thus reflection, 
refraction, all the cases of diffraction, colored rings in oblique incidences as 
in perpendicular incidences, the remarkable agreement between lhe thick­
nesses of air and of water that produce the same rings; all these phenom­
ena, which require so many particular hypotheses in Newton's system, 
are reunited and explained by the theory of vibrations and influences of 
rays on each other" (Fresnel, 1866, vol. I, p. 36, my translation). Hence the 
wave theory should be inferred as the best explanation. 

Many other examples of the defense of theories by arguments to the 
best explanation can be given. William Harvey (1962, p. 139) justified his 
theory of the circulation of the blood by its explaining so much. The 
general theory of relativity superseded Newtonian mechanics because it 
could explain more. The theory of continental drift was first thought to be 
a wild hypothesis, but when conjoined with plate tectonics it became too 
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explanatorily successful to be denied. A.s we shall see in chapter 10, various 
theories about the extinction of the dinosaurs have been propounded on 
the basis of their explanatory power. 

5.3. Consilience 

The arguments of Darwin, Lavoisier, and Fresnel exemplify three important 
criteria for determining the best explanation. By "criteria", I do not mean 
necessary or sufficient conditions. We shall see that the complexity of 
scientific reasoning precludes the presentation of such conditions of the 
best explanation. A criterion is rather a standard of judgment that must be 
weighed against other criteria used in evaluating explanatory hypotheses. 
The tensions between the three main criteria will be described below. I call 
the three criteria consilience, simplicity, and analogy. 

The notion of consilience is derived from the writings of William Whe­
well (1967). Consilience is intended to serve as a measure of how much a 
theory explains, so that we can use it to tell when one theory explains 
more of the evidence than another theory. Roughly, a theory is said to be 
consilient if it explains at least two classes of facts. Then one theory is 
more consilient than another if it explains more classes of facts than the 
other one does. Intuitively, we show one theory to be more consilient than 
another by pointing to a class or classes of facts that it explains but that 
other theory does not. That is just what Darwin, Lavoisier, and Fresnel 
were trying to do in the passages quoted above. 

A closer look, however, shows that the matter is murkier than first 
appears. What, for example, is a class of facts? That is, what are the units to 
be used in assessing the best explanation? Also, what does it mean for one 
theory to explain more classes of facts than another? The simplest case 
would be when one theory explains everything that the other does and 
more, but we would also want to be able to consider cases where one 
theory explains a greater number of facts, even though what a competing 
theory explains is not a proper subset of what the first theory explains. 

The most difficult feature of the notion of consilience is the notion of a 
class of facts. Whewell also sometimes wrote of "kinds" of facts, but this 
misleadingly suggests that the problem is ontological. Rather, the problem 
is merely pragmatic, concerning the way in which, in particular historical 
contexts, the scientific corpus is organized. The inductive logician must 
take this organization as given, just as do the scientists whose arguments 
are studied. Since in general the proponents of competing theories share 
the same historical-scientific context, they agree on the division of facts 
into classes. We, like Newton and Huygens, have no difficulty in deciding 
that reflection and refraction constitute more than one application of the 
wave theory of light. On the other hand, we would probably say that the 
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distribution of species of finches and the distribution of tortoises on the 
Galapagos islands are not fads of different classes, and hence amount to 
only one application of the theory of evolution. They both concern geo­
graphical distribution in the given region. If Darwin had had any reasons 
to expect finches to be distributed in a very different way from tortoises, 
then perhaps the two species could have been counted as different appli­
cations. Notably, in the passage from the Origin quoted above, Darwin 
uses the "classes of facts" terminology. 

Because applications are distinguished by means of background knowl­
edge and historical precedents shared by competing theories, the theories 
in general agree about the individuation of applications. Sometimes, pro­
ponents of a theory will simply ignore one class of fad, as in many 
phlogiston theorists' refusal to consider the increase in weight of burning 
bodies. Unexplained facts are neglected by theorists who are more con­
cerned with developing a theory than with criticizing it. But if a new 
theory comes on the scene and succeeds in explaining what the old one 
did, as well as facts previously unexplained, then, as a matter of logic, the 
old theory must attend to the newly explained facts. Additional complica­
tions may arise. Investigations by advocates of a new theory may show 
that the evidence explained by the old theory was faulty. For example, 
until Darwin, it was generally believed that there was a definite limit to the 
amount of variaHon a species could undergo, either under domestication or 
in nature; Darwin's study of artificial selection refuted this. Darwin's argu­
ment in the Origin, in the middle chapters on objections, also shows the 
possibility of debate concerning what the applications of a theory are. In 
most historical contexts, however, it is not hard to determine what classes 
of facts a theory should be expected to explain and what alternative 
theories are its competitors. Section 5.5 .1  describes how evidence and 
competing theories are pragmatically assembled by the program PI. 

I have not used the notion of law in defining consilience, because not all 
the facts adduced in favor of theories are laws in a completely general, 
unrestricted sense. Some are: Snell's law of refraction, Lavoisier's law that 
the increase in weight of a body burned is equal to the loss of weight of 
the air in which it is burned, and so on. But other facts make reference to 
particular objects: the perihelion of Mercury, the distribution of fossils in 
South America. Moreover, in Darwin's case and in current psychology, 
it would often be more accurate to say that the facts are tendencies 
or statistical effects rather than laws. All of these, however, are general 
enough to be represented as rules of the sort found in PI. 

The historical relevance of the notion of consilience is manifest. Huy­
gens pointed to classes of facts concerning the propagation, reflection, re­
fraction, and double refraction of light. Young expanded the wave theory, 
and improved the argument for it by adding to the list of facts concem-
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ing color. Fresnel improved the argument still further by explaining various 
phenomena of diffraction and polarization. With his work, the wave theory 
of light became obviously more consilient than the Newtonian theory. 

Similarly, Lavoisier presented a range of phenomena of combustion and 
calcination that his theory explained. By virtue of its explanation of the 
increase in weight of burning bodies, his theory was more consilient than 
the phlogiston theory. Darwin's theory of evolution was enormously more 
consilient than the creation hypothesis, as he showed by stating fact after 
fact explained by his theory but not by the creation hypothesis. 

Many other important examples of consilience can be given. An out­
standing one is Newtonian mechanics, which afforded explanations of the 
motions of the planets and of their satellites, of the motions of comets, of 
the tides, and so on. But the general theory of relativity proved to be more 
consilient by explaining the perihelion of Mercury, the bending of light in 
a gravitational field, and the red shifts of spectral lines in an intense 
gravitational field. Quantum mechanics far exceeds any competitor in that 
it prOVides explanations of the spectral frequencies of certain atoms, of the 
phenomena of magnetism, of the solid state of matter, and of various other 
perplexing phenomena, such as the photoelectric effect and the Compton 
effect. 

A consilient theory unifies and systematizes. To say that a theory is 
consilient is to say more than that it "fits the fads" or "has broad scope": 
it is to say first that the theory explains the fads, and second that the facts 
that it explains are taken from more than one domain. These two feahlres 
differentiate consilience from a number of other notions, which have been 
called "explanatory power", "systematic power", "systematicization", or 
"unification". For example, Carl Hempel (1965, pp. 280ff.) has given a 
definition of systematic power that is purely syntactic, and hence much 
more exact than the above definition of consilience. However, it is not 
applicable to the sort of historical examples I have been considering, since 
it concerns only the derivation of sentences formed by negation, disjunc­
tion, and conjunction from atomic sentences; it therefore does not represent 
the way in which Huygens, Lavoisier, and Darwin systematize by explain­
ing a variety of facts, including ones expressed by laws. Another construc­
tion by Michael Friedman (1974) was an attempt to formalize how an 
explanation provides "unification" by reducing the total number of "inde­
pendently acceptable" statements, but serious flaws have been found in it 
by Philip Kitcher (1976). 

Behind such attempts is the assumption that explanatory power can 
somehow be assessed by considering the deductive consequences of a 
hypothesis. But deductions such as "A, therefore A", as well as more 
complicated examples that were discussed in section 3.5 .2, show that not 
all deduction is explanation. Moreover, it is essential to the evaluation of 
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the explanatory power of a hypothesis that what is explained be organized 
and classified. To take an example from Peirce (193 1-1958, vol. 2, para. 
462): We may infer that a man is a Catholic priest on the basis that the 
supposition explains such disparate facts as that he knows Latin, wears a 
black suit and white collar, is celibate, etc. We are not concerned with the 
explanation of a horde of trivial facts from the same class, such as that his 
left pant leg is black, his right pant leg is black, and so on. In inferring the 
best explanation, what matters is not the sheer number of facts explained, 
but their variety and relative importance. Assessment of variety presup­
poses that an inquirer have rich background knowledge about the kinds of 
things that the facts are about, requiring a detailed conceptual organization 
such as that found in PI. 

Kitcher (1981) provides a valuable supplement to the notion of unifica­
tion: a theory unifies not just by explaining different classes of facts, but 
by explaining them using similar problem-solving schemas. As we saw in 
chapter 3, the use of such schemas in problem solving fits very well with a 
qualitative, computational understanding of problem solving. Typically, a 
theory will achieve consilience by virtue of such schemas. I want to leave 
open the possibility, however, that not all the explanations furnished by a 
general theory are schema-based, so that unification by schemas should 
remain an associated feature of consilient theories, not a central property. 

So far, I have been discussing a static notion of the consilience of 
theories, which presupposes that a totality of classes of facts-the total 
evidence-is given. This is generally how it appears when a scientist 
presents the results of his or her research. Arguments to the best explana­
tion cite a range of facts that are explained. But a dynamic notion of 
consilience might also be taken into account in considering the acceptabil­
ity of explanatory hypotheses. 

Whew ell' s notion of consilience is essentially dynamic. He says, liThe 
evidence in favour of our induction is of a much higher and more forcible 
character when it enables us to explain and determine cases of different 
kind from those which were contemplated in the formation of our hypoth­
eses" (1967, vol. 2, p. 65). Dynamic consilience can be defined in terms 
of consilience: a theory is dynamically consilient if it is currently more 
consilient than it was when first proposed, that is, if there are new classes 
of facts that it has been shown to explain. It is difficult to state precisely a 
comparative notion of dynamic consilience. Roughly, one theory is more 
dynamically consilient than another if it has succeeded in adding more to 
its set of classes of facts explained than the other has. 

Successful prediction can often be understood as an indication of dy­
namic consilience, provided that the prediction concerns matters that are 
new applications of the theory and provided that the prediction is also 
an explanation. Successful prediction in a familiar domain contributes rela-
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tively little to the explanatory value or acceptability of a theory: one more 
corred prediction of, say, the position of Mars would be of limited impor­
tance to Newtonian mechanics, although it would reinforce the belief that 
the theory explains fads of that class. In contrast, Halley's use of N ewton­
ian theory to predid the return of the comet named after him was a mark 
of the explanatory power of the theory, which had not previously been 
applied to comets. Another example of this kind of dynamic consilience is 
Young's application of the law of interference to the phenomenon of 
dipolarization discovered by Arago and Biot. 

Although dynamic consilience is often taken to be more impressive than 
ordinary consilience (d. the notion of a progressive problem-shift in Laka­
tos, 1970), I see no reason to place special value on the temporal dimen­
sion. It is good for a theory to be dynamically consilient just because it is 
good for it to become more consilient in the usual sense, not because there 
is any special probative force to succeeding in new explanations or predic­
tions after a theory has been formed. I shall argue in the next sedion that 
the criterion of simplicity accounts for cases where we are impressed by a 
theory that makes a predidion that is subsequently confirmed. 

The maximally consilient hypothesis or theory is one that explains any 
fad whatsoever. This would be achieved by having such flexibility in the 
set of auxiliary hypotheses that any phenomenon could fall under the 
theory. Lavoisier accused the phlogiston theory of having this property, 
and psychoanalytic theory is also often subjed to the charge of explaining 
too much. We might therefore want to put an upper bound on consilience, 
requiring that for a theory to be consilient, it must not only explain a range 
of fads, it must also specify facts that it could not explain. However, this 
requirement is unsatisfadory, because one way in which a theory could 
satisfy the upper bound condition is to specify fads in a totally different 
field; for example, psychoanalytic theory does not explain the speed of 
light. Moreover, scientists can legitimately contemplate adjustments to a 
theory or to its set of auxiliary hypotheses that would enable it to explain 
any anomaly within its field. After all, we want a theory to increase its 
consilience. The limit to these adjusments depends on the increase in 
consilience of the theory being offset by a decrease in satisfadion of other 
criteria. Simplicity is the most important constraint on consilience. 

5.4. Simplicity 

Simplicity is most clearly an important fador in the arguments of Fresnel 
and Lavoisier. The kind of simplicity involved in these cases has little to do 
with current philosophical notions of simplicity based on syntactic con­
siderations. Rather, simplicity is pragmatic and intimately conneded with 
explanation. 
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The explanation of facts F by a theory T requires also a set of auxiliary 
hypotheses A and a set of given conditions C. C is unproblematic, since it 
is assumed that all members of C are accepted independently of T or F. But 
A requires close scrutiny. An auxiliary hypothesis is a statement, not part 
of the original theory, which is assumed in order to explain one or a small 
&action of the elements of F. This is not a precise definition, but examples 
should help to clarify its intent. In the case of Huygens, T would include 
such declarations as that light consists of waves in an ether, and that light 
waves are propagated according to Huygen's principle that around each 
particle in the medium there is made a wave at which that particle is the 
center. In order to explain the laws of refraction and reflection and other 
phenomena, Huygens assumes that waves are spherical. But in order to 
explain the irregular refraction in Iceland crystal, Huygens supposes that 
some waves are spheriodal. This last assumption, restricted in use to one 
class of fact, is an example of an auxiliary hypothesis. Similarly, Huy­
gens assumed that the speed of light is slower in denser media, in order 
to explain Snell's law of refraction. (Newton's explanation of Snell's law 
assumed that the speed of light is faster in denser media.) The assumptions 
of spherOidal waves and the speed of light were not independently accept­
able in the time of Huygens, so that they do not belong in C; and they 
were not used to explain any phenomena besides the ones mentioned, so 
that they must be placed in A rather than in T. One might want to reserve 
the term "theory" for the combination of T and A, but this would not 
reflect historical practice, and would blur the real distinction between 
statments that figure again and again in explanations and those whose use 
is much more limited. 

Now we can say that simplicity is a function of the size and nature of 
the set A needed by a theory T to explain facts F. This is the main notion 
of simplicity used by Fresnel and Lavoisier. Fresnel accused the Newtonian 
theory of needing a new hypothesis, such as the doctrine of fits of easy 
transmission and easy reflection, for each phenomenon that it explained, 
whereas the wave theory uses one set of principles to explain the phenom­
ena. Similarly, Lavoisier criticized the phlogiston theory for needing a 
number of inconsistent assumptions to explain fads easily explained by his 
theory: phlogiston was assumed to have negative weight when burned 
materials become lighter, but to have positive weight when calcined metals 
became heavier. These examples show how simplicity puts a constraint on 
consilience: a simple consilient theory must not only explain a range of 
facts, it must explain those facts without making a host of assumptions with 
narrow application. 

An ad hoc hypothesis is one that serves to explain no more phenomena 
than the narrow range that it was introduced to explain. Hence a simple 
theory is one with few ad hoc hypotheses. But "ad hocness" is not a static 

Copyrighted Material 



84 Chapter 5 

notion. We cannot condemn a theory for introducing a hypothesis to 
explain a particular fact, since all theorists employ such hypotheses. The 
hypotheses can only be reprehended if ongoing investigation fails either to 
uncover new facts that they help to explain or to find more direct evidence 
for them, as in Fizeau's observation in the nineteenth century concerning 
the speed of light. Moreover, an auxiliary assumption will not be viewed 
as ad hoc if it is shared by competing theories. 

This brings us to a comparative notion of simplicity. Let ATi be the set 
of auxiliary hypotheses needed by � to explain a set of facts F. Then we 
adjudicate between Tl and T2 by comparing ATl and AT2 . But how is this 
done? The matter is not a neatly syntactic one, since any AT could be 
considered to have only one member, merely by replacing its elements by 
the conjunction of those elements. Nor can we use the subset relation as we 
did in comparing sets of classes of facts explained, because it is quite pos­
sible that A Tl and A T2 will have no members in common. The arguments 
of Fresnel and others suggests making a qualitative comparison, application 
by application. For example, on the issue of the speed of light in different 
media, there was a stalemate between the wave and corpuscular theories, 
because the assumptions they make are of a similar kind, and until the 
mid-nineteenth century there was no independent evidence in favor of 
either. On the other hand, Newton's theory has at least one auxiliary 
hypothesis, the 1/ doctrine of fits of easy reflection and easy transmission", 
corresponding to which there is no auxiliary hypothesis in the wave the­
ory. Young's principle of interference, which explains the colors of thin 
plates at least as well as the doctrine of fits, can be considered as part of 
the theory by virtue of its explanation of various phenomena concerning 
fringes. Thus the comparative simplicity of two theories can only be 
established by careful examination of the assumptions introduced in the 
various explanations they provide. As has often been remarked, simplicity 
is very complex. See 5.5 .3 for a description of how PI assesses Simplicity. 

This analysis of simplicity sheds light on two issues discussed above: 
prediction and unification. Why are some philosophers more impressed 
when a theory predicts some new observed phenomena rather than one 
already known? From the point of view of consilience, there is no difference 
whether a theory explains a new or old class of facts; the comparative size 
of the set it explains is all that matters. I contend that the major reason why 
prediction of new phenomena appears so important is that such predictions 
are likely to be a sign of simple explanations. In making a prediction, one 
does not have the opportunity to adjust the theory to an already-known 
outcome by means of auxiliary hypotheses. Using only the theory and 
already familiar auxiliary assumptions, a future outcome is predicted with 
no opportunity for adjustments that are local to the prediction. In contrast, 
explanation after the fact can make many special assumptions to derive the 
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outcome from the theory. Contrary to the views of Popper (1959), predic­
tions are not to be valued because they can bring about falsifications; 
rejection of a theory requires showing that an alternative theory is a better 
explanation. Rather, successful predictions are to be valued as signs of the 
simplicity of a theory, showing that its explanations do not require post 
hoc additions. Simple explanations are also more likely to be ones that 
provide unifications, since the absence of added hypotheses means that the 
explanations are using the existing resources of the theory, including 
established explanation schemas, thus increasing the degree of unification 
found in the theory. 

The above account of simplicity is superficially similar to one proposed 
by Elliott Sober (1975). Sober defines simplicity as infonnativeness, where 
a hypothesis H is more infonnative than H' with respect to a question Q if 
H requires less extra infonnation than H' to answer Q. He applies this to 
explanation by saying that an explanation is simpler the fewer the initial 
conditions reqUired in the dedudion of the explanandum from the hy­
pothesis. Thus if explanandum E is deducible from theory Tl in conjudion 
only with initial condition C l' whereas the deduction of E from T2 requires 
conditions C1 and C 2, then Tl provides a simpler explanation. This has 
some plausibility, but Sober does not employ the notion of auxiliary 
hypotheses, which I have argued is crucial to simplicity. Lavoisier and 
Fresnel show no concern about syntactic complexity of the explanations 
given by their opponents: the number of initial conditions required is irrele­
vant. What matters is the special assumptions made in explaining particular 
classes of facts. Hence simplicity goes beyond the syntactic notion of 
informativeness discussed by Sober. We saw in discussing consilience that 
the individuation of classes of facts requires consideration of the history of 
inquiry and the cognitive structures of inquirers. 

Besides comparing sets of auxiliary hypotheses ATl and AT2, we might 
also consider judging simplicity by comparing Tl and T2. But I cannot see 
how in general this could be done. The number of postulates in a theory 
appears to have little bearing on its acceptability; all that matters is that 
each postulate be used in the explanation of different kinds of facts. Perhaps 
Tl and T2 could be compared as to number of parameters or predicates, but 
the relevance of this is doubtful. Nor does it make much sense to count 
number of rules. However, Tl and T2 can be compared at another level­
ontological economy. Lavoisier suggests that the phlogiston theory is less 
simple than the oxygen theory, since it assumes the existence of another 
substance, phlogiston. Similarly, the creation hypothesis is ontologically 
more complex than the theory of evolution. One might suppose that the 
wave theory was actually less onto logically economical than the corpus­
cular theory, since it assumed the existence of the ether, although Newton's 
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theory had its own major ontological assumption-the existence of light 
particles. 

Tl is more onto logically economical than T2 if T2 assumes the existence 
of entities that Tl does not. This criterion of ontological economy is 
subsidiary to those of consilience and simplicity because Occam's razor 
counsels us only not to multiply entities beyond necessity. Necessity is a 
function of the range of facts to be explained without the use of a lot of 
auxiliary assumptions. Ontological complexity does not detract from 
the explanatory value or acceptability of a theory, so long as the com­
plexity contributes toward consilience and simplicity. Lavoisier can be con­
strued as arguing, not that his theory is better because it is more onto­
logically economical, but that his theory is more consilient and simple 
than the phlogiston theory, so phlogiston need not be assumed to exist. 
Hence ontological economy is not an important criterion of the best 
explanation. 

But simplicity, illustrated by the arguments of Lavoisier and Fresnel, is 
important. Theories must not achieve consilience at the expense of sim­
plicity through the use of auxiliary hypotheses. The desire for global 
unification represented by the criterion of consilience must be tempered 
by the desire to avoid ad hoc explanations. If a global theory's consilience 
depends on lack of simplicity, we may be wise to settle for a number of 
separate and more local theories to explain a range of facts. Inference to the 
best explanation is inference to a theory that best satisfies the criteria of 
consilience and simplicity, as well as a third, analogy. Before discussing 
analogy, however, I want to develop further the notions of consilience and 
simplicity by describing how the program PI takes them into account in 
assessing the best explanation. 

5.5. Inference to the Best Explanation in PI 

Consilience and simplicity have been shown to be important criteria for 
determining the best explanation, but the account of their application has 
so far been qualitative and imprecise. Many philosophers of science have 
looked to probability theory for more exact analytical tools, but I shall 
argue in section 5.8 that probability theory is of little help. Appropriate 
fonnalisms for developing a more thorough model of theory evaluation 
can come, however, from artificial intelligence. Earlier chapters showed 
how computational models can help in our understanding of the discovery 
and application of theories, and I shall now make a similar case for theory 
evaluation, describing how it is implemented in PI. The pragmatic character 
of the classes of evidence explained should become clearer, as well as how 
sets of competing theories and evidence can be assembled. 
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5.5.1. Competing Theories and Evidence 
Following Hempel (1965) I refer to a fact or generalization that is to be 
explained as an explanandum (plural explananda). When PI finds an explana­
tion, it records the success by adding what was explained to the list of 
explananda of the explanatory hypothesis, and adding the hypothesis to 
the list of explainers of the explanandum. For example, when the wave 
theory of sound succeeds in explaining why sound refleds, the rule that 
sound reflects is added to the list of explananda of the wave theory, and 
the wave theory is added to the list of explainers of sound reflection. After 
each explanatory success of a theory Tt, PI asks if Tl is the best explana­
tion. Answering this question requires comparing Tl against alternative 
explaining theories with respect to the total available evidence. 

But what makes a theory an alternative to T1, and what is the total 
evidence that must be taken into account? To try to consider all possible 
explanations and all possibly relevant evidence would be too compu­
tationally expensive. Instead, PI uses a simple algorithm to compile lists 
of alternative theories and relevant evidence on the basis of explanations 
already performed. It looks at the list of explananda explained by T1, 
then checks to see what other theories have been used to explain these. 
Any T2 that explains some of the explananda of Tl is a competitor of T1• 
But that is not the whole story, since we want to find a full set of 
competitors. For example, we would easily find that the particle theory of 
sound is a competitor of the wave theory, if it is also on record as having 
offered an explanation of why sound reflects. But suppose that the particle 
theory explains something that the wave fheory does not, and moreover 
there is some additional theory that also explains the additional expla­
nandum. Then the additional theory also gets counted as an alternative to 
the wave theory of sound. Accordingly, PI looks at the explananda of this 
new set of alternative theories, and then considers their explananda in tum. 
When a continuing search turns up no new competitors or explananda, PI 
concludes it has a full set of competitors and evidence. 

PI triggers a search for the best explanation whenever a theory that has 
already been found to explain something is found to explain something 
new. PI asks whether the theory is the best explanation of the avail­
able evidence, taking into account the sets of competitors and relevant 
evidence. Finding these sets is fully tradable because explanation is not just 
a deductive relation between theories and explananda. If that were so, there 
would always be an unlimited number of potentially explanatory theories 
and evidence whose assembly would be unfeasible. Instead, PI looks at 
what has been found to explain what. As we saw in chapter 3, explanation 
from a computational perspective can be viewed as a historical process 
whose results are stored in the processing system, not as an abstract 

Copyrighted Material 



88 Chapter 5 

particle theory 

sounds pass 1hrough sounds propag8le sounds reftect 

Figure 5.1 
Consilience of the wave theory of sound. 

relation between theories and explananda. Crucially, the explanatory suc­
cesses of hypotheses are noted during the performance of the system. 

Similarly, real scientists do not consider all possible theories and explanan­
da when they evaluate theories. If they have been responsible in reading 
the literature, they are aware of likely competing theories and can use a 
procedure similar to what PI does to compile sets of such theories and 
pieces of evidence. In science, however, there is also an important social 
dimension, involving interadion among scientists and social regulatory 
forces such as peer review. Discussion of such issues will have to wait until 
chapter 10, as will the important question of what prompts the explanatory 
ads of which theory evaluation takes note. 

5.5.2. Consilience in PI 
After compiling lists of competitors and relevant evidence, PI seleds the 
best explanation out of the set of competitors, including the original 
explainer, by comparing the sets of explananda of the theories. Pairwise 
comparisons are simplest when the set of explananda of one theory Tl is a 
proper subset of the set of explananda of another theory T2• In this case, 
T2 is clearly a better explanation of the relevant evidence than T1. In 
chapter 4, we saw how PI uses abdudion and conceptual combination to 
discover, not only the wave theory of sound, but also the particle theory 
of sound. PI's mechanism for theory evaluation leads it to prefer the wave 
theory to the particle theory for the same reason that the Greeks did: both 
theories explain why sound refleds and propagates, but the wave theory 
can explain why sounds can pass through each other without obstruction. 
Figure 5 . 1  depicts the greater consilience of the wave theory. Similarly, in 
the above quotations from Darwin, Lavoisier, and Fresnel, each scientist is 
clearly arguing that his theory explains more than its main competitor. 

What gets explained? Chapter 4's discussion of abduction showed that 
there are two kinds of structures that can be thought of as providing expla­
nations. In the Simplest case, we abduce a fact to explain another fact given 
a rule, as when we abduce that John was caught in traffic in order to explain 
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why he was late. In the more complex case, abductive rule formation pro­
duces a rule that is used to provide explanations of other rules. The wave 
theory of sound is such a case, since the rule that all sounds are waves is used 
to explain such rules as that sounds reflects. PI uses essentially the same al­
gorithms for both cases, compiling lists of competing theories and relevant 
evidence and then seeing what hypothesis explains the most explananda. 

In the simulation of the choice of the wave theory of sound over the 
particle theory of sound, the evaluation is relatively easy because what 
the particle theory explains is a proper subset of what the wave theory 
explains. Often, however, the decision concerning the best explanation will 
not be so clear-cut. We usually want a theory not only to explain the most 
phenomena, but also to explain the most important phenomena. It would be 
ridiculous, for example, if the wave theory of sound increased the size of its 
set of explananda by explaining why sound propagates on Mondays, why 
it propagates on Tuesdays, and so on. Such trivialities make no difference 
if the explananda of one theory form a proper subset of the explananda of 
another. But if no subset relation holds between the explananda of two 
theories, we have to ask: Which theory explains the most important phe­
nomena? In such cases, PI calculates the total importance of the explananda 
of each competing theory, and concludes that the best explanation is the 
theory whose explananda have the highest total importance. 

But where does importance come from? In the most interesting case 
where it is a set of rules that are being explained, PI judges the importance 
of a rule to be its strength. The strength of a rule, in PI as in the classifier 
systems of Holland (Holland et al., 1986), is a function of the past useful­
ness of a rule, not just its probability or certainty. We are at least as certain 
that sound propagates on Mondays as we are that it propagates in general, 
but the weaker rule will receive far less use. Important rules, then, are those 
that most often contribute to useful problem solutions. The strength of a 
rule is not independent of its probability: true rules are more likely to be 
useful. But strength is a far better indicator of importance than probability, 
and enables PI to ignore trivial explananda. For this quantitative calculation 
of consilience, PI considers the sum of all the importances (ranging from 0 
to 1) of the facts that it explains. If all facts are equally important, then 
degree of consilience can be taken to be just the number of facts explained. 

5.5.3. Simplicity in PI 
We saw that consilience is not the only criterion relevant to evaluating the 
best explanation. A theory should not only explain a lot of facts, but 
should also explain without making many special assumptions. 

PI implements a simplicity criterion using the sets of cohypotheses 
established when a hypothesis in formed by abduction. We saw in section 
4.2.2 that HI and H2 are cohypotheses if both must be formed together in 
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order to accomplish an explanation. The simplest case is where abduction 
is based on a rule with multiple conditions: 

If A & B & C & D then E. 
E is to be explained. 

Therefore, maybe A & B & C & D. 

Abduction here requires hypothesizing A, B, C, and D all together, so they 
constitute cohypotheses. For example, suppose I am trying to explain why 
the Princeton football team was beaten by Yale in 1986. A very simple 
explanation is furnished by the rule: If one football team is much better 
than another, it beats it. This requires no assumptions except that Yale's 
football team is better than Princeton's. A more complex rule that might 
provide a competing explanation is: If one football team is worse than 
another but the stronger team has players who have bet heavily against 
themselves, then the stronger team loses. Here abducing that Princeton's 
football team is really better than Yale's would require making the addi­
tional, unwarranted assumption that Princeton players had bet against 
themselves. The simplicity of a hypothesis, then, is a function of how many 
additional cohypotheses it required in accomplishing its explanations, and 
one hypothesis is simpler than another if it has a lower ratio of cohypoth­
ese to facts explained. It is important to consider the ratio because we do 
not want to value a hypothesis whose simplicity derives from not explain­
ing anything at all over another hypothesis that uses auxiliary hypotheses 
while accomplishing explanations. 

This general idea has been implemented in PI as follows. If a hypothesis 
has more cohypotheses than facts explained, its simplicity is judged to be 
0, since it needs a special assumption for everything it explains (compare 
the complaint of Lavoisier against the phlogiston theory). Otherwise, its 
simplicity is calculated by the formula 

, 1" (H) 
facts explained by H - cohypotheses of H 

sImp IClty = ----=.-�--�-__ :......=....------
facts explained by H 

PI calculates the simplicity of a hypothesis by dividing the difference 
between the number of facts it explains and the number of cohypotheses it 
uses by the number of facts it explains. This yields values from 0, for a 

hypothesis that has to assume as much as it explains, to 1, for a hypothesis 
that has no cohypotheses at all. We do not have to worry about dividing 
by 0, since if a hypothesis does not explain anything, its simplicity will 
never be evaluated. 

To give a global assessment of which hypothesis is the best explanation, 
PI considers both consilience and simplicity. The easy cases are where one 
hypothesis is superior to all others on one dimension and at least as good 
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on the other. If one hypothesis is both more consilient than another and at 
least as simple, it is obviously the best. But when the two dimensions 
conflict, with Hl more consilient than H2 but H2 more simple, PI constructs 
numerical values for consilience (see the last section) and simplicity. Then 
the explanatory power of a hypothesis is calculated by 

value (H) = simplicity (H) x consilience (H). 

This metric makes it clear how using an ad hoc assumption to explain just 
one additional fact does not make for a better explanation. For example, if 
H explains 6 facts without special assumptions and needs 1 cohypothesis 
just to explain 1 additional fact, its value becomes (7-1)/7 x 7, which is still 
6, its original value. Individuating fads is obviously crucial here, but that 
has already been taken care of by the mechanisms for problem solving and 
abduction that notice and store what explains what. (Note that this fonnula 
only works if the facts explained are of equal importance; otherwise, one 
might be able to increase the total value of a hypothesis by using a 
cohypothesis to explain a particularly important fad. Hence for explananda 
of varying importance, the definitions of simplicity and consilience must be 
complicated to take into account the relative importance of all of these: the 
facts explained by the hypothesis, the facts explained using cohypotheses, 
and the total evidence explained. This has not yet been implemented.) 

Note that PI is quite capable of picking as the best explanation a theory 
that does not explain everything explained by its competitors. Contrary to 
the views of philosophers such as Popper, we cannot reject a theory merely 
because it occasionally fails (see section 9.2). If it is simpler and explains 
more important facts than its competitors, a theory can be accepted as the 
best explanation. After a theory has been so designated, PI makes param­
eter adjustments to ensure that it gets used in problem solving and expla­
nation rather than its competitors. If the theory is a rule, its strength is 
increased and those of its competitors are decreased; if the theory is a 
hypothetical message, its confidence value is increased and those of its 
competitors are decreased. 

This account of inference to the best explanation in PI can be viewed 
from both descriptive and nonnative viewpoints. It shows how the descrip­
tive account of theory evaluation in the first part of the chapter can be 
made much more precise and integrated with a computational account of 
theories. Speculatively, it can be taken as an approximation to what scien­
tists actually do when they evaluate theories. Clearly, however, there are 
respects in which PI comes closer to how scientists ought to think than to 
how they usually do think. For example, PI is exhaustive in considering all 
retrievable evidence and competing hypotheses, whereas scientists often 
are biased toward their own theories. I return to these normative issues in 
later chapters. 
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5.5.4. Limitations 
Although PI is able to capture some of the key elements in the historical 
cases of theory choice described above, it has numerous deficiencies. I have 
not yet simulated any historical case that would seriously test PI's calcula­
tion of simplicity and overall explanatory value. (In the simulation in 
appendix 3, the criterion of consilience suffices to show the superiority 
of the wave theory of sound over the particle theory. Note also that 
the simulation simplifies by starting with the laws about the properties 
of sound to be explained already decomposed into arbitrary instances, 
although only slight modifications are required to do it the more round­
about way in which the explananda are rules.) It would be desirable to 
reconstruct cases such as the oxygen-phlogiston dispute in sufficient 
detail to note sets of cohypotheses and to evaluate the applicability of 
PI's mechanisms and metrics. It will probably tum out that the simple 
multiplicative value got from values for simplicity and consilience is 
too crude to capture the complexities of historical arguments. Moreover, 
actual historical cases may well require a more complicated notion of 
cohypothesis than PI's current one based on multiple clauses in the condi­
tions of rules. And more holistic algorithms can be developed (Thagard, 
1987). 

One aspect undoubtedly not captured in PI's current implementation 
is scientists' use of highly general arguments for and against particular 
theories. A theory can be defended not just on the basis of its consilience 
and simplicity, but also because, on scientific or even metaphysical prin­
ciples, it is the right kind of theory. Such reasoning involves a third 
criterion for the best explanation, analogy. 

5.6. Analogy 

Analogy plays an important part in the arguments of Darwin and the 
proponents of the wave theory of light. Darwin used the analogy between 
artificial and natural selection for heuristic purposes, but he also claimed 
the analogy as one of the grounds for belief in his theory (Darwin, 1962, 
chapter I; 1969, vol. 3, p. 25). Huygens, Young, and Fresnel each used the 
analogies between the phenomena of sound and those of light to support 
the wave theory of light. However, at first sight analogy appears to 
have little to do with explanation. Darwin's analogy between artificial 
and natural selection and Huygens' analogy between sound and light are 
intended to support the respective theories, but it is not clear how this is 
accomplished. I shall argue that the analogies support the theories by 
improving the explanations that the theories are used to give. 

Logic books commonly represent arguments from analogy as follows: 
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phenomena 

We conclude that an object or class B has a property 5, on the grounds that 
it shares a number of other properties with A, which has S. Thus Darwin 
might argue that since natural selection is like artificial selection in a 
number of respects, it too leads to the development of new forms. Huy­
gens might argue that since light is like sound in a number of respects, it 
also consists of waves. Now, perhaps arguments like this capture part of 
the use to which Huygens and Darwin put analogy, but severe problems 
are caused by the presence of disanalogies. Huygens takes pains to point 
out numerous ways in which sound and light do not resemble each other. 
Most crucially, sound is not propagated in straight lines. In Darwin's case, 
there is also a patent disanalogy: the absence in natural selection of an 
intelligent being that performs the selection. Yet in neither case does the 
presence of disanalogies daunt the arguer. But if there are properties T and 
U that A and B do not share, surely it is not legitimate to conclude that 
because A and B share P, Q, and R, they also share 5. Hence the above 
schema does not adequately represent the use of analogy in scientific 
arguments. 

A better characterization of analogical inference can be given by using 
the concept of explanation. Suppose A and B are similar in respect to P, Q, 
and R, and suppose we know that A's having 5 explains why it has P, Q, 
and R. Then we may conclude that B has 5 is a promising explanation of 
why B has P, Q, and R. We are not actually able to conclude that B has S; 
the evidence is not sufficient and the disanalogies are too threatening. But 
the analogies between A and B increase the value of the explanation of P, 
Q, and R in A by S. 

The explanatory value of analogies should be clear from the discussion 
of the role of analogies in problem solving and abduction in chapters 2 and 
4. Figure 5.2 provides a picture of the relation between an established 
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theory T1 , which explains phenomena PI and P2 ' and Tz , which explains P3 
and is supported by having analogies with T1 . By virtue of the mappings 
between T1 and T2 , a richer understanding of the objects posited by T2 is 
made possible, since some of the information and procedural knowledge of 
Tl can be carried over. Some of the techniques that Tl employs to solve 
problems about P1 and P2 can be carried over to help T2 solve problems 
about P3 ' In PI's model of analogical problem solving, a stored solution to 
one problem can help by suggesting new subgoals or hypotheses to aid in 
solving a new problem. Moreover, just as Tl ' s consilience with respect to 
PI and P2 establishes a lower level analogy between those two phenomena, 
showing them to be similar at least in the respects in which they can both 
be explained by the same theory, so the correspondence between Tl and 
T2 might make possible the conception of P3 as an analog of Pl and P2 ' For 
example, when the wave theory of light is supported by analogies with the 
wave theory of sound, reflection of light waves can be conceived as 
analogous to the similar behavior of sound and water waves. 

We saw in chapter 4' s discussion of analogical abduction that analogy 
plays an important role in discovery, directing inquiry toward certain kinds 
of hypotheses. But the additional point here is that analogy can also be 
used to support hypotheses already discovered. Support may thus be 
gained for hypotheses that are, for example, uniformitarian rather than 
catastrophist, mechanical rather than teleological, or determinist rather than 
statistical, as well as to support hypotheses invoking particular mechanisms 
such as selection and wave propagation. Analogy is a legitimate criterion 
for inference to the best explanation because analogies play an important 
role in improving explanations. We get increased understanding of one set 
of phenomena if the kind of explanation used is similar to ones already 
used. This is because the rules and problem solutions used by a new the­
ory to deal with a phenomenon are enhanced by connections with well­
established rules and solutions. We have seen analogy used in this way 
by Huygens and Darwin. The explanatory value of the wave hypothesis is 
enhanced by the model taken over from the explanation of certain phe­
nomena of sound. Similarly, the explanatory value of the hypothesis of 
evolution by means of natural selection is enhanced by the familiarity of 
the process of arti6cial selection. Explanations in terms of the kinetic theory 
of gases benefit from the mechanical model of billiard balls. Moreover, 
having a rich analogy with an established 6eld is likely to lead to dynamic 
consilience, since explanations of new classes of facts may be achievable 
using further analogies. 

I am not claiming that explanation is reduction to the familiar: scientific 
explanations often employ unfamiliar notions and introduce entities as 
peculiar as positrons and black holes. However, other things being equal, 
the explanations afforded by a theory are better explanations if the theory 
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is familiar, that is, introduces mechanisms, entities, or concepts that are used 
in established explanations. The use of familiar models is not essential to 
explanation, but it helps. Many philosophers of science would argue that 
analogy is at best relevant to the discovery of theories and has no bearing 
on their justification, but the historical record of examples such as Darwin's 
defense of natural selection and the cognitive importance of analogies 
shows the need to include analogy as one of the criteria of the best 
explanation. 

How could PI's assessment of the best explanation add a criterion of 
analogy7 PI could easily detect whether the explanations achieved by 
a theory employ analogies with problem solutions achieved by well­
established theories, giving some preference to theories that have such 
analogies. We should not ignore consilience and simplicity for the sake of 
analogy, but, especially in the early stages of a research program, it might 
be legitimate to use analogy as one of the reasons for pursuing a theory 
that was still inferior. How to incorporate such reasoning into assessments 
of the best explanation remains an open question. 

5.7. Meaning and Commensurability 

My discussion of inference to the best explanation presupposes that it is 
possible to compare the explanatory worth of competing theories. On the 
radical views of Kuhn (1970b) and Feyerabend (1965), however, objective 
evaluation is highly problematic. Kuhn suggests that a paradigm is so 
all-encompassing that it is not possible to stand outside it in order to 
compare it against other paradigms. In particular, the meanings of different 
terms will vary from theory to theory, so that theories will tum out to be 
"incommensurable", not evaluable by any objective external criteria. Many 
historical philosophers of science follow Hanson (1958) in maintaining that 
all observation is "theory-laden", making it hard to see how observational 
evidence can be used to evaluate theories. 

In chapter 3, I described many affinities between a rich, computational 
account of the structure of scientific knowledge and Kuhn's account based 
on paradigms. We saw the importance of patterns of problem solving and 
explanation based on exemplars, and the role of conceptual organization in 
guiding ways of thinking about phenomena. Kuhn correctly argued that 
this degree of organization would make theory evaluation potentially more 
problematic than positivists had allowed. A more detailed computational 
analysis of the structure of scientific knowledge shows, however, that 
Kuhn's apparently relativistic conclusions are not warranted. 

Consider first the vexing question of meaning. Kuhn points out that 
mass in relativity theory is Significantly different from mass in Newtonian 
mechanics, since the former but not the latter is convertible to energy. One 
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therefore might be tempted to talk of the two theories employing different 
concepts, which would indeed make them hard to compare. This conclu­
sion, however, presupposes a rigid view of the nature of concepts. Granted, 
if a concept is defined by a set of necessary and sufficient conditions, to 
change those conditions is to change the concept. But we saw in chapters 
2 and 4 that this traditional notion of a concept is insupportable. Concepts 
in a system such as PI are much more fluid, using default rules to express 
prototypes, with no recourse to strict necessary and sufficient conditions. 
Adding a new rule about convertibility to energy to a concept such as mass 
does not produce nearly as dramatic a shift in meaning as would replace­
ment of a definition on the traditional account of concepts: the computa­
tional role of the revised concept will for many purposes remain the same 
as that of the old concept. We can note that the Einsteinian concept of mass 
is different in important ways from the Newtonian one, without seeing 
an insurmountable gap between the two theories. For the concepts still 
possess in common many rules that involve default expectations about the 
behavior of objects under normal Newtonian conditions. Similarly, Nerses­
sian (1987) argues that the traditional representation of concepts in terms 
of necessary and sufficient conditions blocks understanding of the develop­
ment of the concept of a field in physics. 

Kuhn asserts that a change of paradigm dramatically affects how we look 
at the world, and even remarks that proponents of different paradigms live 
in different worlds. I do not want to underestimate how substantially a 
theory can affect our thinking. A theory, construed not just as a set of 
sentences but as an interrelated network of concepts, rules, and problem 
solutions is a powerful but sometimes inflexible intellectual tool. But the­
ories are not self-contained. Unless one adopts the rigid view of meaning 
rejected above, the evidence for theories can be seen to consist of state­
ments that employ concepts whose meaning is not significantly determined 
by the theories. The functional role of concepts is established, not just by 
the theory, but also by rules that are relatively theory-independent. For 
example, evaluating the wave and particle theories of light involves com­
paring how they explain such properties of light as reflection, refraction, 
and diffraction. Rules describing such properties can be expressed using 
concepts whose functional roles are only minutely affected by the compet­
ing theories. We can admit that observation is theory-laden in a weak sense 
without adopting the relativist conclusion that it is theory-dependent. 
If one looks in detail at the historical record in episodes such as the 
transition from the phlogiston to the oxygen theory, one often finds a 
gradual process of adjustment to and adoption of a new theory (Perrin, 
1986), Hence there is no reason to believe that in general theories are 
incommensurable or that theory evaluation is impOSSible. It is another 
question whether we can say that a theory accepted as the best explanation 
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is true; see chapter 8 for an attempt to justify the use of inference to the best 
explanation and an argument that scientific theories can tell us about the 
world. 

5.8. Probability 

Philosophers such as Salmon (1966) and Horwich (1982) have recom­
mended using Bayesian probability theory to illuminate theory evaluation. 
Recent work in AI has also considered probabilities as highly relevant to 
medical diagnosis and other kinds of abduction. Chamiak and McDermott 
(1985, chapter 8; cf. Pople, 1977) advocate the use of Bayesian methods of 
assessing evidence. Sometimes it is indeed desirable to use Bayes' theorem, 
one simple form of which is 

(hie) = 
p (h) x p (e/h) 

P p ee) 

Interpreted in terms of hypotheses, this says that the probability of a 
hypothesis h given evidence e is equal to the prior probability of h times 
the probability of e given h, divided by the probability of e. 

There are various cases, including many of medical diagnosis, where 
Bayes' theorem is useful, but theory evaluation does not seem to be one of 
them, since the relevant probabilities are difficult if not impossible to find. 
Consider the case of the wave theory of sound, where we are evaluating 
the conjecture that sound consists of waves on the basis of how well it 
explains the various phenomena of sound. To use Bayes' theorem, we 
would need to know three things: the prior probability of the wave theory 
of sound; the probability of sound reflecting, propagating, and passing 
through given its being a wave; and the probability that sound reflects, 
propagates, and passes through. Moreover, for the sake of calculation of 
p(e), we would need to know the extent to which the properties of sound 
are statistically independent of each other. How could such knowledge be 
acquired? I see no reasonable way of estimating such probabilities in cases 
such as the wave theory of sound, Darwin's theory of evolution, and other 
qualitative theories. In medical diagnosis, you often can get reasonable 
estimates of probabilities, knowing, for example, what percentage of peo­
ple with a particular symptom actually have a particular disease. But quali­
tative theory formation and evaluation of the sort performed by PI is not 
amenable to such techniques. Nor will the set-covering methods of Reggia, 
Nau, and Wang (1983) apply, since these depend on sets of related causes 
and symptoms that do not correspond to any kinds of knowledge available 
in the scientific contexts discussed above. 

As Harman (1986) points out, the general use of probabilities in belief 
revision is computationally intractable. To evaluate a theory T we would 
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have to be able to assign probabilities to various conjunctions of T 
together with the possible evidence propositions, but the number of such 
conjunctions grows exponentially. There are, however, heuristic ways of 
avoiding the combinatorial explosion (Peng and Reggia, 1986), for exam­
ple, by using qualitative means such as those in PI to select a relevant 
subset of theories and evidence, and then applying probability calculations 
to only small sets in which expol1ential growth is not a problem. I see little 
point, however, in adopting this strategy, since we lack a useful answer to 
the question: Where do the probabilities come from in the first place? Only 
in the case of overtly statistical theories-ones that concern observed 
statistical distributions-are probabilities in the sense of frequencies avail­
able. Proponents of the subjective interpretation of probability advocate 
thinking of probabilities as degrees of belief that can be determined by 
means such as betting behavior, but I am unable to attach much sense to 
the question of how to bet, for example, on the theory of evolution. The 
study of theory evaluation would only gain an illusory precision by aban­
doning qualitative considerations for probabilistic ones. 

5. 9. Conclusion 

Criteria for theory choice-consilience, simplicity, and analogy-tum 
out to be intimately connected with explanation rather than probabilities. 
Unlike hypothetico-deductive and Bayesian models of theory evaluation, 
the best explanation view gives an integrated account of the nature and 
importance of explanatory breadth, simplicity, and analogy. Because it 
accounts for many different aspects of scientific reasoning and applies to 
examples from different sciences, we can say recursively that the theory of 
inference to the best explanation outlined above is a highly consilient one. 

Application of the criteria of consilience, simplicity, and analogy is a 
very complicated matter. Proponents of the hypothetico-deductive method 
often assume that one measure, such as degree of confirmation, suffices for 
theory evaluation. But as Cerd Buchdahl ( 1970) has urged, there are often 
tensions among the various components of the support for a theory. 
Consilience and simplicity militate against each other, since making a 
theory more consilient can render the theory less simple, if extra hypoth­
eses are needed to explain the additional facts. The criterion of analogy 
may be at odds with both consilience and simplicity, if a radically new 
kind of theory is needed for simple explanatia of all the phenomena. 
Capturing the multi-dimensional character of scientific theory evalution is 
yet another virtue of the view that scientific inference is inference to the 
best explanation. 

I mention as a final merit of the above account that it makes possible a 
reunification of scientific and philosophical method, since inference to the 
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best explanation has many applications in philosophy, especially in meta­
physics. Arguments concerning the best explanation are relevant to prob­
lems concerning scientific realism (see chapter 8), other minds, the external 
world, and the existence of God. Metaphysical theories can be evaluated as 
to whether they provide the best explanation of philosophical and scientific 
fads, according to the criteria of consilience, simplicity, and analogy. 

5. 10. Summary 

Theory evaluation consists of picking the best explanation from a set of 
competing theories . The best explanation is determined by the criteria of 
consilience, simplicity, and analogy. Consilience is a measure of how much 
a theory explains. As in the program PI, consilience should be measured by 
looking at the past explanatory successes of the theory. PI is capable of 
evaluating not only which theory explains the most facts, but also of 
considering which theory explains the most important facts. Simplicity is a 
criterion that constrains consilience by ensuring that a theory does not 
achieve consilience by means of ad hoc auxiliary hypotheses. Analogy 
contributes to a theory's explanatory value because its problem solutions 
are likely to be facilitated using existing problem solutions in another, more 
well-established, domain. Given a flexible view of the meaning of concepts, 
incommensurability is not a problem. Probabilities are largely irrelevant to 
theory evaluation. 
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Chapter 6 

Against Evolutionary Epistemology 

The last two chapters presented a computational account of how scientific 
theories can be discovered and evaluated, using mechanisms such as con­
ceptual combination, abduction, and inference to the best explanation. This 
chapter criticizes another approach to describing the growth of scien­
tific knowledge, evolutionary epistemology. By "evolutionary epistemology" 
I mean Darwinian models of the growth of scientific knowledge. Such 
models rely on analogies between the development of biological species 
and the development of scientific theories. Recent proponents of evolu­
tionary epistemology include the psychologist Donald Campbell (1974), 
the sociobiologist Richard Dawkins (1976), and philosophers of science 
Karl Popper (1972), Stephen Toulmin (1972), and Robert Ackerman (1970). 
I shall argue that the analogy between the evolution of species and the 
growth of scientific knowledge is seriously defediv:e: clear examination of 
the practice and history of science shows the need for a non-Darwinian 
approach to historical epistemology. 

6.1. What Makes a Good Analogy? 

We saw in chapters 4 and 5 that analogy plays a powerful role not only in 
the discovery but even in the justification of theories. Hence in general the 
use of biological analogies by evolutionary epistemologists is unobjection­
able. Yet clearly some analogies are much better than others: what distin­
guishes the good ones? The discussion of analogy in the last chapter 
showed that there is much more to evaluating an analogy between a base 
and a target than just counting their similarities and differences. 

On the view defended in Holland et al. (1986, chapter 10), analogies 
are to be understood pragmatically, in terms of their role in problem 
solving. We saw in chapter 3 the power of analogical problem solving, in 
which useful features of one kind of problem solution are carried over to 
furnish a solution of a new problem. It does not matter much if there are 
features of the old solution that differ markedly from the new problem, as 
long as there are some useful features that carry over. Hence we should 
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conclude that a good analogy is simply one that contributes to the solution 
of a given set of problems. 

The problem addressed by both computational philosophy of science 
and evolutionary epistemology is how to characterize the development of 
scientific knowledge. A critique of evolutionary epistemology must do 
more than just point out differences between biological evolution and the 
growth of knowledge, since a few differences might be irrelevant to the 
problem-solving effectiveness of biologically inspired models. I shall argue 
that the differences between the development of science and the evolution 
of species are so severe that use of the analogy can only lead to seriously 
defective answers to the problem of describing how knowledge grows. 

6.2. The Evolutionary Approach 

The neo-Darwinian model of species evolution consists of Darwin's theory 
of natural selection synthesized with twentieth-century genetic theory. The 
central ingredients of the neo-Darwinian model are variation, selection, and 
transmission. Genetic variations occur within a population as the result of mu­
tations and mixed combinations of genetic material. Individuals are engaged 
in a struggle for survival based on scarcity of food, territory, and mating 
partners. Hence individuals in whom variation produces traits that provide 
some ecological or sexual advantage will be more likely to survive and repro­
duce. Their valuable traits will be genetically transmitted to their offspring. 

Evolutionary epistemology notices that variation, selection, and trans­
mission are also features of the growth of scientific knowledge. Scientists 
generate theories, hypotheses, and concepts; only a few of these variations 
are judged to be advances over existing views, and these are selected; the 
selected theories and concepts are transmitted to other scientists through 
journals, textbooks, and other pedagogic measures. The correspondences 
between the development of species and the development of knowledge are 
indeed striking, but only at this superficial level. We shall see that variation, 
selection, and transmission of scientific theories differ decisively from their 
counterparts in the evolution of species. Evolutionary epistemology does, 
however, have some salutary features. Like computational philosophy of 
science, it is naturalistic and historical, and it admits the possibility that 
the units of knowledge are more complex than sets of sentences. Neverthe­
less, evolutionary epistemology can be shown to give highly misleading 
accounts of the variation, selection, and transmission of ideas. 

6.3. Variation 

First consider variation. The units of variation in species are genes, with 
variation produced by errors in the process by which genes are replicated. 
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Since the changes in genes are generally independent of the individual's 
environmental pressures, genetic variation is often said to be random. A 
better characterization is that of Campbell, who discusses blind variation 
(Campbell, 1974, p. 422). He outlines lhree important features of blindness. 
First, variations emitted are independent of the environmental conditions 
of the occasion of their utterance; that is, the variations that occur are not 
prompted by the environment, but occur through autonomous mecha­
nisms. (This is not strictly true of biological variation, because of the 
effects of environmental· mutagens, but for now we can ignore these as 
special cases.) Second, the occurrence of trials (genetic changes) individually 
is not correlated with what would be a solution to the environmental 
problem that the individual faces. And third, variations to incorred trials 
are not corrections of previous unsuccessful variations. Biological variation 
clearly is blind. For example, birds whose habitat changes dramatically do 
not become more likely to undergo mutations that will make them better 
adapted to the new environment. 

Obviously, however, the development of new theories in science is not 
blind in any of these respects. When scientists arrive at new ideas they 
usually do so as the result of concern with speCific problems. Hence, unlike 
biological variation, conceptual variation is dependent on environmental 
conditions. Whereas genetic variation in organisms is not induced by the 
environmental conditions in which the individual is struggling to survive, 
scientific innovations are designed by their creators to solve recognized 
problems; they therefore are correlated with solutions to problems, in 
precisely the way in which Campbell says blind variations are not. Scien­
tists also commonly seek new hypotheses that will correct errors in their 
previous trials, as in Kepler's famous efforts to discover a formula to 
describe the orbit of Mars (Hanson, 1958). Thus the generation of the units 
of scientific variation does not have any of the three features of blindness 
that Campbell describes as charaderistic of evolutionary variation. 

For Campbell (1974, 1977), the claim that new knowledge is arrived at 
by a blind process is virtually definitional. He states (1974, p. 422), tlln 

going beyond what is already known, one cannot go but blindly. If one can 
go wisely, this indicates already achieved wisdom of some general sort." 
He says (1977, p. 504) that "blind" is meant to contrast with "prescient" or 
"clairvoyant". He thinks that if variations are constrained at all, they are 
constrained by existing knowledge that was itself obtained by blind varia­
tion and selective retention. Campbell presents us with a choice: either 
knowledge arises through blind variations, or, as in Plato's Meno, knowl­
edge is something we had all along or at least knew directly how to get. 

The discussion of inductive mechanisms in chapter 4 shows that Camp­
bell has presented a false dichotomy. Theoretical development need be 
neither blind nor prescient. In the program PI, all learning occurs in the 
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context of problem solving. Truly blind variation never occurs, since all 
induction is triggered during the attempt to solve some problem. We saw 
that this kind of focusing was crucial to avoid an explosive generation 
of useless and irrelevant concepts and rules. For example, blind use of 
the mechanism of conceptual combination would generate all sorts of 
new concepts that would never have practical application, producing an 
unlimited number of new construds like "striped sound" or "green bank 
teller" that would severely impede the performance of the system. Instead, 
the triggering conditions ensure that inductive operations will only be 
performed on messages, rules, and concepts that have been adivated 
by current problem-solving attempts. There is no prescience here, since 
nothing guarantees that the strudures activated will lead to a solution to 
the current or future problems. But variation is clearly not blind either, 
since formation of concepts and rules that may be useful in solving a 
problem is more likely to occur during the attempt to solve that problem. 

Superficially, conceptual combination bears some resemblance to the 
biological operation of crossover, which recombines genetic information 
through the exchange of segments between pairs of chromosomes. But com­
bination of concepts in PI is far more directed than that sort of exchange, 
since deciding what rules to form for a new concept based on the rules 
attached to the two donor concepts requires complex heuristics. Forming a 
concept such as sound wave or feminist bank teller is not Simply mixing 
together sound and wave or feminist and bank teller, but involves deter­
mining what rules potentially conflict and how to reconcile them. 

The links between problem solutions and inductive variations are even 
closer for the different varieties of abdudion. In simple abduction, we form 
a particular hypothesis to explain some puzzling fad. Suppose my problem 
is to solve a murder, and I activate the information that Fred was seen 
fleeing from the scene of the crime along with the rule 

If x murdered y, and x does not want to be caught, then x flees the 
scene. 

I may then naturally form the weak hypothesis that Fred was the murderer. 
This hypothesis could well be false, but it was not formed blindly, since it 
was constrained by the current problem-solving situation, by the mecha­
nism of abdudion, and by the availability of rules concerning murder. Blind 
variation would be as likely to generate such hypotheses as that AttHa the 
Hun was the murderer, or, with complete irrelevance, that Attila the Hun 
wore argyle socks. A computational approach makes it clear that some 
guidance is crucial to narrow down the possible set of hypotheses. (For 
discussion of how a related lesson was learned in research on automatic 
programming, see Lenat, 1983.) 

In existential, analogical, and rule-forming abduction, the ties between 
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problem solutions and knowledge generation are not as tight as in simple 
abduction, but still suffice to show that these mechanisms are a far cry from 
blind variation. In abductive rule formation an explanatory rule would 
never have been formed if not for some simple abduction performed 
previously: recall that the rule that all sound consists of waves depended 
on the prior abduction that an arbitrary example of sound consists of 
waves. Once again there is no attempt to generate rules blindly; doing so 
would only create chaos. Similarly, analogical abduction proposes new 
hypotheses using past problem solutions, but only those problem solutions 
that have been found by directed spreading activation to have some rela­
tion to the desired problem solution are candidates for analogizing, guaran­
teeing that there is some connection between the problem situation and 
what hypotheses are formed. Analogical abduction is therefore neither 
prescient nor blind, but constrained in potentially useful ways by the 
problem situation. In the vocabulary of AI, rules of inference such as the 
varieties of abduction can be understood as heuristics-useful rules of 
thumb-for guiding the search for problem solutions. 

Campbell's consistent reply to this kind of objection is to maintain that 
the knowledge about kinds of domains and the methods of heuristic search 
must themselves have evolved by blind variation and selective retention. 
His question-begging response is based on the lament: How else could 
they have evolved? He claims (Campbell, 1960, p. 394) that there is no 
essential disagreement between his viewpoint and the theory of heuristic 
search, since any machine that developed its own heuristics would have to 
do so by trial and error of heuristic principles. This is not quite so: Lenat 
(1983) has developed a program that has heuristics for generating heuris­
tics. Still, we have to reach bottom somewhere. Where do the initial 
heuristics come from if not by blind variation? In an organism, the heuristic 
search devices with which it is born are presumably there as the result of 
eons of biological evolution: the species has evolved with those innate 
heuristics because of their survival value. Just as a computer has to be 
preprogrammed with some mechanism for solving problems and perform­
ing inductions, so an organism has to have some built-in hardware and 
software for learning. 

This retreat to the biological level does not save evolutionary epistemol­
ogy as a model for the growth of science, although it does point to another 
more plausible view that has been discussed under the heading of "evolu­
tionary epistemology": some aspects of human knowledge may be better 
understood as the result of seeing the knower in a biological context, 
taking into account the evolution of the species. But the biological roots of 
the human information processing system are not directly relevant to the 
task of developing a model for the growth of scientific knowledge. Even 
though, at some primordial biological level, heuristics for developing hy-
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potheses may have arisen by blind mutation, we cannot ignore the fad that 
our descriptions of inductive procedures must make reference to mecha­
nisms that at that level are far from blind. The biological details distract us 
from the issue at hand, describing the growth of scientific knowledge. 
Taking evolutionary epistemology seriously as a model of scientific knowl­
edge development would shift our attention away from mechanisms for 
problem solving and learning, such as those in PI, that can help to focus 
and constrain the generation of new hypotheses and concepts. 

We can distinguish between two kinds of evolutionary epistemology, 
which I call 'oiological" and "individual". The biological kind says, in a 
naturalistic spirit, that considerations of the nature of human knowledge 
should take seriously the biological origins of our capacity to know. This 
is fine. The individual kind, however, tries to base an understanding of how 
knowledge develops in individual thinkers on an analogy with the devel­
opment of species, but the severe problems with the analogy cannot be 
avoided by retreating to the biological kind of evolutionary epistemology, 

We saw in PI that the generation and evaluation of hypotheses are 
linked because of the intimate connection of abduction and inference to the 
best explanation. Similarly, Toulmin notes (1972, pp. 337ff.) that in the 
history of science variation and selection are "coupled": the factors respon­
sible for selection are related to those responsible for the original genera­
tion of variants. Scientists strive to come up with variants that will survive 
the selection process. Abduction generates only hypotheses with some 
initial plausibility, ones that have been found to explain at least something. 
Similarly, the role of analogy in looking for a new theory corresponds 
roughly to a criterion of analogy used in arguments that a theory be 
accepted. In contrast, species variation and selection are "uncoupled": the 
factors that produce genetic change are unrelated to the environmental 
struggle for survival, except in special cases where the environmental 
threat is unusually mutagenic. The coupling of variation and selection for 
scientific theories makes theory choice a much more efficient procedure. If 
variation were blind, we would be faced with the necessity of choosing 
among an unmanageably large number of theories, many of them irrele­
vant. Instead, the intentional, quasi-logical process by which hypotheses 
are generated narrows the range of candidates that must be considered for 
selection. Evolutionary epistemology would lead us to overlook the ways 
in which processes like abduction and analogy tie together generation and 
selection, the context of discovery and the context of justification. 

Another difference between biological and scientific development is that 
the rate of theoretical variation seems to be partly dependent on the degree 
of threat to existing theories. In Kuhnian terminology, there is more likely 
to be a proliferation of new concepts and paradigms when a field is in a 

state of crisis due to the mounting failures of the dominant paradigm. The 
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rate of biological variation is not similarly sensitive to degree of environ­
mental pressure on organisms. An interesting project for computational 
philosophy of science would be to make inductive mechanisms even more 
sensitive to the problem-solving context. varying in application depending 
on such factors as the availability of established theories. Abduction, for 
example, might be made less likely to generate new hypotheses when there 
are already established explanations for facts to be explained. 

This completes my argument that the differences between biological 
variation and theoretical variation are so severe that attempts to apply the 
the former to the latter will likely lead to poor solutions to problems about 
the generation of theories. The main differences have concerned blindness, 
direction and rate of variation, and coupledness of variation and selection. 
It is ironic that the great merit of Darwin's theory-removing intentional 
design from the account of natural development-is precisely the great 
flaw in evolutionary epistemology. The relevant difference between genes 
and theories is that theories have people trying to make them better. 
Abstraction from the aim of scientists to arrive at progressively better 
explanations of phenomena unavoidably distorts our picture of the growth 
of science. This is as true of the selection of theories as it is of the origin of 
theories. 

6.4. Selection 

The differences between epistemological and biological selection arise from 
the fad that theory selection is performed by intentional agents working 
with a set of criteria, whereas natural selection is the result of different 
survival rates of the organisms bearing adaptive genes. Nature selects, but 
not in accord with any general standards. Nature is thoroughly practical, 
favoring any mutation that works in a given environment. Since there 
is such an enonnous range of environments to which organisms have 
adapted, we have no global notion of what it is for an organism to be fit. 
Fitness is not inherently a property of an organism, but is a function of the 
extent to which an organism is adapted to a specific environment. (1 here 
ignore, as not relevant to the question of evolutionary epistemology, 
important controversies in biology and philosophy concerning the units of 
selection.) 

In contrast, selection of theories and concepts occurs in the context of a 
community of scientists with definite aims. These aims include finding 
solutions to problems, explaining facts, achieving simplicity, making accu­
rate predictions, and so on. Perhaps at different times djfferent aims are 
paramount, so that there may be inconstancy and even subjectivity in the 
application of criteria for theory choice. The application of such criteria 
may well be much more complex than PI's current algorithm for theory 
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evaluation. Nevertheless, when scientists are advocating the adoption of 
a new theory, they appeal to some of a basic set of criteria according to 
which their theory is superior to alternatives. Since the rise of modem 
science in the seventeenth century, there has been much agreement at the 
general level about what theories should accomplish in explanation, prob­
lem solving, and prediction, even if the application of these general aims in 
particular cases has been controversial. The controversy derives from the 
complexity of the set of criteria, not from any fundamental disagreement 
about the whole range of desiderata. Everyone wants simple theories that 
explain a lot. Hence selection of theories is strikingly different from the 
selection of genes. Survival of theories is the result of satisfaction of global 
criteria, criteria that apply over the whole range of science. But survival of 
genes is the result of satisfaction of local criteria, generated by a particular 
environment. Scientific communities are unlike natural environments in 
their ability to apply general standards. 

Progress is the result of application of a relatively stable set of criteria. 
Progress is only progress with respect to some general set of aims, and 
results from continuous attempts to satisfy the members of the set in 
question. Since scientists do strive to develop and adopt theories that 
satisfy the aims of explanation and problem solving, we can speak of 
scientific progress. In contrast, there is no progress in biological evolution, 
since survival value is relative to a particular environment, and we have no 
general standards for progress among environments. We could perhaps 
says that evolution of Homo sapiens is progressive given our environment 
and our extraordinary ability to adapt to it, but our species may well 
someday inhabit an environment to which so-called lower animals are 
much better adapted. A postnuclear war environment saturated with radio­
activity would render us less fit than many less vulnerable organisms. 
Biological progress might be identified with increase in complexity, control 
over the environment, or capacity for acquiring knowledge, but none of 
these is a universal trend in evolution. As G. G. Simpson summarizes (1967, 
p. 260), "Evolution is not invariably accompanied by progress as an essen­
tial feature." Hence the Darwinian model of development employed in 
evolutionary epistemology lacks a concept of progress essential in histor­
ical epistemology. 

What is progress according to the computational account of theories7 
The answer is directly tied to the methodology of inference to the best 
explanation. Scientific progress consists in finding new theories that pto­
vide greater and greater satisfaction of the criteria of consilience, simplicity, 
and analogy. Consilience is clearly the most important: we want explana­
tion of more and more classes of facts. Section 5.7 argued that we do not 
have to worry about incommensurability of theories. No theory of light 
could fail to include among its classes of facts explained the phenomena 
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of reflection, refraction, and diffraction. No gravitational theory, no mat­
ter how much U deviated conceptually from general relativity, would be 
accepted if it did not have application to the class of facts about the motion 
of the planets in our solar system, a class crucial to both Newtonian and 
Einsteinian theories. I am not saying that scientific progress requires incor­
poration of all previous classes of facts explained. But there are structures 
in our cognitive systems sufficiently close to ordinary experience that facts 
can be classed independently of the general theoretical framework that 
incorporates them. Successive theories can be expected to include explana­
tions of the acknowledged important classes of fads. Otherwise, inference 
to the best explanation would never lead to the abandonment of the old 
theory in favor of the new. In this partial accumulation lies scientific 
progress. 

Thus the selection of theories shows further the weakness of evolution­
ary epistemology, which would shift attention away from the conscious 
application of general criteria and the achievement of progress, both of 
which are important for understanding the growth of science. Let us now 
consider biological and epistemological transmission. 

6.5. Transmission 

Modem genetic theory prOVides us with an account of how genes that 
increase the fitness of an organism are preserved and transmitted to the 
organism's offspring. Preservation and transmission of conceptual survi­
vors is quite different. A beneficial gene is replicated in specific members 
of a population, but a successful theory is immediately distributed to most 
members of a scientific community. Preservation is by publication and 
pedagogy, not by any process resembling inheritance. Dissemination of 
successful theories is much more rapid than dissemination of beneficial 
gens. This is one reason why conceptual development seems to be so much 
more rapid than biological development. (The others include the inten­
tional aspect of theoretical variation and the progressive aspect of theory 
selection, already discussed.) Thus at the level of transmission of units of 
variation, as well as at the levels of variation and selection, the growth of 
knowledge is different from the evolution of species. 

It is sometimes claimed that the growth of knowledge is Lamarckian 
rather than Darwinian, since pieces of knowledge gained by one inquirer 
can be immediately passed on to others, like Lamarck's acquired characteris­
tics. But as Hull (1982) trenchantly points out, sociocultural evolution is 
neither Darwinian nor Lamarckian, since it is not genetic. Genes serve as 
templates for new genes, which produce organisms. In contrast, theories 
and their components do not produce new theories. To use Hull's simile, a 
theory is like a parasite inhabiting those who hold it and capable of 
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spreading to others. We saw in chapter 3 that scientific theories are com­
municated through standard problems studied by those new to a field. By 
learning how to solve the problems, budding scientists acquire the rules, 
concepts, and problem solutions that constitute the relevant theory for the 
domain being studied. The nongenetic character of theory transmission 
is yet another reason not to import biological concepts into historical 
epistemology. 

Even the units of variation and transmission have very different proper­
ties. Dawkins (1976) postulates "memes" as the conceptual replicating 
entities analogous to genes. But this postulation is gratuitous since we 
already have notions that describe the entities that develop in scientific and 
cultural change. These entities include rules, theories, laws, data, concepts, 
and so on. Talk of memes does nothing to overcome the substantial 
problems of explicating the nature of theories, concepts, and world-views. 
Earlier chapters offered a computationally and psychologically plausible 
account of what constitutes scientific knowledge. Historical epistemology 
needs to build on some such framework, without postulating entities like 
memes whose only function is to foster misleading biological analogies. 

Discussion of transmission of ideas in scientific communities might sug­
gest a third, social kind of evolutionary epistemology in addition to the 
biological and individual kinds distinguished earlier. One might advocate 
thinking of scientists as individuals in whom ideas arise, with transmission 
of ideas being like the spread of a biological trait in accord with the 
principles of population genetics. Once again the biological analogy con­
ceals more than it reveals. More careful sociology of scientific knowledge 
investigates the influence of scientific elites, communicaHon networks, and 
other social organizations that have properties not found in populations of 
species other than humans (Crane, 1972). To get a theoretical metaphor 
that is better able to deal with such complexities than does population 
genetics, we should look instead to the idea of parallel computation (see 
chapter 10). 

6.6. Conclusion 

Because the variation, selection, and transmission of scientific ideas differ in 
such fundamental ways from their biological analogs, Darwinian natural 
selection provides a poor model for understanding the growth of science. 
It misleadingly suggests that variation in scientific ideas is blind, that their 
selection is by local criteria, and that their transmission is genetic. It ignores 
the pragmatic, problem-solving context of induction. Thus employment of 
the evolutionary analogy leads away from solutions to important problems 
about the growth of knowledge, not toward them. Hence evolutionary 
epistemology, conceived as the application of the Darwinian model to 
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scientific development, should be abandoned. The Darwinian model is 
powerful and seductive, but its use must be restricted to domains to 
which it has legitimate application. Like many sociobiological accounts of 
aspects of human culture, evolutionary epistemology takes the mechanism 
of natural selection beyond the realm of plausible applicability. 

I hope that the discussions of the growth of science found in this work 
convince the reader that it is possible to have a naturalistic and historical 
epistemology without Darwinizing. Computational accounts of theory dis­
covery and selection can go far beyond the vague Darwinian metaphor of 
variation and selection. Of course, an intrepid evolutionary epistemologist 
might claim my accounts as specifications of the Darwinian process and 
even maintain their compatibility. I am reminded of the children's fable of 
Stone Soup, in which a visitor convinces villagers that he can make soup 
using only his magic stone, although he does get them to enhance the 
stone soup using some chicken, vegetables, and so on. No doubt we can 
use the Darwinian model to start epistemological soup, but why bother 
with the stone? 

6.7. Summary 

Evolutionary epistemology describes the growth of scientific knowledge 
using analogies with biological evolution. Although it is possible to gener­
ate superficially plausible conceptual analogs of biological variation, selec­
tion, and transmission, closer analysis shows that the analogy between bio­
logical and epistemological evolution impedes rather than fosters under­
standing of scientific development. In particular, the account of discovery 
in chapter 4 shows that scientific theories are not generated by blind 
variation, and the discussion of theory choice in chapter 5 demonstrates 
important differences between it and biological selection. Hence evolu­
tionary epistemology is much inferior to computational philosophy of 
science as a framework for understanding scientific knowledge. 
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Chapter 7 

From the Descriptive to the Normative 

7.1. The Normative Character of Philosophy 

The previous chapters gave descriptions of how scientific knowledge grows 
through processes of problem solVing, discovery, and theory evaluation. 
These descriptions were naturally tied to the fields of cognitive psy­
chology, artificial intelligence, and history of science. But philosophy has 
always been concerned, not merely with what is, but also with what ought 
to be, with the normative as well as the descriptive. Logic, philosophy 
of science, and epistemology in general are essentially normative fields, 
prOViding evaluations as well as descriptions of methods for achieving 
knowledge. Whereas psychology is supposed to describe how people do 
think, logic and epistemology are concerned with how people ought to 
reason. Similarly, whereas history of science describes what scientists have 
done, philosophy of science is concerned with how science ought to be 
conducted. Thus even computational philosophy of science has to have a 
normative side, but on what basis are we to make nonnative judgments7 
How can we objectively establish canons of logic and scientific method? 
Can we justify the use of forms of reasoning such as abduction and 
inference to the best explanation? 

Traditionally, philosophers have seen two ways of justifying ways of 
reasoning. The rationalist approach attempts to discover principles of rea­
soning through a priori reflections on the necessary properties of the 
rational mind. But the proliferation of formal logics and the empirical study 
of kinds of human reasoning have destroyed the plausibility of the claim 
that there is an essential way in which rational beings do and must think. 
Moreover, the rise of scientific reasoning is a relatively recent cultural 
phenomenon, owed to renaissance Europe; so it is even less plausible to 
suppose that principles of scientific reasoning can be derived by a pure 
rationalist method. Empiricist philosophers have attempted to justify logic 
by saying that logical principles are analytic, true by definition, a view that 
is equally incompatible with the proliferation of alternative logics. 

Today it is more fashionable to say that normative canons of logic and 
philosophy of science are not to be had at all. Paul Feyerabend (1975) 
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summarizes his epistemological anarchism in the dictum: Anything goes. 
Richard Rorty (1979) exhorts philosophers to abandon foundational epis­
temology for hermeneutic "edification". The pessimism of Feyerabend and 
Rorty stems from failures of analytic philosophy and positivist philosophy 
of science to carry out their programs of using the techniques of logical 
analysis to establish a clear foundation for knowledge, including scientific 
knowledge. Is there an alternative to postpositivist depression? 

Yes: we can arrive at normative principles of reasoning by reflection on 
descriptions of how everyday and scientific reasoning actually works. Such 
reflection does not derive the normative from the descriptive; there is no 
immediate deduction of ought from is. Nevertheless, descriptive studies 
contribute substantially to establishment of normative principles. This 
chapter outlines a methodology for this contribution. Chapter 8 then applies 
the methodology, most importantly to the justification of inference to the 
best explanation. Readers more interested in computational issues than in 
normative ones can skip to chapter 10. 

To show how normative conclusions can be drawn from descriptive 
matters, I shall consider several areas in which philosophers have found 
the descriptive to be relevant to the normative. After a brief critique of 
Nelson Goodman's well known discussion of the justification of induction, 
I examine three richer cases of descriptively based development of norma­
tive principles. The two base cases are historical philosophy of science and 
wide reflective eqUilibrium in ethics, which are used to suggest a model for 
the more complex case of deriving logical principles from psychological 
practice. Finally, I generalize from all three cases to a general model of how 
to go from the descriptive to the normative in a manner consistent with the 
computational approach of earlier chapters. 

7.2. Goodman: Normative Conclusions through Reflective Equilibrium 

Hume (1888) raised the skeptical question of whether inductive reasoning 
from evidence to more general conclusions could ever be justified. Nelson 
Goodman (1965) proposed an influential dissolution of Hume's problem of 
induction. Goodman suggested that prinCiples of inductive inference, like 
principles of deductive inference, are justified merely by conformity with 
accepted inferential practice. Goodman writes, "The point is that rules and 
particular inferences alike are justified by being brought into agreement 
with each other. A rule is amended if it yields an inference we are unwilling 
to accept; an inference is rejected if it violates a rule we are unwilling to 
amend. The process of justification is the delicate one of making mutual 
adjustments between rules and accepted inferences; and in the agreement 
achieved lies the only justification needed for either" (Goodman, 1965, 
p. 64-emphasis omitted). Subsequently, John Rawls (1971) proposed that 
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ethical principles could be established by a similar method, through the 
achievement of what he called "reflective equilibrium" between moral 
principles and individual moral judgments. Applying this term to Good­
man's method, we can say that, according to Goodman, justification of 
principles of reasoning is the result of achieVing reflective equilibrium 
between inferential principles and practice. Thus the normative emerges 
from the descriptive. 

Stich and Nisbett (1980) showed that Goodman's proposal is much too 
liberal. They cited psychological studies suggesting that it is all too easy 
for people to achieve reflective equilibrium despite poor practices such as 
the gambler's fallacy or the making of regression errors. (An example of the 
gambler's fallacy is supposing that the flip of a coin will be heads just 
because there has been a run of tails. An example of a regression error is 
assuming that a child of tall parents will be even taller. See Nisbett and 
Ross, 1980.) Goodman's proposal leaves no grounds for criticizing some­
one who arrives at a mutually adjusted set of bad principles and corre­
spondingly bad practices. Stich and Nisbett propose that questions of 
justification can be answered by considering the reflective equilibria of 
inferential experts. However, concern with the principles and practices of 
experts only pushes Goodman's problem farther back, for we can still ask 
whether the experts are justified in reflective equilibrium. Talk of reflective 
eqUilibrium begins to look only like a smokescreen for a relatively sophiS­
ticated fonn of logical and methodological relativism. I shall argue that 
reflective equilibrium is at best incidental to the process of developing 
normative principles. Moreover, when the dispensability of eqUilibrium 
considerations becomes evident, Stich and Nisbett's emphasis on the social 
component of justification becomes avoidable, along with its potentially 
relativistic implications. 

7.3. Historical Philosophy of Science 

In recent years, many philosophers of science have shifted from the meth­
ods of logical reconstruction pioneered by the Vienna Circle to methods 
involving detailed study of historical or contemporary examples of scien­
tific practice (Laudan, 1979; see also tutorial A). Instead of approaching 
science with the view that it needs to be cleaned up in order to reach 
standards commensurate with empiricist epistemology and the rigor of 
symbolic logic, the historical approach treats the philosophy of science as 
an empirical discipline (Hausman, 1981). Close attention must be paid to 
what scientists actually do, and prescriptions about what scientific method 
ought to amount to should be founded in actual practice. The implicit 
manifesto of this approach was Kuhn's Structure of Scientific Revolutions, 
originally published in 1962. From his and other historical studies, many 
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philosophers of science concluded that the elegant work of logical posi­
tivists on axiomatics, reduction, deductive explanation, and formal con­
finnation theory was often irrelevant to science, and so did not provide 
adequate nonnative standards. A few philosophers of science have followed 
Feyerabend (1975) in anarchistically concluding that no nonnative standards 
of scientific method are appropriate. But this is not a direct consequence of 
the deemphasis of logical reconstruction and the embrace of historical 
methods, for we can use historical studies to generate methodological· 
principles whose sway can be extended nonnatively to cover the general 
practice of science. But how does this work? 

Consider first the nature of theory evaluation, which can provide the 
first rough approximation to the selection of logical principles. The discus­
sion of theory evaluation in chapter 5 suggests that theory choice is based 
on methods that are comparative, coarse-grained, and dynamic. Theory 
choice is comparative in that it involves the assessment of a number of 
competing theories with respect to the empirical evidence, not just the 
adequacy of a particular theory. Theory choice is coarse-grained in that the 
units for comparing the relative explanatory strength of competing theories 
are not individual statements deducible from the theories but large classes 
of facts explained by theories, or, in the terminology of Laudan (1977), 
problems solved by the theories. Finally, theory choice is dynamic in that 
assessment of theories must take into account increases in the availability 
of competing theories and evidence to be explained. We can expect that 
the assessment of normative standards in philosophy of science, ethics, and 
logic will also be comparative, coarse-grained, and dynamic, in ways that 
will shortly be described. 

But doing historical philosophy of science is in many respects different 
from doing empirical science. In the first place, the selection of case studies 
is very important. We do not typically study what Henry Snerd was doing 
at the Miscellaneous Technology Corporation research lab in 1934; rather, 
most studies concentrate on cases recognized as exemplary accomplish­
ments of science. Galileo's physics, Newton's mechanics, Lavoisier's chem­
istry, and Darwin's theory of evolution have for obvious reasons been 
favored objects of study: they have been licensed by the subsequent 
history of science as genuine achievements. The progressive development 
of science enables us to pick out examples of scientific method that can be 
assumed, at least provisionally, to be typical not only of how science is 
done but of how it should be done. In doing empirical science, we might 
study a particular phenomenon because we think it to be typical of a wide 
range of phenomena, but there is no nonnative association. In historical 
philosophy of science, on the other hand, case studies acquire normative 
significance because of the background belief that such scientists as Galileo, 
Newton, and Darwin generally knew what they were doing. 
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Admittedly there are many pitfalls. Although we intensively examine 
Newton's work on mechanics and optics, we are leery of his studies 
of alchemy and astrology, since that work has not been vindicated by 
later scientific developments. Studies abound on Darwin's theory of natural 
selection, but historians as well as philosophers have spent much less 
time on his discredited theory of pangenesis. Hence we do not assume 
that the actual practice of even an esteemed scientist is always to be 
taken as normatively significant. Moreover, the philosophical historiogra­
phy of science is a highly theory-laden activity, since the methodological 
findings of philosophers in the papers and diaries of the scientists studied 
are undoubtedly influenced by the philosophers' antecedent philosophical 
expectations. As Hausman (1981) stressed, empirical philosophers of sci­
ence cannot help but begin with the philosophical tools familiar to them. 
Retrospective philosophical evaluations of pieces of scientific work may 
change over time as philosophical theories and scientific views develop. 
Thus historical philosophy of science is unavoidably based on philosophi­
cal history of science. Philosophical history of science is not, however, an 
arbitrary enterprise, since even the philosophical historian must feel con­
strained by the actual statements of the subjects of investigation. 

My characterization of historical philosophy of science applies best to 
mature sciences such as physics or biology. Philosophers of social sciences 
face more severe problems, since there is much less general agreement in 
those fields, both about current theories and about what constitute the 
great historical achievements. Thus the empirical philosopher of economics 
or psychology will be working with much noisier data than will the phi­
losopher of natural science, and hence will have to be much more careful 
in the leap from is to ought. There is much less general agreement about 
the accomplishments of Marx or Keynes or Freud or Piaget than there is 
about Galileo, Newton, and Darwin. 

Historical philosophy of science is comparative in that we ought to 
consider which of different methodologies best describes and explains what 
is going on in a concrete case. It is coarse-grained in that we are not trying 
to account deductively for a general array of scientific practices, but aim to 
explain a restrided number of practices deemed historically significant. 
And it is dynamic, in that one criterion we should use in evaluating a 
philosophical account of methodology concerns how well the account 
leads to subsequent illuminating historical work. We may, of course, decide 
that a particular instance of scientific work is not of philosophical signifi­
cance because the scientist in question was not employing the corred 
methodology. But this does not invalidate our general historical procedure, 
since a judgment would have to be based on reflection on other cases. 

Historical philosophy of science can also gain from reflection on bad 
science. My discussion in chapter 9 is intended to illuminate the difference 
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between science and pseudoscience by considering some cases of pseudo­
sciences, particularly astrology and creationism. It can also be instructive 
to consider examples where eminent scientists produced flawed theories, 
to see whether the flaws are the result of methods different from those 
that produced their successes. Typically, however, historical philosophy of 
science concentrates on the positive cases of scientific achievement. 

I have only scratched the surface in discussing how descriptive case 
studies in the history of science can be relevant to normative issues in the 
philosophy of science, but will rerum to the topic in section 7.7. I want now 
to summarize the elements of descriptive/normative relation in historical 
philosophy of science that may prove applicable to the general question of 
the relevance of the descriptive to the normative. The result is a crude 
schema that is labeled JlHPS", for historical philosophy of science: 

HPS 

1. We select cases of actual scientific practice. Selection is made on 
the basis of subsequent events in the history of science that have 
marked the cases as significant contributions to the growth of scientific 
knowledge. 
2. We develop case studies that describe scientific practice. 
3. We assume-or this can be argued for-that scientists have gen­
erally been successful in achieving the epistemic goals of science. 
4. Then the actual methods of the scientists in our case studies are 
at least an approximation to what the methods ought to be. Within 
the limitations of the historical record, we describe the scientists' 
methods. 
5. We reflect philosophically on the methods found in the case 
studies, developing more complex normative models, which can then 
be applied to other case studies. 

This deSCription of HPS is schematic, and its linearity is highly mis­
leading. It seems to suggest that we proceed first by doing history and 
then by deriving methodological principles. But of course our historiogra­
phy is unavoidably influenced by expected methodological conclusions. 
History and philosophy of science should be viewed as part of a dynamic 
system of recurring influences, best represen�ed not by a sequence of steps, 
but by a feedback process as in figure 7.1. Methodological conclusions are 
reached after the historical/methodological loop has been repeatedly run. 

The model HPS is only a crude approximation to what actually goes on 
in historical philosophy of science, but at this point a more faithful model 
would obscure the relations between deSCriptive and normative matters 
that I am trying to illuminate. A more accurate characterization of historical 
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philosophy of science is found in section 7.7. Let us now compare the 
simple process just described with what happens in ethical theory. 

7.4. Wide Reflective Equilibrium 

John Rawls (1971) recommended an ethical method aimed at achieving 
"reflective equilibrium" of particular moral judgments and general moral 
principles. This method has been developed further by Norman Daniels 
(1979) on which most of the following discussion draws. The method 
of wide reflective equilibrium is described by Daniels as follows (1979, 
pp. 258ff.): 

The method of wide reAedive equilibrium is an attempt to produce 
coherence in an ordered triple set of beliefs held by a particular 
person, namely, (a) a set of considered moral judgments, (b) a set of 
moral principles, and (c) a set of relevant background theories. We 
begin by collecting the person's initial moral judgments and filter 
them to include only those of which he is relatively confident and 
which have been made under conditions conducive to avoiding errors 
of judgment . . . .  We then propose alternatives sets of moral principles 
that have varying degrees of "fit" with the moral judgments. We do 
not simply settle for the best fit of principles with judgments, how­
ever, which would give us only a nR"DW equilibrium. Instead we 
advance philosophical arguments intended to bring out the relative 
strengths and weaknesses of the alternative sets of principles (or 
competing moral conceptions). These arguments can be constructed 
as inferences from some set of relevant background theories (I use the 
term loosely). Assume that some particular set of arguments wins and 
that the moral agent is persuaded that some set of principles is more 
acceptable than the others.. . .  We can imagine the agent working 
back and forth, making adjustments to his considered judgments, his 
moral principles, and his background theories. In this way he arrives 
at an equilibrium point that consists of the ordered triple (a), (b), (c). 

As with scientific theory choice and historical philosophy of science, we 
have here a method that is comparative, coarse-grained, and dynamic. The 
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particular moral judgments are not at all like incorrigible intuitions to which 
moral principles must conform: the judgments can be revised in the light of 
the principles just as the principles can be revised in the light of the 
judgments. The revisability of particular moral judgments does not show 
a complete difference in kind from the empirical evidence used to eva­
luate scientific theories. For in the first place even observation statements 
in science are not incorrigible, and in the second place assessment of the­
ories is not usually according to how they explain particular observations, 
but according to how they explain general classes of facts expressed in 
empirical generalizations that may well tum out to be false (see chapter 5). 

But there is at least a difference in degree between the status of moral 
judgments and the observational evidence used in assessing scientific the­
ories: moral judgments are, or ought to be, more corrigible. Moral judg­
ments are not constrained by causal interaction with an external environ­
ment in the way in which observations are. Although it is not unusual for 
scientists to throw out pieces of data that they have some reason to believe 
are defective, most data are taken very seriously. Historical philosophy of 
science provides an intermediate case of corrigibility. We must be prepared 
to admit that our interpretation of a particular case study is wrong, or even 
that for general reasons the case study was not an appropriate one, perhaps 
because the scientist's description of his or her procedure had been cor­
rupted by unfortunate attention to some misguided philosopher. (Darwin, 
for example, whose letters and notebooks often show great methodological 
sophistication, talks at one point in his Autobiography of working on true 
Baconian principles.) Nevertheless, corrigibility is limited by our antece­
dent conviction that work by the distinguished scientist we have chosen 
typifies the best scientific research. 

A most important aspect of Daniels' characterization of wide reflective 
equilibrium is the role of (c) a set of background theories. Coherence is to 
be achieved not only between moral judgments and principles, but also 
with theories concerning such matters as the nature of human beings 
and of society. Psychological theories about the actual or possible moral 
behavior of individuals will play a role in the interplay of particular moral 
judgments and general principles. But this is only one respect in which the 
method of wide reflective equilibrium takes us from the descriptive to the 
normative. The general moral principles that are developed in the move to 
equilibrium are clearly normative in content, but the status of the particular 
judgment is ambiguous. True, a moral judgment that a particular sort of 
action is wrong has normative content, but it fundions in the method of 
wide reflective equilibrium partly as a descriptive report of the attitude of 
a person toward the sort of action. Through a process of reflection, descrip­
tions of how a person feels about a certain sort of action are supplanted by 
a judgment of how a person ought to feel about an action. 
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Empirical background theories can play a particularly important role in 
the assessment of moral principles when they concern the physical or 
psychological limitations of human agents. Most ethical theorists accept 
the principle that "ought" implies "can", so that, conversely, if it is phys­
ically impossible for an agent to perform a certain action, then the moral 
principle that says that the agent ought to perform the action must be 
rejected. For example, the (false) psychological theory that people are 
capable of acting only in their own self-interest would require the rejedion 
of an ethical theory that maintained that people have a general obligation 
to be altruistic. In less extreme cases, we might only have the psychological 
result that there are certain things that are very hard, but not impossible, 
for people to do. Then the II ought" implies II can" principle does not have a 
direct bearing, but the psychological difficulty and resultant costs of carry­
ing out certain adions should figure in our estimation of the coherence of 
our judgments, principles, and background theories. This is especially clear 
in the context of explicitly consequentialist ethical theory, where part of 
the set of consequences to be taken in account in assessing the rightness of 
an action concerns the psychological effects on the agent. 

Let us now attempt to schematize the model for reaching normative 
conclusions found in Daniels' deSCription of wide reflective equilibrium. 
The order of steps does not represent any fixed temporal order, but is only 
meant to suggest a possible way of proceeding. Call the model'WRE", for 
wide reflective equilibrium: 

WRE 

1. We have a set of particular moral judgments about what is right or 
wrong, seleded for expeded freedom from error. 
2. We postulate a number of general moral principles that explain and 
justify the particular judgments. 
3. We attempt to come up with a maximally coherent set of beliefs, 
consisting not only of the moral judgments and principles, but also 
taking into account our background theories, especially concerning 
psychological limitations. 
4. We reach a state of reflective equilibrium, and conclude that the 
acceptance of the moral principles in the final set of beliefs is justified. 

As with HPS, this description is misleadingly linear: the process of 
reaching reflective equilibrium is better represented by the flow chart in 
figure 7.2. Ethical principles can just as easily provide a starting point as 
moral judgments. Normative principles are outputs from the system only 
after repeated adjustments of moral judgments and principles in the light of 
background theories have been made. 
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7.5. HPS, WREt and the Relevance of Psychology to Logic 

We are gradually winding our way toward a general picture of the re­
lation between the descriptive and the normative. HPS (historical phi­
losophy of science) and WRE (wide reflective equilibrium) are important 
preliminary models for relating the descriptive and the nonnative in their 
own spheres, but neither is adequate for answering general questions about 
the relation of the descriptive and the normative. HPS and WRE neglect 
essential aspects of another case of going from the descriptive to the 
nonnative, involving the relation of psychology and logic. A richer model 
of the descriptive/normative relation in psychology and logic will be 
developed in the next section. This richer model for psychology and logic 
will in tum provide the basis for a general descriptive/normative model. 

First, more must be said about the problem of the relevance of psy­
chology to logic. I use the term "logic" broadly, encompassing the study 
of deductive, inductive, and practical inference. (Practical inference con­
cerns what to do-how to make rational decisions.) These three branches 
of logic are dearly related to philosophy of science and ethics in some 
respects. One of the main problems of philosophy of science is the induc­
tive logic of assessing scientific theories, and another concerns the founda­
tions of statistical inference, so my discussion of HPS is not distinct from 
discussions of inductive inference; and ethics is often concerned with what 
ethical decisions to make, so it is closely related to practical inference. 
Hence, HPS and WRE should not be thought of as models taken from some 
field alien to logic, but merely as examples of explicit characterizations of 
how descriptive matters can have logical relevance. 

Recent empirical work in psychology shows numerous systematic dis­
crepancies between popular inferential practice and accepted logical norms 
(Tversky and Kahneman, 1974; Kahneman and Tversky, 1979; Nisbett and 

Copyrighted Material 



From the Descriptive to the Normative 123 

Ross, 1980). Such discrepancies elicit three possible responses, which can 
be crudely characterized as follows: 

I. People are dumb. They simply fail to follow the normatively appro­
priate inferential rules. 
2. Psychologists are dumb. They have failed to take into account all 
the variables affecting human inferences, and once all the factors are 
taken into account it should be possible to show that people are in 
fad following the appropriate rules. 
3. Logicians are dumb. They are assessing the inferential behavior of 
human thinkers against the wrong set of normative standards. 

In this discussion, I assume the egalitarian position that everybody gets to 
be dumb some of the time. The problem is to establish a methodology for 
mediating among people's inductive behavior, psychologists' descriptions 
of that behavior, and the logicians' normative principles used to judge the 
appropriateness of inferential behavior. 

7.5. 1. Limitations of HPS 
HPS will not furnish the required methodology. The crucial difference 
between doing historical philosophy of science and using psychological 
findings to revise logical principles is the special status of the case studies 
in HPS. When we select Darwin or Newton for special scrutiny in HPS, we 
do so with the understanding that the scientific thinking of the subject 
is exemplary. Subsequent developments in the history of science have 
warranted our belief that our stellar scientists knew what they were dOing, 
at least tacitly. When the psychologists tell us that people frequently do 
not take into account regression phenomena (Tversky and Kahneman, 
1974), we do not assume that the subjects know what they are doing: 
instruction in statistics can be expected to change their inferential behavior 
in desirable ways. 

But neither can we find experts in general inferential behavior who are 
analogous to our exemplary scientists. We need to distinguish between 
two sorts of experts: those who are expert at perfonning a task and those 
who are expert at explicitly saying how a task should be done. The two 
kinds of expertise need not coincide, as we see in athletics in the contrast 
between the inarticulate star performer and the pedagogically helpful but 
athletically inept coach. In HPS, we ought to pay more attention to 
what the subjects of our case studies do than to what they say they do, 
since scientists' explicit methodological pronouncements are as likely to be 
reflections of what they think they are expected to say as they are to be 
reflections of their methodological practice. In logic, we do not have as 
clear a set of people certified as experts in their practice, independent of 
their pronouncements. 
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We might suppose that for deductive inference we could take mathe­
maticians as our practicing experts, for inductive inference we could take 
statisticians, and for practical inference we could take high level managers. 
But in all these cases, practice is severely infected by philosophical views. 
Intuitionistic mathematicians eschew the use of some classical logical prin­
ciples; statisticians have grave disputes about the foundations of their 
work; while practicing statisticians generally use a grab bag of whatever 
methods-Bayesian, Neyman-Pearson, or Fisher-seem useful in a partic­
ular context. With practical logic, the decision-making behavior of high 
level managers may be uninformative; since to the extent they use formal 
principles, they probably use ones taught to them in business school by 
people who are more certified as experts in the logic of decision making 
than as practicing expert managers. Developing principles in logic, then, is 
like doing historical philosophy of social science. Whereas in natural science 
there is enough consensus in the scientific community that selection of 
cases for study is quite uncontentious, the schisms in the various social 
sciences preclude doing case studies whose validity would be universally 
accepted. For example, a study of explanation in economics would get 
different results if the investigator concentrated on Marx's capital theory 
rather than neoclassical theories. In psychology, one would derive a very 
different methodological picture from attention to gestalt psychologists' 
practice rather than behaviorists'. Similarly, logical practice among the 
alleged experts in deductive, inductive, and practical inference is not suffi­
ciently uniform and historically validated to allow the use of the case study 
methodology of HPS. Chapter 6 contended that there has been progress in 
natural science, but its accomplishment is much more problematic in the 
social sciences and especially in everyday inferential practice. Without a 

background argument for the sort of progress that underlies our confidence 
in scientific case studies, we cannot use an HPS methodology in going from 
psychology to logic. 

Psychological studies might nevertheless be useful in determining how 
people do or perhaps should reason; but as is not the case in HPS, we shall 
not be able to move to normative judgments primarily on the basis of 
the studies. Of course, in historical philosophy of science, we do not 
immediately leap from "is" to II ought" either. But there the leap is at least 
indirectly possible through assumptions about the nature of the growth of 
scientific knowledge. 

7.5.2. Relevance of WRE for Psychology and Logic 
Unlike HPS, the model based on wide reflective equilibrium resembles the 
psychology Ilogic problem in the absence of case studies or particular moral 
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judgments with assumed prior validity. Hence the justification of ethical 
principles is much shakier than the justification of methodological prin­
ciples in the philosophy of science. Like particular moral judgments, com­
mon inferential practice is revisable in the light of overriding normative 
principles. Just as in WRE we have a dynamic of particular judgments and 
general moral principles, so in the psychology/logic case we can look for a 
process of development of inferenHal practice and normative logical prin­
ciples as the result of critical assessment of both. In the logical case as in 
the ethical, we are seeking ,a wide rather than a narrow reflective equilib­
rium. This means that we want coherence not only of inferential practice 
and normative principles but also of both of these with background the­
ories and beliefs. 

The relevant background information is of two kinds. First, we need an 
account of the inferential capacities of human beings. As Goldman (1978) 
has suggested, the principle of II ought" implies II can" is relevant to epis­
temology and logic as well as ethics. We should not demand of a reasoner 
inferential performance that exceeds the general psychological abilities of 
human beings. For example, we cannot prescribe that cognizers believe all 
the logical consequences of their beliefs, since none of us has infinite 
storage or inferential capacity. In the same spirit, we do not want to 
prescribe normative logical principles that are too horribly difficult for 
humans to follow. What does "too difficult" mean here? To answer that, we 
need a second kind of background information, concerning the goals of the 
inferential behavior. With deductive and inductive inference, we have the 
minimal goals of achieving true beliefs and avoiding false ones, but that is 
a much too simple view of the matter. Other epistemic goals include 
achieving explanations and holistically coherent belief systems. Much of 
scientific knowledge, as well as most of everyday knowledge, has instru­
mental import, so that what deductive and inductive strategies we adopt 
will depend in part on our practical aims. Deductive or inductive principles 
that are inordinately costly in psychological tenns may be supplanted by 
principles that prima facie are intellectually inferior. Especially in the logic 
of decision making we see the relevance of the psychological and social 
limitations on human cognition to the question of what standards are 
normatively correct. As March (1978) points out, the application of appar­
ently optimal decision strategies may not be optimal given restraints on 
human abilities. 

The application of WRE to the psychology flogic case thus suggests that 
we should strive to reach reflective equilibrium among the following four 
factors: 

a. common inferential practice, 
b. normative logical principles, 
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c. background theories about the cognitive capacities and limitations 
of human beings, and 
d. background views about the goals of inferential behavior. 

However, this is still a too simple account of the matter, for in disputes 
about logical principles we often find other, more philosophical concerns 
brought to bear. For example, debates about the foundations of statistical 
inference often concern in part what philosophical interpretation of the 
probability calculus should be adopted: proponents and critics of Bayesian­
ism debate the merits of subjective probabilities versus objective lOgical 
or frequentist views. Dummett ( 1978) argues for intuitionistic logic and 
mathematics largely on the basis of verificationist theories of meaning. 
Thus we have to add to the matrix of elements taken into account in 
achieving reflective equilibrium 

e. background philosophical theories. 

7.5.3. Narrow Reflective Equilibrium? 
Cohen (1981a) asserts without argument that the psychology/logic case 
involves a narrow reflective equilibrium. He compares the case of fitting 
logical principles with logical practice to devising a grammar that 6ts a 
population's linguistic practice. The latter is indeed a case of narrow reflec­
tive equilibrium (Daniels, 1980): we are only concerned with a fit between 
principles and practice, and background theories do not play a role. But in 
constructing a set of logical principles we are doing much more than simply 
matching up with actual practice. Practice can improved. Logical practice 
has improved enormously with the developments in deductive, inductive, 
and practical logic of the past several hundred years. In contrast, linguists 
do not aim to improve the overall grammar of a linguistic population, since 
their task is descriptive. The logician, on the other hand, is concerned to 
develop a set of principles that is inferentially optimal given the cognitive 
limitations of reasoners. This requires reference to background psychologi­
cal and philosophical theories and to the goals of inferential behavior. 
Hence logical principles could only be arrived at by a process of wide 
reflective equilibrium. 

In his replies to commentators, Cohen (1981b) gives two reasons for 
considering narrow rather than wide reflective equilibrium. He says that the 
background issues about philosophical problems are too controversial and 
too fine-grained to be brought to bear on experimental studies of human 
rationality. All that follows from this is that establishing logical principles 
using wide reflective equilibrium will be difficult, since it requires at least 
provisional answers to hard philosophical questions that lurk in the back­
ground of disputes about logical principles. But we already know from the 
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longevity and complexity of disputes about inductive and deductive prin­
ciples that the establishment of such principles is never easy. We cannot 
evade philosophical issues about meaning, ontology, and inferential goals. 
Consideration of these issues, as well as background psychological the­
ories, requires wide reflective equilibrium, rather than narrow. 

In a situation where narrow reflective equilibrium is sought, the descrip­
tive inputs are relatively incorrigible. The linguist is concerned to report 
grammatical practice, not to reform it. Similarly, in historical philosophy of 
science, our concern is not usually to say what the exemplary scientists 
should have done. Another case of relative incorrigibility is scientific theory 
choice, where, despite being theory-laden, observations are not typically 
overridden. In contrast, in ethics, where we seek wide reflective equilibrium, 
we expect background knowledge and the improvment of principles to 
lead to revision and improvement in intuitive ethical judgments. Similarly 
in logic and psychology, the descriptive input is subject to change as 
education brings about improvement in inferential practice. Cohen's as­
sumption that basic inferential practice must be rational is as insupportable 
as intuitionism in ethics. 

7.6. From Psychology to Logic: Criteria for Inferential Systems 

7.6.1. First Approximation: FPL 
We can now give a rough characterization of what the above discussion 
suggests is the appropriate methodology for assessing the relevance of 
psychological studies to normative principles. The following model, called 
''FPL'' for "from psychology to logic", suggests a possible procedure for 
attempting to resolve disputes about normative principles. As with HPS 
and WRE, the steps have no rigid temporal significance. 

FPL 

1. We do empirical studies to describe inferential behavior. 
2. We generate sets of logical principles that explain and justify that 
inferential behavior. 
3. When inferential behavior deviates from logical norms, we consider 
whether new norms are needed or whether we can just revise inferen­
tial behavior to bring it in line with existing norms. 
4. This consideration depends on somehow developing a maximally 
coherent set of beliefs about people's actual behavior, their optimal 
behavior given their cognitive limitations and the goals of inferential 
behavior, and background philosophical issues. 
5. The logical principles among the maximally coherent set of beliefs 

are then deemed to be justified. 
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Once again, we have a process whose dynamic features are best repre­
sented in a flow chart, as in figure 7.3. 

By analogy with WRE, we repeatedly adjust logical pradice and prin­
ciples in the light of background theories until reflective equilibrium is 
reached; then the principles arrived at in the equilibrium state are "out­
putted" as normatively corred. But we cannot escape asking: What is it 
that determines that we have reached a state of reflective eqUilibrium? In 
the linear description of FPL, we must ask what it is to reach step 4 and 
achieve a "maximally coherent" set of beliefs. Without an account of how 
to evaluate coherence among pradice, principles, goals, and background 
theories, FPL has little content. I shall now describe a list of criteria 
for assessing the coherence of such a set of beliefs, then argue that the 
existence of such a set renders any discussion of reflective eqUilibrium 
redundant. 

7.6.2. Criteria for Coherence 
An inferential system is a matrix of four elements: normative principles, 
descriptions of inferential practice, inferential goals, and background psy­
chological and philosophical theories. How do we assess the coherence of 
such a system? Most important, how can we say that one system is more 
coherent than another? I propose three main criteria: robustness, accommoda­
tion, and efficacy. A system is robust if its normative principles account for 
inferential practice in a wide range of situations. Robustness in inferential 
systems is analogous to consilience in theory choice, where a theory is 
consilient if it explains a wide range of facts (see chapter 5). In a robust 
system, our normative principles justify and explain a variety of inferential 
behavior. However, we do not expect the principles to account for all 
inferential behavior, since we need to leave open the possibility that even 
after considerable refledion, people's behavior still deviates from logical 
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norms. We can accommodate such behavior by using background psy­
chological theory to explain why people sometimes deviate from the 
system's logical nonns. Thus accommodation prOVides a criterion supple­
mental to robustness: to the extent that principles do not robustly account 
for inferential practice, we expect to be able to explain that practice by 
reference to psychological fadors that interfere with the application of 
logical principles; the deviant practice is thereby accommodated. This cri­
terion is nontrivial, for our current psychological theories may lack the 
resources to explain deviations from inferential principles. 

By efficacy of a system, I mean the extent to which the principles and 
practices of a system lead to satisfaction of the relevant inferential goals. 
This is in part an empirical matter. We must observe how well principles 
enable us to satisfy such goals as preserving truth in deduction, achieving 
explanatory theories in indudion, and meeting human needs in pradical 
inference. Efficacy also should take into account how easily principles will 
be applicable given human information processing mechanisms; for this 
information, we depend on background psychological theories. 

Schematically, we can summarize these three criteria by the following 
questions: 

1. Robustness: to what extent do the normative principles account for 
inductive practice? 
2. Accommodation: to what extent do available background theories 
account for deviations of indudive practice from the normative 
principles? 
3. Efficacy: given background theories, to what extent does following 
the normative principles promote the satisfaction of the inferential 
goals? 

These criteria can be used to assess the comparative coherence of compet­
ing systems. In a given domain, we can assume that background theories 
and goals will be common to competing systems, and this gives us some 
hope of reaching an objective conclusion that one system is more coherent 
than the other. In particular, comparison of the efficacy of the two systems 
may enable us to make choice of systems more than a matter of purely 
internal coherence. Choice will obviously be highly complex, with difficult 
trade-offs between pairs of criteria, but nevertheless may be determinate 
and objective. The core, then, of the method FPL is development of an 
inferential system that is highly coherent according to the above criteria. 

7.6.3. Beyond Reflective Equilibrium 
But now we can abandon the presumption that the achievement of reflec­
tive equilibrium is somehow essential to the justification of logical norms. 
The notion of reflective equilibrium has been useful in getting us to our 
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current model FPL, since it has enabled us to elucidate the Goodmanian 
process of mutually adjusting principles and practice, while also taking into 
account background theories. But we can quickly see that the notion of 
equilibrium is of no help in justifying principles. 

The problem, as Stich and Nisbett ( 1980) pOinted out, is just that equi­
librium may be too easily reached. An individual may reach reflective 
equilibrium while possessing an inferential system that is resoundingly 
nonefficacious: people can rest contentedly with the gambler's and other 
fallacies. Stich and Nisbett's move to discussion of expert reflective equi­
librium is of no help, since they recognize that the experts can achieve 
specious equilibria too. At the end of their paper, they seem reduced to the 
relativist conclusion that rational resolution of debates between conserva­
tive experts and "cognitive rebels" may be impossible. 

This conclusion is avoided by seeing that the justification of a set of 
normative principles is based, not on the reflective equilibrium of any 
individual or group, but on the place of the principles in a defensible 
inferential system. Defense is based on arguments that the system is coher­
ent according to the criteria discussed above. General and expert inferential 
behaviors are relevant, since their description is part of inferential practice 
that is one component of the system S. But other factors besides inferential 
practice play a role in determining which 5 and set of normative principles 
will be optimal. The criteria of accommodation allow that we may well 
expect to have general or expert inferential behavior that does not conform 
to the normative principles. 

If one takes the notion of reflective equilibrium too seriously, one is 
pushed to unsatisfactory answers to the question: Whose reflective equilib­
rium7 There are two possible answers, one populist and one elitist. The 
populist strategy, favored by Cohen (1981a), is to emphasize the reflective 
equilibrium of the average person. This founders, because education in 
sophisticated inferential techniques can be expected to provide the indi­
vidual with a much more efficacious system. The elitist strategy, favored 
by Stich and Nisbett (1980), is to emphasize the reflective equilibrium of 
experts. This, too, is inadequate, for it leaves us no way of saying why the 
experts should be in eqUilibrium, or of mediating disputes among experts. 
On my account, the experts-or for that matter ordinary persons-ought 
to have their principles and practices in equilibrium if they have a highly 
coherent inferential system. Coherence is to be evaluated according to 
criteria to which the achievement of reflective equilibrium is irrelevant. 
What we are really after is not equilibrium, but progress: the development 
of better and better inferential systems. Improvement of inductive systems 
may well come about through an oscillating process of richer and more 
efficacious principles, practices, theories, and goals even if during the pro­
cess we never achieve equilibrium. 
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Compare scientific theory choice. Someone might claim that a theory 
becomes acceptable when one is able to reach a "reflective equilibrium" 
between the theory and the observations it is supposed to explain. But that 
would clearly obscure the nature of the il:lstificatory process. As we saw in 
chapter 5 ,  what makes the theory acceptable is that it provides a better 
explanation of the evidence than competing theories, according to criteria 
such as explanatory breadth, simplicity, and analogy. Reflective equilibrium 
would then be a mere epiphenomenon of the justified acceptance of the 
theory. Similarly, once we can provide criteria for assessing logical norms 
vis-a-vis competing inferential systems, reflective equilibrium is seen not to 
be an essential feature of the justification of those norms. At best, the 
notion of reflective equilibrium provides a metaphor for describing the 
complex process, better represented in figure 7.3, of how the development 
of a justified system of logical norms involves the interaction of numerous 
components including descriptions of inductive practice. 

1 have argued that reflective equilibrium-Goodman's fit between infer­
ential practice and normative principleS-is not in itself a source of justifi­
cation of the principles. It may, however, provide an indired way of telling 
what principles are justified at a particular time. The point here is social, not 
epistemological: the experts or others being in reflective eqUilibrium does 
not justify anything; for this, we need arguments that the inferential system 
in question is optimal with respect to the criteria discussed. However, when 
we face the practical problem of deciding what are most likely to be the 
best logical principles to use, we would be wise to follow the advice 
of Stich and Nisbett and consult the inferential experts. Since they are 
more familiar with alternative inferential practices, background theories, 
and inferential goals than are ordinary people, experts are more likely to 
have highly coherent inference systems. To the extent that the experts 
can be identified by the robustness, accommodation, and efficacy of their 
inference principles, my proposal converges with that of Stich and Nisbett. 

The metamethodological question naturally arises: What legitimates the 
three proposed criteria for inferential coherence? Here we have a develop­
ment from the descriptive to the nonnative at a higher level: 1 have 
advocated these criteria because they seem to be the ones actually used 
when we set out to evaluate inferential practices, and because they seem to 
promote the establishment of the sorts of inferential principles we want. In 
short, the criteria are, in an extended sense, robust and efficacious. There is 
no Circularity here of the sort that is found in inductive justifications of 
induction. We have long since abandoned the search for a full founda­
tionalist justification of inferential practice (d. Rescher, 1977). 

It might be argued that efficacy is all we really need: if we know that a 
method accomplished inferential goals, why worry about who uses it and 
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why? Goldman ( 1986) recommends the evaluation of methodological rules 
according to such performance criteria as reliability, power, and speed, 
preferring, for example, rules that produce a high ratio of true beliefs to 
false ones. The problem with this proposal is that such criteria of efficacy 
are often very hard to apply: how could we ever know what kind of 
truth ratio we get from inference to the best explanation? Sedion 8.1 
illustrates an approach to justifying this kind of inference that emphasizes 
robustness. 

7. 6 .4. On Deductive Logic 
Resnik (1985) has lucidly criticized attempts such as the above to show the 
relevance of psychology to deductive logic. He argues that the major 
concern of logicians is to charaderize what arguments we should accept, a 
task independent of the social project of improving people's reasoning. 
Logicians are concerned with whether a particular kind of inference is valid, 
leading only from true premises to true conclusions, not with how many 
people employ it or how hard it is for them to do so. 

Formal logic since Frege and Russell has been an impressive research 
program, yielding techniques for formalizing many different kinds of 
dedudive arguments and a set of powerful mathematical tools for analyz­
ing logical systems. As such, it is immune from the psychological con­
siderations that I have claimed are relevant to selection of logical principles. 
But that immunity comes at the price of narrow applicability. The study of 
reasoning has always been a centerpiece of philosophy, but formal deduc­
tive logic captures so little of what is interesting about reasoning that it 
would be a grave mistake to take it as paradigmatic. At best, logic only tells 
you what you may infer from a given set of premises, not which of the 
infinite set of consequences you should infer. To answer such questions 
even deductive logic has to become more pragmatic, looking at the goals 
of the reasoning process. These goals encompass much more than just 
preserving truth: we want to reach interesting and helpful conclusions. 
Unlike their nineteen-century counterparts, twentieth-century logicians say 
that such pragmatic matters are no concern of theirs. The result of the 
mathematicization of logic has been loss of contad with the great epis­
temological concern about how knowledge can be made to grow. As 
Harman ( 1986) and Goldman ( 1986) argue, current studies in deductive 
logic have little to do with reasoning. For the purposes of epistemology 
and the philosophy of science, reasoning, not formal logic, is what needs to 
be studied. Logic fails as an epistemological ideal not just because it is 
difficult for people to do right-in that case they might just be urged to 
try harder-but because it is a different sort of enterprise from most of 
what is involved in the growth of knowledge. 
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7. 7. From the Descriptive to the Normative: A General Model 

I have now discussed three domains in which descriptive findings have 
been found relevant to nonnative issues, and developed for the third case 
of psychology and logic an elaborate new model of the descriptive/nor­
mative relation. I now want to propose a fully general model that subsumes 
all the elements of going from the descriptive to the nonnative so far 
discussed. I call the model "FDN", for "from the descriptive to the norma­
tive." To avoid misleading linearity, I shall not state it as a series of 
steps. 1 do not want to suggest that reaching nonnative conclusions from 
descriptive information is always a "bottom-up" procedure, starting with 
descriptive matters and proceeding to nonnative principles. Rather, we 
often proceed "top-down" as well, with our nonnative principles guiding 
what empirical information is gathered. 

The dynamics of FDN are better represented in figure 7.4, which illus­
trates how one can start simultaneously with normative principles and 
descriptive practices. As in the psychology flogic case of FPL, these prin­
ciples and practices, as well as background theories, constitute a system 
that must be evaluated according to plausible criteria. Robustness, accom­
modation, and efficacy are our best current candidates for such criteria, 
since they played such an important role in the most elaborate model so far 
developed, FPL. The result of application of such criteria can be not only 
improved principles but also improved practices, as people strive to live up 
to nonnative principles. As the system repeats, new principles and practices 
are considered again. Practices and principles can be improved in parallel, 

principles 

background 
theories 

practices 

Figure 7.4 

criteria for 
opcimaI 
systems 

FDN: from the descriptive to the normative. 
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and such improvement can go on without there ever being any output 
from the system as there is in figures 7.1- 7.3.  

The application of the general model FDN will be illustrated in chapter 
8 with the justification of inference to the best explanation. Since that 
application primarily concerns the philosophy of science, I shall now pro­
vide a fuller account of the method of historical philosophy of science. 

Section 7.3 contained a rough account of how historical case studies can 
play a role in developing normative methodological principles in philoso­
phy of science. The richer models FPL and FDN suggest several additions. 
Of the criteria for evaluating inferential systems in FPL, only robustness is 
implicitly used in the earlier model HPS, when we ask what methodological 
principles best characterize the actual practice of scientists described in case 
studies. But in more sophisticated studies in historical philsophy of science, 
accommodation and efficacy also play important roles. These roles may not 
be evident in the published studies, but they underlie selection of historical 
materials in the first place. 

We saw above that historical philosophy of science is historically selec­
tive, both for which scientists are studied and for what aspects of their 
work are considered. Landmark scientific investigations are chosen because 
these are thought to have contributed greatly to the goals of inquiry. Even 
if no explicit statement of these goals is made, the historical philosopher of 
science naturally chooses for study works that have had the greatest impact 
on subsequent science. It is therefore presumed that the methodological 
principles to be discovered in the seleded case studies promote the satis­
fadion of the goals of scientific inquiry. Thus, in the terminology of FPL, 
there are grounds for presuming the methodological principles to be effi­
cacious. Moreover, by selecting only the exemplary aspects of scientific 
practice for study, we have dodged problems of accommodation, since 
other cases of deviation from derived methodological principles are largely 
ignored. We assume that a full account could satisfy the criterion of accom­
modation by accounting for deviant practices using background theories. 
For example, we might seek a historical, psychological, or sociological 
explanation for Newton's work in alchemy, accounting for its deviation 
from methodological principles we might derive from his more respected 
work in mechanics and optics. Historical philosophy of science is thus much 
more complicated than simply deriving methodological principles from 
robust scientific practice. Implicit judgments of efficacy and accommoda­
tion must also be made. 

The establishment of logical or methodological principles is not a one­
shot derivation from existing practices, principles, theories, and goals. 
Settlement of issues in logic and philosophy of science requires assessment 
of competing systems, dynamically developed through a dialectic of prin­
ciples and practices against a backdrop of goals and theories. We seek 
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mutually reinforcing improvement in all the components of the logical or 
methodological system, revising not only principles and practices, but 
also background theories and goals. Epistemological progress depends on 
advances on all fronts. 

7.8. The Role of Computational Studies 

Assuming that FDN is a valid model for developing normative conclusions 
on the basis of descriptive studies, how should one proceed? Historical case 
studies are of great value, but there are severe problems in using them 
systematically to test philosophical ideas. A recent attempt has been made 
to systematize philosophical theories about the growth of scientific knowl­
edge so that they can be tested more rigorously against the historical 
record (Laudan et at, 1986). But it does not appear to be possible to 
do more than look for a qualitative fit between theories and historical 
practices. 

As chapter 10 discusses further, computational studies offer a more 
intensive way of testing the consequences of views about the nature 
of science. Encoding a methodology in an artificial intelligence program 
makes possible computational tests of the efficacy of various ideas about 
how knowledge grows. It would be wonderful to have specifications of the 
methodological ideas of Kuhn, Popper, and other theorists that were com­
plete and specific enough to be implemented computationally. Compara­
tive runs on sample problems and observations in selected domains could 
then establish which sets of ideas are most efficacious over time in adding 
to the stock of scientific knowledge. 

More modestly, PI's computer simulations have already proved valuable 
for testing ideas about knowledge generation. For example, early work on 
conceptual combination showed the need for tightly constraining when 
new combined concepts are formed. Otherwise, the system quickly began 
to fill up with redundant concepts. Writing LISP code for combining the 
concepts of sound and wave into sound-wave was not difficult, but triv­
ial problems occurred, such as the tendency of the program to produce 
such idiocies as sound-sound-wave, a completely uninteresting conceptual 
combination. Without further constraints, any run of PI would have been 
inundated with clutter. Fortunately, a principled constraint was found: PI 
now forms a new combined concept only when some conflict has to be 
reconciled between the existing concepts. There is no reason to keep 
around such combined concepts as "brown cow" or "red apple", since the 
combinations do not violate any of our initial expectations. In constrast, 
"striped apple", "femininist bank teller", and "sound wave" require recon­
ciliation of prior default expectations so PI keeps them around as useful 
combinations. (As section 4.3 described, the conflict in the latter case arises 
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because sound flows ou� spherically, whereas familiar waves such as �hose 
in water flow in a single plane; this conflict was pointed out by Vitruvius.) 

Another case where computational studies were invaluable in determin­
ing the efficacy of kinds of induction was described in section 4.2.4. In an 
earlier version, PI did a kind of abduction to rules to explain particular in­
stances. This worked fine for a few examples that were used to test the par­
ticular inference, but later runs on a larger knowledge base quickly showed 
that rule abduction from instances was much too profligate, and it was re­
placed by the much more constrained kind of rule formation from abduced 
instances. Thus a computational approach to the philosophy of science can 
be very useful in developing normative accounts of knowledge generation. 

7.9. Irrationality 

To be rational is to follow established normative principles; to be irrational 
is to violate them. If the above methodology is successful in establishing 
principles of reasoning, we can castigate as irrational behavior that violates 
them. In contrast, Quine (1960) and others have urged a "principle of 
charity", according to which we should reinterpret people's utterances and 
other behaviors in such a way as to understand them as acting rationally. 
Thagard and Nisbett (1983) argued that most such principles of charity are 
too strong, preventing us from recognizing as irrational forms of dedudive, 
inductive, and practical reasoning that clearly are in violation of norms. We 
defended the following modest principle of charity: 

Do not judge people to be irrational unless you have an empirically 
justified account of what they are doing when they violate normative 
standards. 

This principle prevents us from judging people to be in violation of logical 
principles when they may simply be following principles other than those 
we have in mind. For example, a deductive logician might illegitimately 
accuse someone of committing the fallacy of affirming the consequent by 
arguing IIIf p then q, q, therefore p." when the kind of reasoning actually 
being employed is abduction. In order to judge someone as irrational, we 
should be able to say why they are doing what they are doing in violation 
of logical principles. We will see in chapter 9, for example, how proponents 
of astrology and other pseudosciences can be understood as irrationally 
using natural but nonefficacious kinds of thinking. 

7. 10. Summary 

Logic and philosophy of science are normative disciplines concerned with 
how people ought to reason. But nonnative principles can be based in part 
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on descriptions of how people do reason and science is done. However, 
Goodman's proposal to base justification of normative principles on a 
process of reaching reflective equilibrium between principles and practice 
presumes too direct a link between the descriptive and the normative. 
Assessment of inferential principles requires evaluation of whole inferential 
systems, including principles, description of practices, and background the­
ories and goals. This evaluation employs such criteria as robustness, accom­
modation, and efficacy. Similar criteria are also employed implicitly in 
historical philosophy of science. Application of criteria for evaluating infer­
ential or methodological systems provides an objective method for apply­
ing descriptive studies in the establishment of normative principles. This 
method is general enough for use in computational philosophy of science, 
and computational techniques are potentially very valuable for judging 
efficacy. Once nonnative principles are established, we have grounds for 
judging violators of those principles to be irrational. 
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Chapter 8 

Justification and Truth 

The discussion of abduction and inference to the best explanation in chap­
ters 4 and 5 was largely descriptive. But the descriptive/normative meth­
odology developed in the last section now makes it possible to consider 
the justification of these kinds of inference. The first section of this chapter 
argues that their use by scientists and people in general is indeed justified. 
Then the separate question of whether inference to the best explanation 
leads to truth is taken up in the context of a defense of scientific realism, 
the view that science in general leads to truth. Finally, I argue that a de­
gree of methodological conservatism is a consequence of the earlier com­
putational account of the nature of scientific knowledge. 

B.l. The Justification of Inference to the Best Explanation 

B.l.1. How Not to Justify Inference to the Best Explanation 
Chapter 5 described criteria used by scientists to assess the best explana­
tion, and showed the compatibility of the historically derived account 
of theory choice with the descriptive computational view that scientists' 
theories are processing systems. But how might we reach the normative 
conclusion that scientists ought or ought not to use inference to the best 
explanation? Before presenting an account of how inference to the best 
explanation can be justified in accord with the methodology of chapter 7, 
I shall criticize the account given by Fumerton (1980) of what it would take 
to justify inference to the best explanation, and at the same time refute 
his argument that reasoning to the best explanation is subordinate to in­
duction by simple enumeration. (This is a version of the form of inference 
called "generalization" in chapter 4, reaching a general conclusion from 
examples.) 

Philosophical logicians tend to search for one fundamental sort of induc­
tive rule. Harman (1965, 1973) has argued that inference to the best 
explanation is fundamental, and induction by simple enumeration is deriva­
tive. We saw in section 4.2.4 that not all inductive inference is concerned 
with explanation. More recently, Fumerton (1980) has argued that there is 
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no process of reasoning to the best explanation distinct from straight­
forward induction by simple enumeration and deduction. 

Some terminological clarification must precede further discussion. Fumer­
ton discusses "inductive reasoning" as an alternative to reasoning to the 
best explanation, meaning by the tenn what is more usually called induc­
tion by simple enumeration or what earlier chapters called generalization. I 
follow another common usage in speaking of both inference to generaliza­
tions by enumeration of instances and inference to the best explanation as 
kinds of inductive reasoning. Statistical inference prOvides examples of 
other kinds. 

Fumerton starts (1980, p. 591) by schematizing inference to the best 
explanation as 

Q is the case. 
If P were the case, then Q would be the case. 
Therefore, P is the case. 

He has no difficulty in showing that this sort of abductive schema 
will license many bad arguments, unless it is buttressed with additional 
evidence that converts the inference into a combination of induction (by 
enumeration) and deduction. However, his arguments are not so effective 
against the more sophisticated formulation of inference to the best explana­
tion we saw in chapter 5. 

Fumerton recognizes that we need to provide criteria for assessing the 
best explanation. He considers the criteria of consilience, simplicity, and 
analogy, offered in Thagard (1978a) and in chapter 5, and claims, uThe 
relevant epistemological question is whether the more consilient, simpler, 
more analogous theory is, ceteris paribus [other things being equal], more 
likely to be true" (Fumerton, 1980, p. 596). He then goes on to argue that 
the need to justify such criteria shows that inference to the best explanation 
is dependent on enumerative induction. He continues (p. 596), "If .. . we are 
justified in trusting more consilient theories, ceteris paribus, only because 
for the most part more consilient theories have turned out to be more 
successful, then inferring that the correct explanation is, ceteris paribus, the 
most consilient explanation would amount to a straightforward instance of 
reasoning by enumerative induction." 

This attempt to reduce inference to the best explanation to enumerative 
induction is defective at several levels. Reductions of inference rules 
do not generally show that there is anything dependent about the rules 
reduced. We can easily do deductive logic without modus ponens, so long 
as we have rules such as modus tollens, contraposition, and double negation, 
but this in no way shows that modus tolens is parasitical. Fumerton's 
argument against the simple pattern of reasoning displayed above is effec­
tive because he shows that enumerative inductive and deductive reasoning 
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is needed if the schema is to represent valid inferences. His argument about 
inference to the best explanation based on my criteria, on the other hand, 
does not show a similar dependence. There must be criteria for the best 
explanation, but it is not part of the premises of an argument to the best 
explanation that the criteria lead to truth, just as it is not part of the 
premises of enumerative induction or of deduction that these forms of 
reasoning lead to truth. 

Inference to the best explanation cannot be justified by enumerative 
induction since there are many counterexamples. We can easily find cases 
where scientists were led from true premises and a legitimate selection of 
the best explanation to a theory we now know to be false. Newtonian 
mechanics, the wave and particle theories of light, the phlogiston theory 
of combustion, and numerous other historically important theories were 
inferable from true premises at one time, so the legitimacy of inference 
to the best explanation would be suspect indeed if it rested on simple 
enumeration. Whewell thought that consilience was a virtual guarantee of 
truth, but history has seen his favorite examples of consilience superseded 
by still better explanations. This is not cause for despair about either the 
efficacy of inference to the best explanation or the ability of science to 
achieve truth; but it is enough to refute Fumerton's claim that inference to 
the best explanation must be based on enumerative induction from cases 
where truth has been achieved. Like theory choice in science, justification 
of a fonn of inference is comparative, requiring showing that it is better 
than alternatives. 

If inference to the best explanation were parasitical on enumerative 
induction, we ought to be able to recast the Darwin, Lavoisier, and other 
examples in chapter 5 in terms of a simpler form of reasoning. But it 
is totally mysterious how we could infer the claims that evolution has 
occurred by natural selection and that light consists of nonobservable 
waves by an enumerative induction. In contrast, inference to the best 
explanation allows the postulation of nonobservable events and processes. 

A final problem with Fumerton's proposal to make the validity of infer­
ence to the best explanation dependent on the validity of enumerative 
induction is that it leaves unanswered the question of how enumerative 
induction is justified. On pain of circularity, we cannot justify enumerative 
induction by describing instances of its past success, so why should we 
have to justify inference to the best explanation in such terms? A more 
sophisticated justification of each type of inference is needed. 

8.1.2. Alternative Justification 
The descriptive/normative methodology of chapter 7 evaluates inferential 
systems, consisting of principles, practices, and background theories and 
goals, according to the criteria of robustness, accommodation, and efficacy. 
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Abduction and inference to the best explanation fare well on the criterion 
of robustness, according to which we want inferential principles to capture 
much of inferential practice. We saw in chapter 4 that abduction is perva­
sive in ordinary and scientific reasoning. Ordinary people appear to be less 
adept at evaluating explanations in order to infer the best. But the scientific 
case studies in chapter 5 were only a small sample of a vast population of 
cases either where scientists explicitly give arguments to the best explana­
tion or where their arguments can easily be reconstrued as such. 

For instance, it is common for a theory to be supported by some novel 
prediction that has been confirmed by observation. But what makes a 
confirmed prediction interesting is that it signals the extension of the 
explanatory apparatus of a theory to some new class of facts, increasing its 
consilience. Prediction of observations is not in itself the mark of a good 
theory. We want prediction of important observations, that is, ones that 
signal the application of the theory to new classes of facts. Moreover, mere 
prediction should not be enough to convince us of the empirical applicabil­
ity of a theory, since we need to know how the theory generates the 
predictions it does. A theory is more than a black box for generating 
predictions; it also serves to characterize the causal mechanisms that are the 
basis of the predictions. Prediction without explanation is theoretically 
vapid, whereas, with examples such as Darwin's theory of evolution, there 
are important cases of explanation without much prediction. Hence the 
frequency with which scientists cite predictions rather than explanations in 
support of their theories does not undermine the robustness of inference to 
the best explanation. Inference to the best explanation is something that 
people can actually do, unlike more abstract and mathematical forms of 
reasoning. In contrast, Bayesian accounts of theory choice, which assume 
elaborate probabilistic mechanisms for which there is no psychological 
evidence, lack this descriptive robustness. 

Van Fraassen ( 1980) argues that we cannot tell whether scientists are 
using inference to the best explanation or merely defending their theories 
as more empirically adequate than alternatives. Similarly, Lloyd (1983) 
contends that for Darwin explanation was not a central concern, and his 
apparently Whewellian talk of explaining classes of fads was just a matter 
of the theory being empirically adequate for different sets of phenomena. 
But Darwin's own statements belie this interpretation, as he frequently cites 
the explanatory merits of the theory of evolution by natural seledion as 
evidence of its truth (Darwin, 1962, pp. 92, 476; 1903, vol. 1, p. 455). 
Darwin's writings mark him as a scientific realist. Recker ( 1987) contends 
that Darwin's argument in the Origin was intended to defend the "causal 
efficacy" of natural selection and that pointing out its explanatory power 
was only one part of this argument. Separate, according to Recker, was 
Darwin's use of analogy to show independently that natural selection was 
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a true cause. Darwin's own statements, however, suggest that that he was 
a follower of Whewell on this methodological issue, holding that the 
explanatory power of natural selection is all that is needed to show that it 
is a true cause (Thagard, 1977a). 

People, including scientists, do not always use inference to the best 
explanation to provide a more thorough evaluation of their abductions. 
According to the accommodation criterion of my descriptive/nonnative 
methodology, we should be able to give psychological explanations for 
such deviations, to rule out the hypothesis that people are not using some 
alternative form of inference. Recent research of Kunda (1987) provides 
such explanations. She shows how theory formation and evaluation is 
systematically affected by motivation: people make inferences on less evi­
dence when they are motivated to reach a conclusion. For example, coffee 
drinkers are less prone to accept the hypothesis that coffee causes cancer. 
People will not always arrive at the best explanation according to criteria 
such as consilience, since their desire to reach a conclusion favorable to 
them may lead them to consider only part of the relevant evidence and 
only some of the alternative theories. As chapter 10 discusses, scientists are 
also not immune from motivationally biasing their inferences to the best 
explanation. A full application of the criterion of accommodation would 
require looking at specific cases when scientists have failed to infer the best 
explanation and explaining their failure by their use of motivated inference 
or some other psychologically plausible process. 

The most difficult criterion to apply to the justification of abduction and 
inference to the best explanation is efficacy, according to which our infer­
ential principles should promote the satisfaction of our inferential goals. 
But what are the goals of scientific theory choice, and, even more generally, 
what are the aims of scientific inquiry? 

Efficacy of abduction must be judged differently from efficacy of infer­
ence to the best explanation, since their functions are different. Abduction 
only generates hypotheses, whereas inference to the best explanation eva­
luates them. All we should expect of abduction, therefore, is that it tend to 
produce hypotheses that have some chance of turning out to be the best 
explanation. Abduction of the sorts discussed in chapter 4 will always be 
to hypotheses that explain at least something and therefore have at least a 
hit of initial plausibility. In this respect abduction is clearly more effica­
cious than blind generation of hypotheses, which seems to be the main 
alternative. 

With inference to the best explanation, the stakes are much higher. The 
three most often cited goals we hope to achieve in selecting a scientific 
theory are prediction, explanation, and truth. I have already argued that the 
goal of prediction can be subsumed under that of explanation, so I shall not 
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discuss it further. Of the trio of possible goals, by far the most problematic 
is truth. On the correspondence theory of truth, which dates back to 
Aristotle, a statement is true if it corresponds to a real state of the world. 
Philosophers have not made much progress in characterizing what states of 
the world are, or what correspondence means. Even if we could say more 
fully what truth is, it seems impossible to construct a convincing direct 
argument that inference to the best explanation, including criteria such as 
consilience and simplicity, leads to the acceptance of true theories. For we 
do not have any immediate way of determining that our theories are true, 
aside from saying that they are best explanations. Fortunately, any other 
theory of theory choice will have the same problem, so inference to the 
best explanation is at least not less efficacious with respect to truth than 
other methodologies. Goldman ( 1986) has argued that justification is based 
on reliability: methods are justified if they result in a satisfactory ratio of 
true beliefs to false beliefs. This seems appropriate for simple processes 
such as perceptual ones, but has no apparent application to theoretical 
knowledge. Because of its robustness and other properties, however, infer­
ence to the best explanation can be justifiable in a way that is independent 
of the question of whether it leads to truth. This will be important for the 
argument in the next section about scientific realism. (Some philosophers 
take it as part of the definition of "explanation" that only a true theory can 
explain. My usage, compatible with how scientists such as Darwin write 
when defending their theories, allows explanation to provide evidence for 
truth without presupposing it.) 

An argument that inference to the best explanation leads to truth can be 
constructed much more indirectly. If we can show that scientific inquiry in 
general leads to truth, and that inference to the best explanation is a central 
part of that inquiry, then we can conclude that inference to the best 
explanation leads to truth. The doctrine that scientific inquiry leads to truth 
is called scientific realism, and will be defended in the next section. 

We are left with the aim of explanation. It is not as trivial as it sounds 
to claim that inference to the best explanation promotes, better than other 
inferential strategies, the scientific aim of developing explanatory theories. 
The account of inference to the best explanation given in chapter 5 sets 
out more explicitly than other accounts how to evaluate the explanatory 
successes of theories, showing how the individual criteria of consilience, 
simplicity, and analogy are each intimately linked with explanation. Since 
inference to the best explanation is structured to maximize the goal of 
explanation, including prediction, we can expect it to be highly efficacious 
with respect to those goals, and the historical record suggests that it has 
been. Thus use of inference to the best explanation is justified in accord 
with the methodology of chapter 7. 
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8.2. Scientific Realism 

Many scientists, particularly social scientists, assume a look of embarass­
ment when a philosopher or kindred soul mentions the word "truth". But 
it remains a central question in the philosophy of science whether science 
aims at more than the explanation and prediction of phenomena and 
intends to describe the world as it "really" is. Controversy has raged 
between scientific realists, who maintain that science aims for and achieves 
at least approximate truths, and others who maintain that science is only 
concerned with instrumental success or with showing that a given theory 
is empirically adequate with respect to observable phenomena. Recent 
critics of scientific realism include van Fraassen (1980) and Laudan (1981). 

Its defenders include, for example, Boyd (1981), Putnam (1975), Hausman 
(1982), and various authors in the work edited by Churchland and Hooker 
(1985). A novel, hybrid position, supporting realism about theoretical 
entities but not about theoretical laws, has been defended by Cartwright 
(1983) and Hacking (1983). 

Realists typically justify their position by an inference to the best expla­
nation, saying that the view according to which science aims for and 
sometimes achieves approximately true accounts of the world makes much 
better sense of the daily practice and historical progress of science than do 
antirealist positions. I shall construct and defend an elaborated version of 
that argument. First, however, I shall show that my computational account 
of theories is compatible with both realist and nonrealist views. 

B.2.1. Realism and Computation 
Any account of the nature of scientific theories should be amenable to both 
realist and nonrealist construals. Consider, for example, the syntactic view 
of theories discussed in chapter 3, which takes a theory to be a set of 
sentences in a deductive formal system. This view can be construed real­
istically by supposing that theoretical sentences, even those containing 
theoretical terms like "electron", can be accepted as true or false. Or it can 
be construed instrumentally, treating a theory as merely a tool for deduc­
tively making predictions. Similarly, the set-theoretic view can be applied 
realistically, saying that the models (in the set-theoretic sense) that the 
theory specifies include models of real things, including theoretical entities. 
Or, nonrealist proponents of the set-theoretic view, such as van Fraassen 
(I980), can maintain that theories are only concerned with a subset of 
models, namely, those that concern observable entities. A theory that 
accounts for observable phenomena is said to be "empirically adequate"; 
van Fraassen maintains that we should always take the conservative route 
of merely accepting a theory as empirically adequate rather than accepting 
it as true. 
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At 6rst glance, the emphasis in chapter 3 on the procedural functions of 
theories as computational entities suggests that the construal favors an 
instrumentalist interpretation of theories, emphasizing their cognitive uses 
rather than their truth. Indeed, instrumentalism is easily accommodated by 
the computational system account. Toulmin (1953) and Hanson (1970) 
have compared theories to maps, providing inference patterns to guide us 
around the phenomena. My account fleshes out this metaphor: guidance 
comes through the internal interconnections within the system of concepts 
and rules that directs us from concept to concept. As Gruber (1974, p. 255) 
states in his discussion of Darwin, "A theory is not only a way of organiz­
ing existing knowledge and of generalizing specific predictions that can be 
tested empirically ... [it is] also a way of handling the personal flow of 
information." 

But the pragmatic, computational account of theories is not committed 
to instrumentalism, since truth and falsity can be taken as properties of the 
rules attached to concepts. The concept of dog is neither true nor false, but 
the rules attached to it can have truth values. But now we face a major 
philosophical problem: we saw in chapter 2 than rules attached to concepts 
are mostly default rules, ones that state what is typically or usually true, 
not what is universally true. Construed as universal generalizations, they 
are strictly speaking false. For example, the concept of dog might include 
the rule 

If x is a dog, then x has four legs. 

This is a very useful rule, even though we all know that there are three­
legged dogs. The discussion of idealization in chapter 3 showed that 
scienti6c laws should similarly be construed as default expectations. The 
rule 

If x is water, then x boils at 212 degrees Fahrenheit. 

does not hold at elevations well above sea level. Many principles of 
physics are true only ceteris paribus, other things being equal. How can we 
construe them as true when we know that often other things are not equal? 
Philosophers following Popper (1959) have tried to give formal accounts 
of verisimilitude, degree of closeness to the truth, in terms of sets of true 
consequences of a theory. But these attempts have foundered on the 
problem that all theories have an infinite set of true consequences. More­
over, as we saw earlier, the problem of calculating the set of consequences 
of a theory is computationally intractable. 

What might it mean to say that one rule is closer to the truth than 
another? PI's mechanism of specialization suggests an answer. When PI has 
a strong general rule "if A then B" that encounters a counterexample, it 
does not simply throw that rule away, for the value of the rule as a default 
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expectation has already been established. Rather, it produces a specialized 
rule of the fonn "if A and 5 then not-B", where S is some unusual circum­
stance intended to provide an account of why a particular A is not B. In 
the water case, we would construct the rule 

If x is water and above sea level, then x does not boil at 212 degrees 
Fahrenheit. 

We would not want, however, to say that the new rules is closer to the 
truth than the original one, which provides an approximation in a wide 
variety of cases. What is important here is what we have a whole set of 
rules that among them can describe many cases, not that any one rule gets 
it exactly right. Cartwright (1983) discusses "how the laws of physics lie", 
but makes too much of the inadequacy of individual laws of physics. What 
matters is that the laws can function together to provide reliable expecta­
tions about various cases. We want therefore to be able to say that the 
rules in a conceptual system together provide a set of true descriptions, 
without their being true in isolation. To take one of Cartwright's examples, 
consider the law of gravitation, that two bodies exert a force between them 
that varies inversely as the square of the distance between them and directly 
as the product of their masses. Strictly speaking, this is false for charged 
bodies subject to electromagnetic forces, but in that case we would be able 
to apply a more complex rule. No rule will be true for all situations, but 
different complexes of rules will truly describe a wide variety of situations. 

This holistic view of the truth of rules and theories makes it possible to 
understand theories, construed computationally, as being true. An argu­
ment, however, is needed to justify such an understanding. 

8.2.2. An Argument for Realism 
According to the account in chapter 5, an attempt to use inference to the 
best explanation to justify scientific realism should proceed as follows. 
First, we should assemble the evidence that realism is supposed to explain. 
Then, we should consider alternative explanations of that evidence. Finally, 
we should judge whether realism is in fad the best explanation. My 
argument will only be concerned with realism in the established natural 
sciences of physics, chemistry, and biology; a later section discusses realism 
in the much younger cognitive sciences. 

Science differs from other human endeavors in several respects. The 
first and most salient is technological application. Scientific theories have 
spawned many practical successes, from recombinant DNA work in biol­
ogy to the development of atomic energy in physics ("success" here is not 
an ethical term; for good or bad, we can do more with the theory of nuclear 
fission than without it). A second noteworthy feature of science is its 
degree of accumulation of knowledge. We saw in chapter 5 that science is 
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not strictly cumulative, sometimes simply leaving old views behind, but in 
key aspects, such as the replacement of Newtonian mechanics by relativity 
theory, there is a degree of continuity that is remarkable, especially in 
contrast to other human developments, such as those in political or artistic 
spheres. A third feature, related to but distinct from technological applica­
tion and cumulativity, is the surprising degree of agreement one finds 
among scientific practitioners. At the frontiers of science, controversy 
about theoretical interpretations is usually lively, but arguments are waged 
against a background of common theory. In physics, for example, there is 
little dispute about the general theory of relativity, and in biology some 
form of theory of evolution is accepted, even though there are disagree­
ments about particular versions. On a world scale, the degree of agreement 
about the natural sciences is extraordinary compared with other human 
practices such as politics and fashion. 

Realism provides at least a rough explanation of these salient facts of 
technological application, cumulativity, and agreement. The reason that 
scientific theories have technological application is that they are at least 
approximately true: science works because it tells you more or less how the 
world is. Similarly, scientific knowledge can accumulate because there is 
just one way that the world is, and we can find out more and more about 
how it is, correcting old mistaken views. Finally, we can explain the degree 
of agreement among scientists by noting that they are all interacting with 
the same world whose causal influence is responsible for the degree to 
which their observations agree. By virtue of these explanations, realism can 
be judged to be a consilient theory. Is there any more consilient? If not, and 
no other criteria are relevant, then realism should be accepted as the best 
explanation. 

Antirealists can criticize this argument on various fronts. The most 
general is to deny that inference to the best explanation is a valid form of 
argument, in this metaphysical context any more than in science. I respond 
to this objection in the next section. Once inference to the best explanation 
is admitted as a legitimate mode of inference, response to the argument 
must consist of offering alternative explanations. 

Van Fraassen (1980, p. 40) offers a Darwinian alternative to saying that 
relation to a material world explains the otherwise miraculous success of 
science: "I claim that the success of current scientific theories is no miracle. 
It is not even surprising to the scientific (Darwinist) mind. For any scientific 
theory is born into a life of fierce competition, a jungle red in tooth and 
claw. Only the successful theories survive-only the ones which in fact 
latched on to actual regularities in nature." (By actual regularities here he 
means observable ones only.) The plausibility of this alternative explana­
tion depends on the adequacy of a Darwinian account of scientific inquiry. 
We have already seen in chapter 6 that the Darwinian model of science 
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offered by evolutionary epistemologists is seriously defective, revealing 
little about scientific method. Hence, the Darwinian explanation of the 
success of science does not provide much of an alternative to realism. 

A metaphysical alternative to realism is objective idealism, the doctrine 
that there is an objective world but that it is a mental construct sharable by 
all thinkers. That science is merely tapping into this objective mental reality 
might indeed explain why science has technological applications and scien­
tists often agree, but it seems to explain too much. If objective idealism 
were true, why should science be difficult at all? Knowledge ought to be 
gain able without the labors of experiment and theory that scientists exert. 

Crucial to the above argument is its generality: realism is a general 
hypothesis that explains why science overall is successful. I am not offering 
explanations of the success of particular theories of the sort criticized by 
Laudan (1981). He shows that it is problematic to explain the success of 
particular theories by the assumption that they refer to the real world, for 
there have been successful theories, such as the wave theory of light with 
its luminiferous ether, that failed to refer; and there have been theories, 
such as atomic theory, that for a long time were not successful, even 
though a realist would now take them to refer. The explanations that 
realism affords may be weak at this particular level, but still strong at 
explaining the general technological application, cumulativity, and agree­
ment found in science but not in other human enterprises. Hence, we can 
infer realism by inference to the best explanation. 

My argument supports a full-fledged realism about theories and theo­
retical entities. Hacking (1983) advocates realism only about entities which 
we can believe in for practical reasons. There are many experiments in 
which researchers use electrons, for example spraying them. He says, "If 
you can spray them, then they are real" (1983, p. 22). Without an arguably 
true theory, however, there are no grounds for maintaining that you are 
spraying anything. Phlogiston, for example, had various "uses": experi­
menters used it to tum calxes into metals and to kill sparrows. Only from 
the vantage point of the superior oxygen theory can we see that experi­
menters were really working with oxygen, not phlogiston. 

8.2.3. Inference to the Best &planation Is Not Circular 
Fine (1984, p. 85) has charged that arguments of the sort just given are 
circular: "Suppose . . .  that the usual explanation-inferring devices in scien­
tific practice do not lead to principles that are reliably true (or nearly so), 
nor to entities whose existence (or near-existence) is reliable. In that case, 
the usual abductive methods that lead us to good explanations (even to 
'the best explanation') cannot be counted on to yield results even approxi­
mately true. But the strategy that leads to realism, as I have indicated, is 
just such an ordinary sort of abductive inference. Hence, if the nonrealist 
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were correct in his doubts, then such an inference to realism as the best 
explanation (or the like), while possible, would be of no significance-exact­
ly as in the case of a consistency proof using the methods of an inconsis­
tent system." In short, antirealists can say that since they do not accept the 
use of inference to the best explanation in science, they certainly are not 
going to accept it in defense of the metaphysical position of realism. 

But recall that my justification of inference to the best explanation earlier 
in this chapter said nothing at all about the truth of the conclusion. Infer­
ence to the best explanation is justified because it is robust, accommodat­
ing, and efficacious with respect to goals other than truth. The justification 
implies, therefore, only that we should accept theories on the basis of 
inference to the best explanation, not that we should accept them as true. 
But notice what happens when the argument gets applied to scientific 
realism. If realism is the best explanation, we should accept it, still without 
supposing it to be true. But to accept realism is to suppose that scientific 
theories can be said to be true, and once truth is seen as a property of 
scientific theories, there is no reason not to see it also as property of 
metaphysical theories such as realism. 

This chain of argument is complex, so a schematic presentation may help 
to make it clear that inference to the best explanation does not encounter 
circularity in defending realism. Here is the chain of reasoning over this and 
the previous chapter: 

1. I argued for a methodology for going from the descriptive to the 
nonnative. 
2. I used this methodology to justify the use of inference to the best 
explanation in the acceptance of theories. 
3. I applied inference to the best explanation to defend realism. 
4. Thus realism is acceptable and antirealism is not: we should accept 
the view that scientific theories can be accepted as true. 

This argument does not, unfortunately, warrant the conclusion that realism 
is true, only that it is acceptable in some weaker sense. But that is enough 
to rout the antirealist, who would have to admit that realism is the superior 
position. Most important, there is no circularity in this use of inference to 
the best explanation to argue for scientific realism. 

B.2.4. Computation and Observation 
Crucial to the position of the antirealist is the view that there is an 
epistemologically important distinction concerning what is observable. Em­
piricists such as van Fraassen urge us to restrict our conclusions cautiously 
to empirical adequacy, avoiding the formation of beliefs about what we 
cannot observe. But as critics such as Churchland (1985) have noted, it 
is parochial to give such primacy to human observation. What is so special 
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about our senses of sight, sound, smell, and touch? We can easily imagine 
aliens with sense modalities very different from ours who might neverthe­
less reach the same theoretical conclusions as us about such phenomena as 
gravitation. 

Less fancifully, consider some future computer that might have a tele­
vision camera for observing the world, robot arms for interacting with it, 
and the software needed for forming rules and concepts about the world. 
The computer would start with primitive detectors for edges and shadows, 
but would have to form complex concepts out of these. Given the induc­
tive steps required, it would seem that for the computer virtually all 
concepts would be theoretical concepts. But the computer's inductive 
mechanisms would lead it to conclude that there are tables and chairs and 
give it a conceptual role semantics for the symbols that it uses for these 
kinds of things. 

If current theories of perception are correct (Rock, 1983; Gregory, 1970; 

Marr, 1982), human vision involves no less complex a kind of information 
processing than machine vision. On Rock's view, perception is a kind of 
problem solving, in which the mind's "executive agency" prefers a solution 
that accounts for stimulus variations. He says, "The executive agency seeks 
to explain seemingly unrelated co-occurring stimulus variations on the 
basis of a common cause and ... in the case of stationary configurations, it 
seeks solutions that explain seeming coincidences and unexplained regu­
larities that otherwise are implicit in the nonpreferred solution" (Rock, 
1983, p. 133). If such theorists are correct, the antirealist espousal of the 
virtues of observation over leaps of inference to the best explanation is 
misleading, for even simple kinds of perception involve inference to the 
best explanation. There is no direct perception, no observation uncorrupted 
by inference; hence there is no epistemological primacy to observations. 
Observations are pragmatically important in that they are a good source of 
intersubjective agreement (because the world causes them. says the realist). 
But their inferential component precludes contrasting them sharply with 
conclusions reached by inference to the best explanation. 

The inferential nature of observation does not, however, support a full­
blown doctrine of the "theory-Iadenness" of observation (Hanson, 1958). 

Kuhn and others have concluded that observations are theory-relative, 
which has the severe consequence of incommensurability discussed in 
section 5.7. Observation is inferential, so that any given observation might 
be influenced by theory, but the inferential processes in observation are not 
so loose as to allow us to make any observation we want. Rock points out 
that although perception is thoughtlike, it is largely autonomous, as is 
evident in extreme cases where we know we are witnessing a perceptual 
illusion but still see it. Such illusions are systematic and largely unalterable 
even when we know better. Similarly, there are few cases of disagreement 
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about scientific observations, because all humans operate with the same 
sort of stimulus-driven inference mechanisms. 

B.2.S. Realism in the Cognitive Sciences 
The argument that realism is the best explanation of technological applica­
tion, cumulativity, and agreement does not, unfortunately, apply very well 
to the social sciences. Take psychology, for example. The past twenty 
years of cognitive theorizing have as yet made only limited contributions 
to our ability to learn and understand. We have no grand theory of 
cognition on the scale of Newtonian mechanics or Darwin's theory of 
evolution. Fundamental disagreements still exist about the ingredients of a 
computational account of mind, and there remain doubters whether a 
computational route is the best one at all. A typical dispute concerns 
whether the mind's representations include mental images. The existence of 
schemas corresponding to PI's concepts is an equally controversial issue. 
We lack enough evidence to warrant the claim that the processing system 
embodied in PI is more than a very rough approximation to the structures 
and processes of the human mind. Clearly, cognitive psychology is still at 
a stage more given to abductions than to convincing inferences to the best 
explanation. 

Some psychologists follow their behavioristic predecessors in forswear­
ing the speculations rampant in computational psychology. They prefer to 
stick close to the data, aiming only for empirical adequacy rather than for 
the flights of theory that the proponents of cognitive science enjoy. How­
ever, psychology's lack of success so far in achieving a wealth of theoretical 
truths is no grounds for not attempting to achieve them. Scientific realism 
is a doctrine about the aims of science as well as the successes. Cognitive 
science should have the same aim as its elders-physics, chemistry, and 
biology-to produce general theories that account for a wide variety of 
empirical phenomena. The view that thinking is analogous, or even identi­
cal, to computation has ample theoretical and empirical life remaining, and 
currently provides the best available route for helping psychology to 
emulate the theoretical successes of the natural sciences. 

8.3. Methodological Conservatism 

According to the arguments in this chapter, a scientific theory can rationally 
be accepted, and accepted as true, if it can be justified by an inference to 
the best explanation. Correlatively, we should reject a theory if a competi­
tor can be shown to be a better explanation of the evidence according to 
the relevant criteria. However, just as acceptance of a theory is much more 
complex than merely adopting an attitude toward a set or propositions, so 
rejecting a theory is not simply a matter of erasing a proposition from the 

Copyrighted Material 



Justification and Truth 153 

blackboard of the mind. If a theory is an elaborate conceptual system with 
great utility for processing information, its abandonment will be a very 
difficult undertaking. 

This difficulty has a dear consequence for the question of conservatism 
in science. Consider the Kuhn-Popper debate over the attitudes of scientists 
toward their theories or paradigms (Kuhn, 1970a,h; Popper, 1970). Popper 
maintains that it is a mark of scientific rationality that a scientist be readily 
prepared to abandon one's conjectures when they encounter experimental 
disconfinnation. Kuhn presents an image of a scientist as tenaciously retain­
ing a familiar paradigm in the face of difficulties that are treated as mere 
puzzles to be solved using the paradigm. A paradigm is abandoned only 
when a more powerful paradigm becomes available. As a description of the 
history of science, Kuhn's account can easily be shown to be superior to 
Popper's, but what of the normative issue: should scientists be as conserva­
tive as Kuhn describes? 

If a theory is a complex conceptual system, then it would seem that we 
have little choice in the matter. Unlike a propositional conjecture, a concep­
tual system is not easily abandoned. If learning a theory requires adoption 
of a whole network of concepts and rules for solving problems and 
handling the flow of information, then there is great utility attached to its 
retention, over which, in any case, we do not have voluntary control. (See 
the psychological literature on perseverance of beliefs reviewed by Nisbett 
and Ross, 1980.) It becomes fully understandable why a scientist would not 
abandon a fertile way of thinking in the face of a few anomalies, and why 
it is a prerequisite for abandonment that a new paradigm (conceptual 
system) becomes available. Prescription about what revisions a person 
ought to make in his or her belief system therefore must take into account 
the difference between accepting or rejecting a proposition, on the one 
hand, and acquiring or supplanting a conceptual system on the other. 

In PI, to accept a proposition is to add a message or rule to a concept, 
and rejection is a corresponding deletion. But adding an entire concept is 
not the same as accepting a set of propositions. A new conceFt must be 
integrated with existing knowledge by establishing its place in the process­
ing system: new information is useless until procedural connections with 
existing concepts are in place, allowing for spreading activation of relevant 
concepts and problem solutions. Once a complex conceptual system such 
as that needed for solving physics problems is functioning as a whole, 
piecemeal revision becomes problematic. 

Sklar (1975, p. 378) has discussed the following principle of meth­
odological conservatism: '1f you believe some proposition, on the basis of 
whatever positive warrant may accrue to it from the evidence, a priori 
plausibility, and so forth, it is unreasonable to cease to believe the propo­
sition to be true merely because of the existence of, or knowledge of, 
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alternative incompatible hypotheses whose positive warrant is no greater 
than that of the proposition already believed." An analogous principle for 
conceptual systems might be something like 

If you have a conceptual system for a domain, it is unreasonable to 
give it up merely because there is available a plausible alternative 
conceptual system. 

This principle derives its support from two considerations. First, because 
ought implies can, we cannot be enjoined to abandon a conceptual system 
if it is not possible for us to do so. We cannot reprogram ourselves: the 
construction and alteration of conceptual systems is not within our con­
scious control. We have no direct access to the structures and processes 
that guide our thinking. Hence it is not reasonable to expect someone 
to suspend use of a processing system just because an alternative exists. 
Second, even if it were possible, it appears that there are empirical grounds 
for viewing the abandonment of a functioning conceptual system as un­
desirable. For by and large it is better to have some elaborate system for 
processing information than none at all. To abandon a conceptual system 
for a domain is to be left with no categories for approaching problems in 
the domain, so that thought grinds to a halt. The rational strategy to adopt 
when one learns of the existence of a plausible alternative conceptual 
system to one's own is to attempt to learn the system in much the same as 
its proponents have done, acquiring complexes of rules that will compete 
with old ones in solving problems. Learning a new system is difficult, 
because of interference from the concepts and problem solutions already in 
place. However, if one does successfully develop the alternative conceptual 
system in parallel with one's original one, then rational choice of the 
second over the first becomes possible. As we saw in chapter 5, criteria 
unimpeded by incommensurability can establish one conceptual system as 
a better explanation of the facts. A new, whole conceptual system can then 
assume the procedural role of the previous system. But it is neither possible 
nor desirable to abandon an old way of understanding a domain until an 
alternative is in place. 

The conservatism and holism that follow from the conceptual theoretic 
approach can be compared to similar views of Quine (1960, 1963), who 
suggests several powerful metaphors for the structure of knowledge. Sci­
ence is a web of belief, a connected fabric of sentences that face the tribunal 
of sense experience collectively, all susceptible to revision and adjustment 
like the planks of a boat at sea. Part of the power of these metaphors is that 
they help lead us away from the standard view that knowledge consists in 
discrete sentences, confirmed and contentful in isolation. Rather, knowl­
edge forms an interconnected whole. But Quine's metaphors do not take 
us far enough. How is a set of sentences connected by more than deductive 
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relations? How do we juggle an interconnected set of sentences to come 
up with the best total account? Computational systems such as PI offer 
much richer descriptions of the interconnections of what we know. These 
descriptions follow the basic insight of Quine's holism that we do not 
infer sentences in isolation, but in addition organize our knowledge topi­
cally and dynamically in a psychologically realistic way. Richness comes 
through adoption of a procedural viewpoint and abandonment of the fabric 
of sentences in favor of more complex cognitive structures and operations. 
The web of belief does not consist of beliefs, but of rules, concepts, 
problem solutions, and procedures for using them. Methodological conser­
vatism is an unavoidable result. Neither conservatism nor holism, however, 
undermines the possibility of objective evaluation of theories. 

8.4. Summary 

Inference to the best explanation is neither justifiable by nor reducible to 
enumerative induction. Rather, it must be justified by the descriptive/ 
normative methodology discussed in chapter 7. The criteria for inferential 
systems discussed there display the advantages of inference to the best 
explanation over other inferential principles. It is robust in that it captures 
much of inductive practice in the realm of theory choice, and it is effica­
cious in promoting the aims of explanation and prediction. The computa­
tional view of theories is compatible with both realist and nonrealist con­
struals of theories, but the realist view that scientific theories can achieve 
truth is defensible by an argument to the best explanation. Because theories 
are complex systems, their rejection is very difficult, and methodological 
conservatism is unavoidable. 
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Chapter 9 

Pseudoscience 

One of the most important normative problems in the philosophy of 
science is the demarcation of science from pseudoscience. What distin­
guishes sciences such as physics, chemistry, and biology from pseudo­
sciences such as astrology and creationism? Logical criteria for demarcating 
science were proposed by the logical positivists and by Karl Popper, but 
these have proved to have serious flaws. Many philosophers have become 
skeptical about whether any defensible principles of demarcation can be 
found. Some relativist philosophers of science such as Feyerabend (1975) 
would argue that the demarcationist program failed and ought to be aban­
doned. Similarly, Rorty (1979) gives science no special epistemological 
status, treating it as just another form of discourse. Less radically, Laudan 
(1983) says that the science/nonscience distinction adds nothing beyond 
the distinction between reliable and unreliable knowledge. In contrast, this 
chapter argues that we can distinguish pseudoscience from science by 
systematically noting features of pseudosciences, contrasting them with 
features of science. The result is a conceptual profile of pseudoscience that 
does not provide a set of necessary and sufficient conditions but neverthe­
less suffices for branding some fields as pseudoscientific. 

9.1. The Problem of Demarcation 

Several questions must be addressed before discussing various criteria for 
distinguishing science from pseudOScience. 

1. Why is it important to demarcate science and from what should it 
be distinguished? 
2. What is the logical form of a demarcation criterion? 
3. What are the units that are marked as scientific or pseudoscientific? 

My motivation for attempting to distinguish science hom pseudoscience 
is different from that of the logical positivists or Popper. The logical 
positivists intended to demarcate science from metaphysics, the branch of 
philosophy concerned with the fundamental nature of reality. In the tradi-

Copyrighted Material 



158 Chapter 9 

tion of Hume (1888), they claimed that a proposition could only be mean­
ingful if it is analytic (true by definition) or empirically verifiable. Ayer's 
Language, Truth and Logic (1946) was the English language manifesto of the 
positivist movement and Ayer devoted much energy in both the first and 
second editions to stating a principle of verification with logical precision. 
With evangelical vigor, Ayer condemned most philosophical discussion as 
metaphysical nonsense, meaningless because it employs propositions that 
are neither true by definition nor verifiable by experience. Questions such 
as the existence of God and the relation of the mental and the physical 
were to be abandoned as nonsensical. 

For reasons summarized below, the verifiability principle failed, so 
nowadays few are inclined to demarcate science from metaphysics. For 
philosophers such as Peirce (1931-1958) and Quine (1963), science and 
philosophy (including metaphysics) are continuous enterprises, shading 
into each other, just as do the descriptive and the normative issues of 
chapter 7. By rejecting the positivists' distinction between analytic and 
empirical propositions, Quine opened the possibility that metaphysics 
could be neither strictly empirical nor analytic, just as science is not. 

Attacking metaphysics is not, however, the only reason to attempt to 
demarcate science. Karl Popper's (1959, 1965) principle of demarcation 
differed from the verifiability principle in that his target was not meta­
physics in general but current theories that purported to be scientific, 
particularly Freudian psychoanalysis and Marxian economics. Moreover, 
he did not claim to be saying anything about meaning: nonscience could 
be demarcated from science without saying that it was meaningless. For 
Popper, the key mark of science is not verifiability but falsifiability: a theory 
must be capable of being shown to be false by empirical test. The problems 
with Popper's falsifiability principle will be reviewed in the next section. As 
a demarcation criterion, it fares no better than the verifiability principle; 
either excluding too much or too little, it leaves his targets unscathed. 

I think that the distinction between science and pseudoscience is impor­
tant because of a set of more vulnerable targets, whose presence and 
substantial impact can be seen by a glance through magazines on the 
supermarket shelves. According to Martin Gardner (1981), there are ten 
times more practicing astrologers in the United States than astronomers. 
Social and intellectual arguments against pseudOSciences such as astrology 
and palmistry have an essential philosophical component that presupposes 
some sort of demarcation criterion. The social importance of distinguishing 
science from pseudoscience is especially evident in recent controversies in 
the United States over the teaching of so-called "creation science". Propo­
nents of creationism attempt to evade constitutional requirements of sepa­
ration of church and state by claiming that creation science is at least as 
scientific as evolutionary theory. Again, criteria of what constitutes science 
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are presupposed. In the recent court case concerning whether creation 
science should be taught in Arkansas public schools, the nature of science 
was a key issue and philosophers and scientists gave testimony on the issue 
(Overton, 1983). 

Hence for social reasons we must take seriously the demarcationist aim 
of the logical positivists and Popper, but our aim should be to distinguish 
science from egregious examples of pseudoscience such as astrology and 
creationism. We need three categories instead of the logical positivists' 
two. They had science, which was Good, and metaphysics, which was Bad, 
but I want to have science, which is Good, pseudoscience, which is Bad, 
and many other intellectual activities that are just nonscientific. Literary 
criticism and gourmet cooking, for example, are not scientific but do not 
purport to be, and therefore should not be branded as pseudoscientific. 

The second question above concerns the form of a demarcation prin­
ciple. Ideally, we would like a definition of the form 

X is scientific if and only if C, 

where X is an idea or proposition or field and C are necessary and sufficient 
conditions of X being scientific. Laudan (1983, p. 119) asserts, 'Without 
conditions that are both necessary and sufficient, we are never in a position 
to say 'this is scientific; but that is unscientific.' II This insistence reflects the 
traditional view that the meaning of concepts is captured by attempting to 

give necessary and sufficient conditions for their application. But the dis­
cussion of concepts and meaning in chapters 2 and 4 showed the dispens­
ability of such quixotic efforts. Concepts such as those in PI do not provide 
necessary and sufficient conditions for application of concepts, but only de­
fault rules that apply to most instances. They state, for example, what can 
be expected to hold typically of birds, not what is true of all and only birds. 
If ordinary concepts do not have sets of necessary and sufficient conditions, 
we can hardly expect to find such conditions for complex philosophical 
concepts such as "science". Rather, we should aim for a list of features that 
are typical of science and a contrasting list of features that are typical of 
pseudoscience. The lists will furnish contrasting conceptual profiles, so that 
to determine whether a field is a science or a pseudoscience, we must ask 
whether the characteristics of the field match better with the features 
of typical sciences or with those of typical pseudosciences. Demarcation 
betweeen science and pseudoscience is thus based on their contrasting 
proBles. The features in these profiles are criteria in a loose sense: they are 
not necessary and sufficient conditions, but, like the criteria for theory 
choice in chapter 5 and the criteria for normative logical systems in chapter 
7, they provide ways of telling good from bad. 

The third question remains: what sorts of things are subject to demarca­
oon7 For the positivists and Popper, sentences or propositions were labeled 
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as scientific or nonscientific, since it is these that are subject to verification 
or falsification. The alternative view of the structure of scientific knowledge 
presented in chapters 2 and 3 casts doubt on the feasibility of such atomiC 
units of demarcation. For reasons that will become clear following the 
discussion of psychological and historical criteria below, a much larger and 
more complex unit of demarcation is needed. The objects demarcated as 
scientific or nonscientific are not ideas or propositions or even theories, 
but fields. A field should be understood as a historical entity embracing 
theories, their applications, and the practitioners of the field. It is thus 
a social as well as an epistemic notion. Having a richer unit of demarca­
tion makes possible the unusually complex demarcation criteria discussed 
below. 

9.2. Verifiability and Falsifiability 

The logical positivists and Popper shared the assumption that science can 
be distinguished from nonscience on logical grounds. For the positivists, 
the distinctive feature of a scientific statement was that it is capable 
of verification by experience; for Popper the distinctive feature is being 
capable of falsification by experience. Verifiability and falsifiability are 
preeminently matters of logic: to verify a statement is to use deduction to 
predict observations that confirm it; to falsify a statement is to use deduc­
tion to predict an observation statement whose falsity implies the falSity of 
the theoretical statement that implies it. 

Two major criticisms have been levied against the verifiability principle: 
first, it cannot be stated in a way that excludes metaphysics without 
excluding science as well; and second, the principle is itself unverifiable and 
therefore metaphysical. Ayer's final attempt in the second edition of Lan­
guage, Truth and Logic to give a logically precise definition of IIverifiable" 
in terms of the derivability of observation statements was demolished by 
Church (1949). A strong criterion of verifiability would rule out scientific 
generalizations and theories, while a weak criterion, merely requiring of a 
proposition that it have some logical connection with possible observa­
tions, did not rule out the statements that the positivists wanted to damn as 
metaphysical. As Passmore (1968, p. 390) summarizes, "This indeed is the 
dilemma in which the logical positivists, like Hume before them, constantly 
found themselves-throw metaphysics into the fire, and science goes with 
it, preserve science from the flames and metaphysics comes creeping back." 
Similarly, the difficulty that the logical positivists had with explaining the 
status of their own principle suggests: Throw metaphysics into the flames 
and logical positivism goes with it. 

Contrast the positivists' account of confirmation with the account of 
theory choice given in chapter 5. The logical positivists and generations of 
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confirmation theorists since have thought that �he empirical value of a 
hypothesis could be evaluated on how well it predicted observations. I 
argued in contrast tha� the evaluation of hypotheses is much more coarse­
grained, based on explanation of classes of facts. Moreover, rather than 
consider the verification of individual theories, I argued that theory evalua­
tion is a comparative matter in which the best of competing explanations 
is chosen. If these points are correct, verification is much more complex 
than the positivists conceived, so that verifiability is even less likely to 
provide the convenient logical scalpel for excising the cancer of meta­
physics from the body of science. I remarked in chapter 5 that inference to 
the best explanation is applicable to metaphysical theories as well as to 
scientific ones, and even pseudosciences such as astrology and creationism 
are subject to defense by arguments to the best explanation. Such argu­
ments are weak because of the lack of evidence for them and because of the 
availability of better alternatives, but pseudoscientific theories can never­
theless be defended on the basis of what they explain. 

Qualitatively, however, there is a noticeable difference between scien­
tific and pseudoscientific theories. Pseudoscientific theories may appear to 
be highly consilient, explaining many classes of facts, but they typically do 
so at the cost of simplicity, as defined in chapter 5. Explanation of numer­
ous classes of facts is achieved by a host of auxiliary hypotheses with 
isolated applications. Creationism provides a splendid example. We could 
never And a theory more consilient than the one that consists Simply of the 
claim that what God wills happens: any event at all can be explained using 
the "law" that whatever God wills happens and the auxiliary hypothesis 
that God willed the event in question. The problem with such explanations 
is that a different auxiliary hypothesis is needed for each event to be 
explained, so that the theological theory is maximally nonsimple. (Another 
problem for creationism is explaining the presence of evil in the world 
given the assumed goodness of God.) Simpler explanations are to be 
preferred, even if given by less consilient theories. 

Popper thought that confirmation of theories was trivially easy to come 
by, and that the true mark of a scientific theory is that it is capable 
of falsification. Like the verifiability principle, the falsifiability principle is 
difficult to state in a way that is neither too exclusive nor too inclusive. As 
Duhem (1954) argued, even scientific theories are not capable of strict 
falsification. For the deduction of an observation statement from a theory 
generally requires the use of auxiliary hypotheses, and it is always possible 
to reject an auxiliary hypothesis instead of the theory. As we saw in 
chapter 5, the consilience of a theory can often be bought at the price of 
decreased simplicity. In a loose sense we could say that a theory is falsified 
if a better explanation for its domain is found, but virtually any theory, 
including astrology and creationism, is falsifiable in this sense. Hence 
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falsifiability is not the logically sufficient demarcation criterion Popper 
intended it to be. 

Other reasons for doubting the efficacy of the falsifiability principle 
were discussed in chapter 8 in connection with methodological conserva­
tism. Concern with falsification is misplaced, since higher priority should be 
placed on the development and comparative evaluation of research pro­
grams. Not only is falsifiability not a demarcation criterion for science; 
obsession with it would preclude procession beyond trivialities. 

All that remains in most philosophical circles of the concern with veri­
fiability and falsifiability is the conclusion that observations are somehow 
relevant to the evaluation of scientific theories, and that pseudoscientific 
theories are less amenable to empirical evaluation. We are not going to be 
able to establish a neat dividing line between science and pseudoscience on 
such a loose comparison. Nevertheless, in attempting to decide whether a 
field is scientific or pseudoscientific we can take into account, among other 
factors, the behavior of practitioners of the field in empirical matters. Part 
of the conceptual profile of science will concern empirical confirmations 
and disconfirmations, in contrast to pseudoscience, which is typically obliv­
ious to such matters. 

9.3. Resemblance Thinking 

The conceptual profile of pseudoscience should also include use of a natural 
but deficient form of reasoning not used in science. I distinguish two 
general kinds of reasoning, called resemblance thinking and correlation think­
ing. Resemblance thinking infers that two things or events are causally 
related from the fact that they are similar to each other; in contrast, correla­
tion thinking infers that two things or events are causally related from the 
fact that they are correlated with each other. After presenting psychologi­
cal, anthropological, and historical evidence for the importance of the 
distinction between resemblance thinking and correlation thinking, I argue 
that the use of resemblance thinking is typical of such pseudosciences as 
astrology. 

10hn Stuart Mill (1970, p. 501) identified as one of the most deeply 
rooted of all fallacies the belief "that the conditions of a phenomenon must, 
or at least probably will, resemble the phenomenon itself." Suppose you are 
asked to judge whether people with red hair are generally hot-tempered. 
The correlational approach would be to take a sample and count the 
numbers failing under the various categories of having or not having the 
two properties in question. Instead, most people would merely summon to 
mind a few examples of red-headed acquaintances and thereupon tender a 
judgment. Or, using resemblance thinking, they might notice a similarity 
between the fiery appearance of red hair and the metaphorically fiery 
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behavior of hot-tempered people, and use this to judge that redheads are 
in general hot-tempered. 

Correlation thinking should be construed broadly to encompass general­
ization from examples, statistical reasoning, and other kinds of induction. 
Inference to the best explanation qualifies, since it postulates causes on the 
basis of their ability to explain and predict observed regularities, not on the 
basis of similarities. 

Mill as well as Jerome (1977) observed that astrology is rife with resem­
blance thinking. Jerome describes how astrology is based on a "principle of 
correspondences" or "law of analogies". For example, the reddish cast of 
the planet Mars leads to its association with blood, war, and aggression, 
while the pretty "star" Venus is associated with beauty and motherhood. 
Saturn, which is duller and slower than Jupiter, is associated with gloom, 
and (one hopes even more tenuously) with scholarship. Similarly, analogy 
attaches characteristics to the signs of the zodiac: Libra, represented by the 
scales, Signifies the just and harmonious, while Scorpio resembles its name­
sake in being secretive and aggressive. The associations concerning the 
planets and signs of the zodiac are taken by astrologers as evidence of 
some causal influence of the heavens on the personalities and fates of 
individuals whose births occur at the appropriate times. Until recently, no 
attempt was made to detennine whether there is any actual correlation 
between the characteristics of the signs and planets and the personalities of 
the people under their alleged influence. 

Resemblance thinking is much more than just a quirk of astrologers. The 
first piece of evidence that it is a natural general method of human thinking 
is found in the psychological investigations of Tversky and Kahneman 
(1974). They maintain that people often make judgments about the relation 
of classes or events using a "representativeness heuristic", basing their 
judgments on degree of resemblance. Suppose people are asked to judge 
the career of the following individual. 

Steve is very shy and withdrawn, invariably helpful, but with little 
interest in people or in the world of reality. A meek and tidy soul, he 
has a need for order and structure, and a passion for detail. 

Research shows that people judge the probability that Steve is, for exam­
ple, a librarian by considering how similar Steve is to their stereotype of a 
librarian. Serious errors of judgment result from neglecting such factors as 
the percentage of librarians in the total population, a factor that Bayes' 
theorem requires us to introduce as a prior probability. Use of resemblance 
thinking also disposes people to neglect other important features in the 
estimation of probabilities, such as sample size and regression. Social psy­
chologists Nisbett and Ross (1980) describe numerous situations in which 
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the use of resemblance criteria leads people to make errors in attributing 
behavior to spurious cases. 

The second piece of evidence for the pervasiveness of resemblance 
thinking comes from anthropology. In his celebrated The Golden Bough, Sir 
James Frazer (1964, p. 35) cites a IILaw of Similarity" as one of two 
principles on which magic everywhere rests. This is the law that "like 
produces like, effect resembling cause". Frazer calls magic based on the 
law Homeopathic Magic, and describes such applications as injuring or 
destroying the image of an enemy as a way of prodUcing actual injury. He 
provides numerous additional examples of homeopathic magic in many 
different cultures. 

Richard Shweder (1977) has urged that we should understand the strange 
beliefs of other peoples as the result of applications of what I call resem­
blance thinking. For example, Zande beliefs about using fowl excrement to 
cure ringworm are viewed as part of a universal inclination to rely on 
resemblance instead of tests of correlation. Magical thinking can then be 
viewed, not as an especially bizarre or primitive mode of thought, but as 
an applicaton of a way of thinking all too natural to human beings. 

The final support for the importance of the resemblance/correlation 
distinction comes from the historical work of Michel Foucault and Ian 
Hacking. Foucault (1973, p. 17) states, "Up to the end of the sixteenth 
century, resemblance played a constructive role in the knowledge of West­
ern culture. It was resemblance that largely guided exegesis and the inter­
pretation of texts; it was resemblance that organized the play of symbols, 
made possible knowledge of things visible and invisible, and controlled the 
art of representing them." According to Foucault, until the seventeenth 
century there was no distinction between what is seen and what is read. He 
quotes Paracelsus' assertion that God "has allowed nothing to remain with­
out exterior and visible signs in the form of special marks." Knowledge is 
then gained by reading the signs displayed in the world, and resemblance 
is the primary method for this. One application is the doctrine of signa­
tures, which guided medicine to such conclusions as that the lungs of the 
fox are an aid to the asthmatic, and that turmeric with its yellow color 
serves as a cure for jaundice. Only in the seventeenth century, with the 
work of Descartes, Bacon, and others, do we have the rise of correlation 
thinking, which seems so fundamental to us today. 

Foucault's views on the dominance of resemblance thinking are con­
firmed by Ian Hacking's work on the emergence of probability. Hacking 
(1975) marks the decade around 1660 as the birth time of probability, in 
both its statistical aspect concerning frequencies and its epistemological 
aspect concerning degrees of belief. Previously, "probability" indicated 
approval or acceptability by intelligent people; evidence was a matter 
of testimony and authority, not observation or correlation; resemblance 
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thinking sufficed to interpret God's handiwork. The new dual concept of 
probability was thus part of the emergence of the method of correlation 
thinking. 

A recent example of resemblance thinking is found in a Time magazine 
article on football (Time, November 13, 1978, p. 112). It reports the work 
of a Berkeley anthropologist who argues that the sexual symbolism of the 
game-teammates hugging and patting each other, the quarterback receiv­
ing the ball from between the center's legs, talk of "scoring", skintight 
pants, and so on-suggests that football is a homosexual ceremony, serv­
ing to discharge the homoerotic impulses of players and fans. A few 
similarities encourage an untested causal hypothesis. 

Note, however, that not all reasoning involving Similarity is resem­
blance thinking. The detection of similarities is a pervasive feature of 
thought and only becomes illegitimate when the leap is made from mere 
similarity to causal connection. Analogies and metaphors are very impor­
tant in scientific and everyday reasoning, but analogical inference is not a 
form of resemblance thinking. In resemblance thinking we infer from the 
similarity of two things or events A and B that they are causally related. 
Analogical inference involves similarity and causality, but in a more com­
plicated fashion (see section 4.2.5 on analogical abduction, and 5.6 on 
analogy as a criterion for the best explanation). Schematically, appropriate 
uses of analogy can be understood as follows. We know that A and B are 
similar (analogous) to each other. We also know that A is causally related 
to C; correlation thinking would have to be the basis for this knowledge. If 
C is similar to D, which is near B, we might conclude by analogical 
inference that B might be causally related to D. Our inference is not based 
on any similarity between B and D, but is grounded in the known causal 
relation between A and C. To establish more than the presumption of a 
causal relation between B and D would require further correlation. More 
concretely, recall the use of analogical abduction to suggest a hypothesis 
concerning who committed a murder. The unsolved murder is seen to be 
similar to another murder that has been solved. The solution to the under­
stood crime is a causal account of who committed it, and analogy serves to 
carry this causal account over to the unsolved case. No resemblance think­
ing is involved at all. Analogy here functions primarily as a heuristic 
device, although it may also play a subsidiary role in the validation of the 
existence of a causal relation between phenomena. 

Resemblance thinking would be easy to implement computationally. 
The features of an object or kind could be represented in a framelike 
structure, and a program could judge degree of similarity by comparing the 
slots in the frame. The heuristic for making illegitimate causal judgments 
would be to infer a causal relation merely from the calculated similarity. 
Correlational heuristics for judging causal relations would have to be much 
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more complicated, taking into account such factors as temporal relations 
and common causes: we should not infer a causal relation between amount 
of ice cream consumed and number of drownings, since the statistical 
correlation between them is the result of the common cause of hot days. 
Computational techniques for discriminating causal relations hom spurious 
correlations have yet to be developed. 

9.4. Resemblance Thinking and Pseudoscience 

Because the use of resemblance thinking is so integral to astrology, it 
is tempting to suggest that resemblance thinking is a central feature of 
all pseudoscience. Resemblance thinking is also rampant in many other 
dubious pursuits. Graphology purports to analyze people's personality 
from their handwriting, maintaining, for example, that detailed symmetric 
doodles indicate that someone is orderly and precise. Such a correlation 
may well exist, but similarity rather than empirical test seems to be the 
basis for the assumed relation. Physiognomy holds that there is a connec­
tion between the features of the face and the charader of the person, so 
that someone with a low forehead is deemed to be unintelligent. Phys­
iognomy thrived for centuries without empirical test, because it "made 
sense" on the basis of resemblance thinking. In palmistry, a long life line on 
the hand is taken to predict a long life, based only on similarity rather than 
on any observed correlation between length of lines on the palm and 
length of life. 

There is not, however, a perfect mesh between the resemblance/ correla­
tion distinction and the pseudoscience/science distinction. First, not all 
pseudoscience uses resemblance thinking. Although astrology, graphol­
ogy, physiognomy, palmistry, and folk medicine revel in resemblances, 
pseudoscience can also be done on the basis of spurious correlations. As we 
saw in the last section, not all correlation indicates causation. There is a 
standard joke in introductory logic books about the man who successively 
developed massive hangovers from drinking scotch and water, gin and 
water, and vodka and water, then prudently decided to give up drinking 
water. Falling barometers do not cause storms. Thus mere attention to 
correlations is not sufficient to provide a scienti6c ground for a causal 
relation between objects or events. Proponents of biorhythms delight in 
pointing to such "con6nnations" as that Elvis Presley died on a "triple low" 
day, and that Mark Spitz won all his Olympic gold medals while experienc­
ing a "triple high". What I call correlation thinking involves much more 
than attention to selected positive instances. It requires attention also 
to negative instances as well as to possible alternative explanations of 
observed correlations. 

The deans of modem pseudoscience, Immanuel Velikovsky (1965) and 
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Erich von Daniken (1970), both use a very rough sort of correlation 
thinking in support of their peculiar theories. Velikovsky uses such evi­
dence as the coincidence among ancient myths to support his hypothesis 
that Venus was ejected &om Jupiter about 5,000 years ago and passed near 
the earth before assuming its present orbit. Von Daniken also uses mytho­
logical evidence in support of his hypothesis of ancient visits by extra­
terrestrial beings. Both neglect alternative explanations and suffer from 
other problems, such as the inconsistency of Velikovsky's views with 
celestial mechanics; but the central objections to them do not include 
the use of resemblance thinking. (There do, however, seem to be a few 
instances, such as Velikovsky's view that the manna that supposedly nour­
ished the ancient Hebrews during their years of wandering in the desert 
was carbohydrates &om the tail of Venus.) Thus a field can be pseudo­
scientific without using resemblance thinking. 

More problematically, we can look for uses of resemblance thinking that 
are not pseudoscientific. Consider first the methods of the humanities, 
especially as they concern the interpretation of texts. Literary interpreta­
tion, art appreciation, and the history of philosophy all in part involve the 
detection of similarities and the comparison of symbols. But this study of 
resemblances is not pseudoscientific because it does not purport to be 
scientific; connections are found, without making claims about causes and 
explanations. Although there is occasional use of correlation methods, as in 

the computer analysis of texts to establish authorship, the humanities have 
an important function in providing plausible interpretations; truth is another 
matter, one not to be reached by resemblance thinking. To take an example 
from the history of philosophy, the interpretation of Kant can be a philo­
sophically important enterprise even though we may have little hope of 
figuring out what Kant "really" meant. Thus the humanities provide no 
examples of fields using resemblance thinking without being pseudoscienti­
fic: resemblance thinking is more than the recognition of similarities; it is 
the attribution of causality on the basis of similarities. Interpretation in the 
humanities does not generally involve causal attributions, so should not be 
counted as resemblance thinking. We should say that the humanities are 
nonscientific rather than pseudOScientific, since their study of similarities 
has a function different from the attribution of causality. 

Let us now take a brief look at Freudian psychoanalysis. Freud and his 
followers would certainly claim that their theories are based on correlation 
thinking applied to many clinical observations. But controlled experiments 
are rare and much of Freudian theory is redolent of resemblance thinking. 
The penis is elevated to such symbolic importance that female resentment 
of male domination can be brushed away as penis envy. Compulsive 
neatness is attributed to problems of toilet training producing an anal 
retentive personality. A death instinct is hypothesized to explain human 
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destructiveness. Nisbett and Ross (1980) note Freud's great contribution of 
observing that people frequently use resemblance thinking and developing 
the method of free association to explore their thought processes; but 
Freud himself seems to have fallen into resemblance thinking in propound­
ing such doctrines as the ones mentioned. However, psychoanalysis at least 
attempts to use correlation thinking, and it might be argued that the 
psychological explanations that appear to be based on resemblance think­
ing arise from noting the actual associations in patients' minds; it would 
then be a correlational observation of peoples' use of resemblance think­
ing. Thus psychoanalysis, like textual interpretation, does not provide 
a counterexample to the claim that all disciplines that use resemblance 
thinking are pseudoscientific. 

In sum, resemblance thinking is a pervasive aspect of human reasoning, 
causing much fallacious reasoning and contributing to such pseudosciences 
as astrology. The use of resemblance thinking is sufficient to render a 
discipline pseudoscientific, but pseudOSciences can also be founded on 
incomplete or spurious correlation thinking. Nevertheless, the use of 
resemblance thinking belongs on the profile of pseudoscience as a typical 
although not universal characteristic. 

9.5. Progressiveness 

Thagard (I978b) proposed the following criterion for pseudoscience: "A 
theory which purports to be scientific is pseudoscientific if and only if (1) 
it has been less progressive than alternative theories over a long period of 
time, and faces many unsolved problems, but (2) the community of practi­
tioners makes little attempt to develop the theory towards solutions of the 
problems, shows no concern for attempts to evaluate the theory in relation 
to others, and is selective in considering confinnations and disconfirma­
tions." This criterion has several flaws that should be evident from the 
discussion so far. First, it attempts the hopeless task of providing necessary 
and sufficient conditions for pseudoscience. Second, it turns out to be too 
soft on astrology, which it was originally designed to label as pseudo­
scientific. For it implies that astrology could only be branded as pseudo­
scientific when alternative theories of personality became available with 
the rise of scientific psychology. Yet we saw in the last section that 
astrology has a feature-resemblance thinking-that marks it as pseudo­
scientific in a way that is independent of any historical dimension. 

Although my proposed definition must therefore be abandoned, the 
features of pseudoscience it mentions should be incorporated into the 
profile of pseudoscience. The features listed under clause (2) concern the 
comparative evaluation of theories and have already been discussed in 
connection with verifiability. Clause (1), however, points to an important 
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historical dimension of the distinction between science and pseudoscience 
that must now be discussed. 

Velikovsky was once heard to brag that whereas physics and chemistry 
had gone through enormous changes, his theory of worlds in collision had 
survived for decades virtually unchanged. But the immutability of his 
theory is more suspicious than salutary. Change is a central feature of any 
scientific field, as new data are collected and new and better theories are 
discovered. In earlier chapters we saw that science progresses by develop­
ing better theories, where "better" is defined by the criteria for theory 
choice. Physics, for example, has progressed enormously since the time of 
Galileo. In the nineteenth century, the pinnacle of success was Newtonian 
mechanics, but in the twentieth it has been superseded by an even more 
consilient theory, general relativity. In contrast, astrology and creationism 
are hopelessly static. Astrology is virtually unchanged since the days 
of Ptolemy, and current practitioners show little concern with making 
improvements (Thagard, 1975b). Creationists undergo intellectual contor­
tions in order to explain away the evidence for evolution, but their basic 
theory, that the world and its species are the result of special creation, 
offers no refinements over the traditional biblical story. No new classes of 
facts have been explained in centuries by either astrology or creationism. 

Progressiveness is a historical criterion in two senses. First, assessment 
of progressiveness requires consideration of the record of a field over 
time. Second, it is sensitive to a particular historical context. Just as theory 
choice is comparative, conSidering competing explanations, so judgments 
of pseudoscience must take into account what alternative explanations are 
available. Thus astrology was not an entirely disreputable pursuit for Kep­
ler or Newton, if they were trying to found it on correlation thinking rather 
than resemblance thinking; hut it is unacceptable today when psychology 
can offer environmental and genetic explanations for people's personalities. 
The natural theology that flourished in early nineteenth-century Britain and 
attracted leading scientists such as Whewell was not contemptible. At the 
time, no general cosmological or biological theories were available. Dar­
win's theory of evolution by natural selection was a major blow to natural 
theology, since it provided an alternative account of how the apparent 
designs found in nature could have come to be. After Darwin, special 
creation was no longer the best explanation available for biological organi­
zation, and natural theology has been in retreat ever since. A century of 
advances in evolutionary theory and genetics exposes natural theology 
and its contemporary recrudescence, "scientific" creationism, as intellec­
tually vapid. But remember that this was not always so: pseudOScience is a 
historical category. 

Conceivably, a field that was at one time pseudoscientific might blossom 
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into a science, just as chemistry rose from the ashes of the magic of 
alchemy. Today there are a few attempts to revive astrology using empiri­
cal methods (Gauquelin, 1969) and it cannot be ruled out a priori that 
astrology might be elevated to scientific status by use of such correlation 
thinking. Carlson (1985) reports on extremely thorough double-blind test 
of astrological predictions about personality. Astrologists failed to perform 
at a level better than chance, which would suggest that astrology is not 
only falsifiable but false, But future studies might find support for astrol­
ogy. I do not think this is likely, but I raise the possibility to highlight 
the historical, contextual nature of judgments of pseudoscience. Contrast 
this with the ahistorical criteria of the logical positivists and Popper, for 
whom a statement could be nonscientific merely be virtue of its logical 
fonn. 

9.6. Profiles of Science and Pseudoscience 

To summarize the discussion of logical, psychological, and historical cri­
teria, we can characterize science and pseudoscience by these profiles: 

Science 

Uses correlation thinking. 

Seeks empirical confirmations 
and disconfinnations. 

Practitioners care about 
evaluating theories in 
relation to alternative 
theories. 

Uses highly consilient and 
simple theories. 

Progresses over time: develops 
new theories that explain 
new facts. 

Pseudoscience 

Uses resemblance thinking. 

Neglects empirical matters. 

Practitioners oblivious to 
alternative theories. 

N onsimple theories: many 
ad hoc hypotheses. 

Stagnant in doctrine and 
applications. 

Remember that these features are not intended to be strict necessary or 
sufficient conditions of science or pseudOScience. But we can show that a 
suspect field is pseudoscientific by shOWing that its characteristics match 
those of the right side of the table better than the features on the left. 
Physics, chemistry, and biology fall naturally into the scientific category on 
the left, while astrology and creationism belong on the right. More exact 
conceptual proAles would arise from turning these features into rules with 
associated strengths, as occur in the concepts in the system PI. For exam-
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If x is a field whose practitioners use resemblance thinking, then x is 
a pseudoscience. 

A weaker rule would run in the other direction, providing a rough expecta­
tion: 

If x is a pseudoscience, then x has practitioners who employ resem­
blance thinking. 

A full set of such rules would provide a more subtle means of judging a 
field to be scientific. 

Thus the failure of the verifiability and falsifiability principles does not 
condemn us to relativism about the nature of science. Scientific method is 
not based on the strict logical procedures that the positivists and Popper 
advocated. Nevertheless, attention to a broader range of procedures can 
lead to development of principles for distinguishing science from pseudo­
science and to criteria that contribute to other normative tasks of the 
philosophy of science. 

9.7. Are the Cognitive Sciences Scientific? 

At meetings of the Cognitive Science Society, one frequently hears the 
ironical remark, "Any field that has to call itself a science isn't." That 
judgment is too harsh, but it raises the question of how fields such as 
psychology and artificial intelligence fare according to my profiles of 
science and pseudoscience. (I lack the expertise to address the question of 
other cognitive fields, such as linguistics and neuroscience, not to mention 
economics or sociology.) 

Consider first psychology, Cognitive psychologists certainly fare well 
on the criteria of using correlation thinking, since they do controlled 
experiments, use statistical tests, and evaluate theories on the basis of 
experimental results. Psychology cannot, however, make convincing claims 
to have achieved simple consilient theories that have developed progres­
sively. For the past twenty years, the information processing metaphor has 
guided research in cognitive psychology, but there has not yet arisen a 
comprehensive, unifield theory that accounts for a broad range of phenom­
ena. The best current candidate is probably Anderson's ACT· rule-based 
model of cognition, but he appropriately characterizes it as more of a 
framework providing a general pool of constructs than a theory. However, 
cognitive psychology certainly does not fall under the pseudoscience cate­
gory either, since there are no better alternative theories available, and 
there is every reason to expect that psychologists would enthusiastically 
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embrace a simple consilient theory if one were to arise. We are still 
awaiting the Newlon or Darwin of psychology, Thus psychology is prob­
ably best characterized as a young science that lacks the development of 
fields such as physics and biology but is clearly more scientific than pseudo­
scientific. 

The case of artificial intelligence is much more complicated, for we can 
see AI as at least three different kinds of enterprises: technological, �athe­
matical, and quasi-experimental. The technological aspects of AI are prom­
inent these days in the development of expert systems whose many 
current applications include prospecting for oil, financial management, and 
medical diagnosis. Such applied ventures should be neutrally counted as 
nonscientific rather than pseudOScientific, in the same way that manu­
facturing cars is not thought of as a science, even though it applies some 
scientific knowledge. Similarly, the activities of AI researchers concerned 
with such issues as algorithmic complexity are best thought of as non­
scientific, since pure mathematics does not have much in common either 
with the features of empirical science or with those of pseudoscience as 
profiled above. 

AI becomes more empirical when it is allied with cognitive psychology 
in the attempt to understand the nature of mind. Programs such as PI can 

be understood as ventures in theoretical cognitive psychology, intended to 
predict and explain observations about human thinking. In this collabora­
tion with psychology, which I take to be the central activity of cognitive 
science, AI blends into psychology and inherits its characterization as a 
young sCIence. 

What of nonapplied, nonpsychological AI? Much work in artificial intel­
ligence is intended neither to have direct technological application nor to 
constitute models of the human mind. Practitioners frequently talk of doing 
experiments, where what is observed is how the computer behaves when 
programmed in certain ways. (With complex programs, it is by no means 
true that "the computer only does what you tell it to do.") It seems 
that artificial intelligence researchers create their own phenomena, which 
are to be explained in terms of general principles of computational intelli­
gence. A computational technique can be judged to be a contribution to 
understanding if a program performs more sophisticated tasks with it 
than without it. Analysis of when and how the program succeeds and 
fails is reqUired to ensure that its improved performance in fact derives 
from the ideas being tested and not from other features of the program 
or domain. (I am indebted here to conversations with Bruce Buchanan.) 
AI is a very young field with evolving methods and standards whose 
relation to those of mature empirical sciences such as physics remains to be 
explored. 
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Science can be distinguished &om pseudoscience by profiles that specify 
features typical of the two categories. These include much more than the 
logical matters of verification and falsification. Psychological concems such 
as the use of resemblance thinking and historical issues such as progres­
siveness are also highly relevant to distinguishing science from pseudo­
science. The resulting profiles serve to brand astrology and creationism as 
pseudosciences. 
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Chapter 10 

The Process of Inquiry: Projects for Computational 
Philosophy of Science 

The last three chapters moved progressively farther away from the descrip­
tive, computational issues with which we began. I want now to return to 
similar issues, but at a much more speculative level. There is more to 
scientific inquiry than the procedures of problem solVing, hypothesis for­
mation, and theory evaluation discussed in earlier chapters. A full compu­
tational account of the process of scientific inquiry will need to describe in 
addition how problems and experiments are generated; and it will have to 
deal with the social dimension of science-that science is done by indi­
viduals working in collaboration. This chapter outlines two future projects 
for computational philosophy of science that aim at the construction of 
models of science rich enough to encompass its experimental and social 
sides. The first project is to give an integrated computational account that 
shows the relations of experimentation to problem solving and induction, 
and the second is to use ideas about parallel computation to characterize 
group rationality in science. 

10.1. Theory and Experiment 

10.1.1. The Limitations of PI 
We saw in chapters 2-4 how PI simulates solving problems by a process 
of firing of rules and spreading activation of concepts, and how various 
kinds of induction-concept formation, generalization, and abduction­
are triggered by the current state of activation. Figure 10.1 gives a simpli­
fied picture of PI's operation, with problem solving as the central function 
and various learning mechanisms triggered by it. Within the limitations 
already described in earlier chapters, PI suffices to describe much of scien­
tific problem solving and theory formation. But at a higher level PI is 
clearly deficient in at least two respects. first the current models says 
nothing about how problems arise. Like most existing AI programs for 
solVing problems, PI requires that problems be given to it. Nothing in PI's 
current operation constructs or begins the solution of new problems. But 
problem solving is crucial to focusing the search for new theories, whose 
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Figure 10.1 
Current operation of PI. 

formation is only triggered during problem solving. So we ought to have 
an account of when a system should set out to solve particular problems. 

A second deficiency concerns the source of observed messages in PI, 
which currently are just typed in by the programmer. Many scientific 
problems arise from observation and experiment. Darwin, for example, 
wondered why the observed species of animals on different islands of 
the Galapagos were related but different. Lavoisier wondered why things 
that bum increase in weight. These puzzling phenomena needed to be 
explained, and the attempt to explain them was part of the problem­
solVing process that led to new theories. But where do experiments come 
from? The description of PI said nothing about the source of new observa­
tions. PI does have a very simple simulated world that can pipe observa­
tions, in the form of messages, into the current state of activation; but it has 
no way of controlling what kinds of things it observes. The designing of 
experiments to produce observations is a central part of scientific inquiry, 
and no model of science can be �omplete without it. 

10.1.2. Two Methodological Myths 
What is the relation between theory and experiment? Most descriptions of 
science subscribe to one of the two following pictures of scientific practice. 

1. the hypothetico-deductive myth, which says that scientists begin 
with hypotheses and then do experiments to test them, or 
2. the inductivist myth, which says that scientists begin by doing 
experiments and then derive their theories from the data. 

In most scientific circles, the hypothetico-dedudive myth, whose foremost 
philosophical advocate is Popper, is dominant. Consider, for example, the 
standard form of papers published in the journals of the American Psy­
chological Association. They typically begin with a statement of the hy­
pothesis that was tested, then describe the experimental methods, and then 
finally discuss how the experimental results bear on the hypothesis. This 
form leads to compact presentation, but sometimes distorts the process by 
which results were compiled. In well-trod areas of investigation, it may be 
possible to form a sharp hypothesis and then test it. But when novel topics 
are being pursued, researchers in psychology and other fields cannot 
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always start with hypotheses sharp enough to be tested. Often some vague 
ideas will lead to the collection of some data, which then suggest a refine­
ment of an existing hypothesis. Or results that are very different from what 
was expected may spur the abductive formation of a new hypothesis that 
can then be subjected to further test. 

This process is too complicated to fit the inductivist myth either, since 
scientists do not simply begin with data and then move to theories, but are 
involved in a continuous loop of data collection and theory formation. 
Figure 10.2 contains a better overall picture of scientific inquiry. There is 
no favored starting point, no priority given to any of the activities of 
problem solving, hypothesis formation, or experimentation. Problem solv­
ing leads to various kinds of induction, including the formation of hy­
potheses; the need to test hypotheses leads to the design and execution of 
experiments; experiments generate problems to be solved, which in rum 
lead to new hypotheses. These three connections are shown by solid lines. 
In addition (see the dotted lines), the formation of hypotheses can generate 
new problems to be solved, if a new generalization or theory can in rum 
require explanation. And experimentation can be prompted directly by 
problem solving, for example, in the case where some simple factual infor­
mation, such as the gravitational constant, is needed. 

To flesh out figure 10.2's sketch of the process of inquiry, we need 
answers to the following six questions: 

1. When and how does problem solving lead to induction, especially 
hypothesis formation? 
2. When and how does hypothesis formation lead to experimenta­
tion? 
3. When and how does experimentation generate problems to be 
solved? 
4. When and how does induction, especially hypothesis formation, 
lead to problem solving? 
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5. When and how does problem solving lead to experimentation? 
6. Is induction ever prompted directly by experimentation without 
mediation by problem solving? 

PI furnishes at least a beginning to an answer to question (I), since it shows 
how induction can be triggered during problem solving. Answers to the 
other questions are much more problematic. 

As a first approximation to an answer to question (2), we can say that 
hypothesis formation leads to experimentation when a new hypothesis has 
been formed that does not have sufficient grounds for acceptance, either 
because the evidence that lead to its abduction was weak or because there 
are alternative hypotheses that contradict it. Recall how PI performs infer­
ence to the best explanation. The presence of competing theories may 
prompt the construction of experiments that would prOVide evidence that 
might help to show that one theory explains more than the other. PI might 
therefore be enhanced by having the simulated conduction of experiments 
triggered by the process of inference to the best explanation. How such 
experiments are constructed is an even tougher question addressed in 
section 10.1.3. 

To answer question (3), we must note that experiments do not always 
give rise to problems. If an experiment merely produces some result that 
fits naturally into existing knowledge, there is no reason to try to explain 
it. The process by which problem solving arises hom experimentation 
would seem to be something like the following: 

a. The experiment is conducted. 
b. The results are checked against existing knowledge. 
c. If they do not fit, then the attempt to solve the problem of explain­
ing these results is begun. 

But what does "fit" mean here? At the simplest level, it might just mean 
consistency. If the experimental results contradict ones preViously obtained, 
then the problem of explaining both sets of results dearly arises. A looser 
sense of fit would have to do with the availability of explanations. If the 
experimental result is similar to ones that have already been explained 
by a given theory, the system should quickly check to see whether that 
theory also explains the new result. The check would require invoking 
the problem-solving procedures, but search for a new solution would be 
focused on the existing theory. If that search failed to find a solution, then 
the system would initiate full-blown problem solving that could lead to the 
generation of new theories. The process just described leads hom experi­
ment to problem solving via hypothesis evaluation, and so is equally 
relevant to question (4). 

I suspect that an answer to question (5), concerning how problem solv-
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ing leads to experimentation, may also require some reference to inductive 
procedures, although there may well be pure cases in which the attempt to 
solve some problem requires information that can be obtained experimen­
tally. For example, to figure out how to put people on the moon required 
a precise calculation of its distance from the earth, which could be gained 
experimentally. As for question (6), if the assumptions concerning the 
pragmatics of induction that underlie PI are correct, the answer is no: 
Experimentation does not lead directly to hypothesis formation without 
some attempt at problem solving or explanation that focuses learning. In 
contrast, the BACON programs of Langley et a!. (1987) proceed directly 
from data to laws using heuristics for data analysis, but their simulations 
of discoveries such as Kepler's laws deviate from actual historical cases 
(Holland et al., 1986, chapter 11). 

10.1.3. Experimental Design as Problem Solving 
The second part of questions (2) and (5) concerns how hypothesis forma­
tion and problem solving can lead to experimentation. For most practicing 
scientists, the design and conduct of experiments is their central enterprise, 
yet philosophers of science have had surprisingly little to tell us about it (a 
valuable exception is Hacking, 1983). 

The design of experiments can be understood as a kind of problem 
solving in which, as always, analogy plays an important role. Experimental 
design is not directly concerned with providing explanations, so it will not 
lead to further hypotheses. As we saw in chapter 3, the essential com­
ponents of problems are starting conditions and goals, including con­
straints that must not be violated. The goals of experimental design include 
obtaining observations that will answer the questions raised by hypothesis 
formation or problem solving, while practical constraints arise from the 
availability of facilities, materials, subjects, and so on. Experimental design 
is clearly a very ill-defined problem, but can become tractable in well­
developed domains by the use of analogy. If the phenomena to be investi­
gated are similar to ones that have already been studied, then the experi­
mental techniques for the familiar phenomena can be adapted and carried 
over. To take an example from psychology, if we want to gain some 
insight into the duration of some mental process, there is a wealth of 
experiments using reaction times that can be taken as providing approxi­
mate solutions. Every experimental field has a set of available paradigms (in 
the pre-Kuhnian sense): standard experimental techniques that become the 
stock in trade of the researcher. A full computational model of scientific 
research will have to include knowledge of such techniques. It does not 
appear, however, that any major additions to the theory of problem solv­
ing outlined earlier would be needed to accommodate experimental design. 

In artifidal intelligence, work is just beginning on computational accounts 

Copyrighted Material 



180 Chapter 10 

of experimentation. Rajamoney, Dejong, and Faltings (1985) describe a 
program that works in the domain of liquids. It derives predictions about 
liquids from what it knows, and when the predictions contradict what is 
known it devises experiments to determine which of its beliefs must be 
changed. Friedland and Kedes (1985) have developed a system to aid in the 
design of experiments in molecular genetics. Shrager (1985) has written a 
program that simulates experimentation and hypothesis formation by peo­
ple learning how to use a complex toy. No clear pattern has emerged from 
these nascent research programs, but the methodology promises to bring 
much insight into the nature of inquiry. 

Figure 10.2 is guilty of exaggerating the links between hypothesis 
formation and experiments, since sometimes there is a fortuitous mesh of 
theory and experiment even though these were done independently. The 
background radiation discovered by Penzias and Wilson using a radio­
telescope at Bell Labs proved to be a decisive piece of evidence in favor of 
the Big Bang theory of the origin of the universe, but the discovery of 
the radiation was entirely unconnected with the formation or testing of 
the theory (Hacking, 1983). We must not suppose, therefore, that theory 
formation and experimentation are always done in the service of each 
other. 

10.1.4. An Illustration: The Extinction of the Dinosaurs 
Recent work on dinosaurs illustrates the different elements of the process 
of inquiry just described. Wilford (1985) has chronicled the recent history 
of attempts to explain why dinosaurs became extinct 65 million years ago 
at the end of the Cretaceous period. Their extinction has inspired many 
abductions, to hypotheses whose postulated causes range from climatic 
changes to constipation. However, the hypotheses have been short on 
both consilience and simplicity, typically explaining little more than that 
the dinosaurs became extinct and requiring a host of assumptions to do so. 
One such hypothesis was that a comet had collided with earth, leading to 
the demise of the dinosaurs. 

In the 1970s, the geologist Walter Alvarez and his colleagues were 
studying limestone in Italy, looking for rocks marking reversals in the 
earth's magnetic field. Serendipitously, they noticed at a level correspond­
ing to the end of the Cretaceous period a thin layer of reddish-gray clay, 
barren of fossils. This is a case of data collected for purposes quite indepen­
dent of the theoretical disputes to which they were eventually applied. 
Alvarez's physicist father, Luis, was consulted and suggested taking a 
measure of the amount of the rare element iridium in the clay in order to 
estimate the approximate time span at the Cretaceous boundary. Here we 
have an experiment leading to a problem and then to another experiment, 
with, I conjecture, some intervening hypotheses about the origin of the 
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day. It turned out that the clay contained an extraordinarily large amount 
of iridium, 30 times more than the sediment above or below it. Since 
iridium is several thousands times more plentiful in meteorites than in the 
crust of the earth, they hypothesized that its source was extraterrestrial. 
The attempt to explain a puzzling phenomenon-the existence of the 
layer of clay with high iridium content-triggered an abduction. 

Suddenly the hypothesis that the dinosaurs became extinct because 
of collision of the earth with an extraterrestrial object was much more 
plausible, because the same hypothesis explained both extinction and the 
iridium layer. The hypothesis had become consilient! The fossil record 
showed that various species of dinosaurs became extinct at roughly the 
same time, from which it had been abduced that some cosmic collision had 
occurred: a collision of the planet earth with another body might have 
thrown up enough dust to reduce sunlight and vegetation supplies to 
levels below what the dinosaurs needed to survive. The same collision 
could have produced the iridium layer. In a detailed paper in Science, 
Alvarez et al. (1980, p. 1095) proclaimed, "In this article we present direct 
physical evidence for an unusual event at exactly the time of the extinc­
tions in the planktonic realm. None of the current hypotheses adequately 
accounts for this evidence, but we have developed a hypothesis that 
appears to offer a satisfactory explanation for nearly all the available 
paleontological and physical evidence." The presence of high iridium con­
tent proved to occur worldwide, and eight other elements in addition to 
iridium were found to occur in proportions similar to those found in a 
typical meteorite. Thus the collision hypothesis led to much additional 
experimental work. Some researchers however, were not convinced that 
the correct explanation of the extinction of the dinosaurs had been found. 
They argued that the fossil record did not show that extinction had been a 
single cataclysmic event and that dinosaurs suffered from gradual decline 
independently of the cataclysm. The Alvarez group did additional experi­
ments, both to strengthen the evidence for their view and to respond to 
critics (Alvarez et al., 1984). Through their efforts and those of their critics, 
richer and more detailed hypotheses were developed, and much new rele­
vant evidence was collected. 

Debate on the issue continues. I shall not attempt to speculate concern­
ing the fate of the Alvarez's hypothesized explanation of dinosaur extinc­
tion, which has been introduced here merely to illustrate some of the 
aspects of scientific investigation. The development of ideas in this case 
is not compatible with either of the methodological myths discussed in 
section 10.1.2, but can only be understood using a much more complex, 
interactive model of the process of inquiry. I now consider still another 
kind of complexity concerning the social side of science. 
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10.2. Parallel Computation and Group Rationality 

The account of scientific inquiry summarized in figure 10.2 finds an inte­
grated place for experimentation, but it still provides a simplistic account 
of scientific inquiry. It assumes that science is essentially perfonned by 
an individual thinker who solves problems, forms hypotheses, and does 
experiments. Science today is perfonned by large communities of scientists 
working sometimes in collaboration, sometimes in conflict. Problem solv­
ing, hypothesis formation, and experimentation in a given field may be 
distributed across individuals. Different groups may be involved in the 
advocacy and exploration of conflicting hypotheses. 

From a computational viewpoint, scientific communities can be thought 
of as highly parallel processors of information. Philosophical models of 
rationality have almost always focused on the rationality of the individual, 
but we shall see that group rationality may be more than a simple sum of 
the rationality of the individuals. To make this point, I shall first consider 
various advantages that recent work in computer science has found for 
parallel processing, and then show more particularly how viewing science 
as done by numerous individuals working in parallel has important philo­
sophical consequences. 

10.2.1. The Importance of Parallel Computation 
It might be thought that the only computational importance of parallelism 
derives from speed: parallel processors operating together cannot do any­
thing that a single processor cannot; they just do it faster. Similarly, group 
rationality in science might just be an aggregate of individual scientists' 
rationality. I shall argue, however, that parallel design of computers can 
offer more than just increased speed of operation: it can lead to qualita­
tively different means of information processing. Similarly, group rational­
ity may require different overall standards than individual rationality. 

Let us look first at parallel computation. According to Wirth (1976) and 
other theorists, a program should be understood as consisting of data 
structures and algorithms for manipulating those structures (see tutorial C). 
The structures and algorithms are interdependent: the algorithms must 
work with the data in the fonn given to them. In languages like Pascal, data 
structures are conceptually distinct from the procedures that use them, 
whereas in LISP procedures are themselves data structures, namely, lists. In 
both cases, however, it is impossible to specify algorithms without noting 
the kinds of structures on which they operate. Philosophers tend to assume 
the ubiquity of only one kind of data structure-the proposition-and 
only one kind of algorithm-logical reasoning. But computer science 
offers a wealth of structures in which data can be stored: arrays, tables, 
records, frames, and so on. We saw in chapter 2 that our view of the nature 
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of thinking can be broadened considerably by allowing for the possibility 
of nonpropositional data structures and nonlogistic processing mechanisms. 

Programming is often a matter of style. Any programmer knows that 
some programming tasks are much easier to do in some languages than in 
others. You could conceivably write AI programs in Pascal, or even assem­
bly language, but it is much easier to design and write such symbol­
manipulating programs in LISP. Thus qualitatively it is much easier to 
produce programs in languages that provide facilities for the appropriate 
kinds of data structures and algorithms. Some programming theorists even 
urge a kind of computational Whorf hypothesis, claiming that using a 
particular programming language can have a substantial effect on how 
problems are conceived. (Dijkstra jokes that Basic and Fortran cause perma­
nent brain damage.) 

These features of programming point to a general argument for the 
qualitative importance of parallel processing. Some programming tasks are 
much more naturally done using particular kinds of data structures and 
algorithms found in particular programming languages, and great gains in 
efficiency and ease of use can be achieved by tailoring hardware for 
particular programming functions. Hence in contrast to the in-principle 
compatibility of any program with any hardware, we find in practice that 
a good fit of software and hardware is indispensable, which opens the door 
for the potential usefulness of hardware that employs parallel processors. 

In the remainder of this section, I shall try to illustrate this general lesson 
with specific cases concerning parallel computation. Parallel architectures 
offer not merely speed, but different kinds of programs that have the 
potential of being more reliable, more flexible, and more easily produced 
than programs for serial computers. 

Reliability Parallelism can engender much more natural ways of provid­
ing for system reliability than are found in serial machines. Compare, for 
example, the effects of removing part of the memory of a digital computer 
with the effect of removing a similarly small part of the human brain. In the 
brain, memory and processing capacity seem to be distributed over large 
areas, so that remaining parts can compensate for what has been removed. 
In contrast, removal of storage for part of a serial computer program will 
result eventually in a total breakdown of the program. Parallel machines 
such as that of Hillis (1981, p. 9) can operate much more like the human 
brain. A system with a few faulty cells can continue to function, since 
algorithms do not depend on a celf existing at a specific address. The 
neighbors of a cell can identify it as defective and ignore it, with perfor­
mance continuing with only a slight degradation. 

We can of course contrive reliability with serial computers. In the early 
days of computers, when failure of vacuum tubes was frequent, two com-
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puters were sometimes used in tandem, providing checking and backup for 
each other. But it is clearly more efficient to avoid this total duplication of 
resources and build some degree of reliability into each system. 

Flexibility Most philosophers and computer scientists abhor inconsistency. 
(Psychologists, in contrast, often enjoy it.) Popper (1965) and others have 
argued that an inconsistent system is worthless, since any proposition 
follows logically from a contradiction. Quine (1960) has urged a "principle 
of charity" that requires that we always interpret the utterances of others 
in such a was as to avoid finding them in violation of the rules of logic. 
"Neat" artificial intelligence researchers who see logic as the paradigm for 
knowledge representation (Nilsson, 1983) and similarly appalled by the 
havoc that inconsistency can wreak in an elegant system. 

In contrast, Minsky (1974) has argued that consistency is not a par­
amount virtue; a sufficiently flexible system can function despite contradic­
tions (see also Thagard, 1984). Chapter 7 contended that it is sometimes 
legitimate to attribute irrationality to humans, if there is an empirically 
supported account of what they are doing instead of following the laws of 
logic. Consistency then need not be a defining characteristic of an intel­
ligent processing system. 

This is especially clear &om the perspective of parallel computation. 
Unlike a serial machine, a parallel machine does not need detailed coordi­
nation of its components. It does not matter if the information in one cell 
of Hillis' connection machine contradicts information in other cells, although 
at some point a real conflict-one that causes processing problems-may 
arise. Rather than imposing uniformity, different parts of a processing 
system can pursue different strategies for attacking problems. The alter­
native is to fix on a canonical set of ideas too soon, or to undergo repeated 
Popperian oscillations and reject well-developed sets of ideas. Parallelism is 
thus useful for a scruffy approach to the nature of knowledge that has room 
for logical contradictions. 

Parallelism lends itself to audacity. With multiple hypotheses a system 
can afford to maintain daring but improbable hypotheses that stand little 
chance of being true, but that may lead to great payoffs in the unlikely 
event they work out. Proceeding serially, a system must tend more to look 
for hypotheses that are only optimal in a limited local context. 

Some of the flexibility of parallelism is evident in the system PI. PI 
simulates parallelism by allowing the firing of any number of production 
rules at a single timestep, so that no strict priority of rules need be 
maintained. Spreading activation of concepts and the different kinds of 
learning also occur in parallel. The result is that the system need not 
concentrate on only one possible solution to a problem at a time, but can 
simultaneously be considering different tacks. We saw how PI simulates the 
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discovery of the wave theory of sound but is also able at the same time to 
discover and explore the consequences of a particle theory. 

Thus a parallel architecture more naturally gives rise to mechanisms 
of rational deliberation that admit flexibility in considering multiple hy­
potheses. Various parts of the system can work out solutions without con­
stantly checking on what other parts of the system are doing. At some 
point-when external action is required-at least a partial unification 
must occur. How control is established is an open question; elsewhere 
I criticize the view that consciousness provides the needed control in 
humans (Thagard, 1986). 

Another way in which parallelism can encourage flexibility is through 
the emergence, rather than the explicit programming, of important struc­
tures. Rumelhart et al. (1986) describe how schemas can be understood as 
emerging from much simpler connections in parallel distributed processing 
systems. One result is that schemas need not offer monolithic characteri­
zations of kinds of things, but may be constructed as situations demand. A 
system would not store a rigid, unified schema for a restaurant, for example, 
but would have a set of expectations about what is likely to happen 
in a restaurant emerging from the parallel activity of simpler structures. 
Although the emphasis on emergence through parallel activity is charac­
teristic of those like Rumelhart who favor subsymboHc II connectionist" 
computational models, most of the points I am making here apply just as 
well to symbolic parallel systems like PI. 

Producibilify No processing system is created from scratch. The human 
mind is the product of millions of years of evolution, and design of a 
modem computer also has to build on ideas that already exist. My claim in 
this section is that parallel systems might be more "producible" in some 
contexts than serial ones. 

Biological evolution has proceeded without any overall design, with 
progressively more complex information processing systems being built on 
top of existing ones. The current human mind-brain is a consequence of the 
whole evolutionary chain of mammalian development. If artificial intel­
ligence were easier to devise, producibility might not be an issue for 
computers. In the early days of AI, there was much hope that programmers 
could directly enter into computers enough information to make them 
intelligent, but it is increasingly clear that this kind of spoon-feeding has 
limitations. Expert systems are proliferating, but each is restricted to a 
narrow domain. To be intelligent, computers must have some of the flexi­
bility and learning capacity that people do. Thus parallel computation, if it 
brings the benefits described above, might allow intelligent machines to be 
produced by human deSigners who cannot see the whole, incredibly com-

Copyrighted Material 



186 Chapter 10 

plex picture. Parallelism would allow greater subdivision of design tasks 
with no worry about all the interactions that might occur. 

10.2.2. Parallelism in Scientific Communities 
Thus parallelism offers many potential advantages to computation, and 
some of these may carry over to thinking of scientific inquiry as a collective 
enterprise. Scientific communities can be viewed as highly parallel systems 
(Kornfeld and Hewitt, 1981). Whereas individuals are generally expected 
to maintain consistency and coherence in their beliefs, a community can 
be expected to have sharply competing views. Proponents of different 
theories fight it out in the journals and other public forums. This kind of 
competition may well be better suited to the goals of scientific research 
than a more monolithic approach would be, since it is difficult to predict 
from what quarters good new ideas will come. Scientific communities 
require some degree of coordination to function, but they can clearly 
accommodate some differences in doctrine and even in method. Groups of 
scientists can thus have a kind of flexibility not found in individuals. 
Moreover, groups can also have the advantage of reliability, overcoming 
the aberrations of a few eccentric, incompetent, or even immoral individ­
uals. Scientific knowledge is so complex that we cannot expect any one 
scientist to possess or contribute more than a tiny fraction of it, so produc­
ibility is also a gain of the social nature of science. 

A simple computational model for this kind of group activity would be 
something like figure 10.3. Each individual reseracher would be like the one 
described in figure 10.2. The central executive would serve to collect and 
communicate information hom the separate researchers. In actual science, 
professional journals serve much of this function, with journal editors and 

scientist 

scientist scientist 

scientist scientist 

scientist scientist 

scientist 

Figure 10.3 
Science as parallel processing. 
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referees functioning to screen the results of research for what is worth 
looking at by other researchers. Individual scientists pursue their research 
through processes of problem solving, hypothesis formation, and experi­
mentation, but share the results of their investigation through the execu­
tive. A further complicating factor is that scientists often work in teams 
rather than individually. 

10.2.3. Group Rationality 
With individuals working in parallel, we may ask what standards of 
rationality are appropriate (d. Sarkar, 1983). The possibility arises that 
divisions of labor and method may be more efficacious in accomplishing 
the goal of scientific advance than the uniform alternative, in which all the 
individuals are methodologically similar. One current division of labor 
is that between theoreticians and experimenters, a division important in 
physics but not in current psychology. This division, however, may not 
have any normative significance, since it may reflect only individual differ­
ences in talents and inclinations. 

A much more sensitive methodological issue concerns the question, 
raised in the discussion of methodological conservatism in chapter 8, of the 
extent to which scientists should be attached to their own hypotheses. In 
the parallel model of figure 10.3, we can easily imagine that different hypoth­
eses have been discovered by different researchers. On the standard philo­
sophical account, the attitude that each researcher has to a hypothesis of his 
or her own invention should be no different from the critical attitude toward 
hypotheses of other researchers. In real life, however, we know that people 
rarely live up to this standard. Scientists are as passionate as anyone else. 

But perhaps we would not want it otherwise. The motivation derived 
from personal attachment to a hypothesis may lead to more thorough and 
intense research than would otherwise be done. Undoubtedly we can find 
cases where undue attachment to a theory led to disastrous results, exces­
sive conservatism, or even fraud. But especially for incipient research pro­
grams, it is hard to imagine how research could be done without a degree 
of conviction on the part of a researcher that is greater than what would be 
justified by the evidence. New theories, like children, cannot always be 
subjected to the standards of grown-ups. Perhaps scientific research pro­
ceeds best when there is a division of labor between audacious but reckless 
thinkers, on the one hand, and careful but less original critics on the other. 
The critics would make the best journal editors, but would not necessarily 
be the developers of the most interesting research. 

10.2.4. The Need for Experiments 
How can we settle these issues about group rationality, about what meth­
odologies are best distributed among investigators7 Potentially, the ques-
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tion has an empirical answer, but it does not appear feasible to do a 
controlled experiment on human scientists, dividing them into groups with 
different methodologies and observing their performance. But we are not 
far off from being able to do computer simulations of group operations. 
Instead of modeling the problem-solving processes of a single individual as 
in PI, we could computationally model the operation of a group in which 
different individuals play different roles. If competing methodologies were 
developed explicitly enough to be programmed, we could compare a 
group of conservative Kuhnian scientists with a group of more critical 
Popperian scientists; my conjecture is that in the long run the Kuhnian 
group would accomplish more. Even more interesting, we could consider 
a mixed group with different methodological styles, encompassing the 
audacious, the critical, and the conservative. The experimental results 
might be an important contribution of computational philosophy of science 
to the theory of group rationality in science. At the very least, the exercise 
of working out the nature of such methodologies in sufficient detail to be 
implemented in a computational model would be highly illuminating. 

10.3. Summary 

Scientific inquiry cannot be simply charaderized in terms of either the 
formation of hypotheses from data or the use of experiments to test 
hypotheses. The process of inquiry consists of interacting subprocesses of 
problem solving, theorizing, and experimentation. Future developments in 
computational philosophy of science will construct models of these inter­
actions. We can also hope to develop still more complex parallel models 
that can take into account the social nature of science by considering 
investigators working with varying methods and motivations. 

10.4. Conclusion 

For some contemporary philosophers, the computational investigations in 
this book may only marginally count as philosophical. It is short on sharp 
conceptual analyses of key terms, but we have seen many reasons con­
nected with the nature of concepts and meaning for rejecting definition as 
an important philosophical enterprise. Rather, this book is written in the 
conviction that philosophy is a theoretical enterprise that must be devel­
oped hand in hand with scientific findings, not the vagaries of common 
sense and imagination. In place of the folksy stories and intuitions that 
have been the stock-in-trade of many epistemologists, computational phi­
losophy of science looks to the history of science, cognitive psychology, 
and artificial intelligence for examples, empirical constraints, and tech­
niques. Philosophy is continuous with science, differing only in that it 
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deals with issues that are more general, speculative, and normative than 
those typically found in individual sciences. The branches of philosophy 
concerned with reasoning are continuous with psychology and artificial 
intelligence. An enormous amount of work remains to be done to develop 
a computationally detailed, historically accurate, psychologically plausible, 
and philosophically defensible account of the structure and growth of 
scientific knowledge. 
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Appendix 1: Tutorials 

These tutorials are intended to provide background material for the discus­
sion in the main text. The first two, on philosophy of science and logic, are 
intended for readers without a background in those areas of philosophy. 
The third, concerned with data structures and algorithms, is for readers new 
to computer science. The fourth, on the notion of a schema, is designed for 
readers unfamiliar with recent work in cognitive psychology. References in 
each tutorial should provide directions for anyone interested in pursuing 
the issues beyond the Simplifications unavoidable here. 

A. Outline of the Philosophy of Science 

Like most of philosophy, the philosophy of science can be traced back to 
Plato and Aristotle. With the rise of science in the sixteenth and seven­
teenth centuries, reflection expanded on the question of how experiment 
and hypothesis could lead to knowledge. The most influential manifesto of 
the new science was Francis Bacon's Novum Organum, first published in 
1620, which formulated rules for discovering causal laws from experi­
mental observations. Through the seventeenth and eighteenth centuries, 
controversies about scienti6c views were intermixed with controversies 
about methodology, for example, in debates between Cartesians and New­
tonians about celestial mechanics and the appropriate role for hypotheses. 
Losee (1980) provides a helpful outline of the history of the philosophy of 
science, while Laudan (1968) prOVides a comprehensive bibliography. 

In the first half of the nineteenth century, three major works defined the 
philosophy of science. In 1830, John Herschel published his Preliminary 
Discourse on Natural Philosophy, which accommodated both Baconian dis­
covery of causal laws from observation and the use of hypotheses that 
go beyond what is observed. William Whewell's Philosophy of the Inductive 
Sciences, published in 1840, contained insightful discussions of the impor­
tance of scientific concepts and explanatory theories (see chapter 5). But in 
1843 John Stuart Mill published the first of many editions of his System of 
Logic, which proved to be more in keeping with the empiricist temper of 
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the times. (Empiricism is the philosophical position that knowledge comes 
through sense experience.) 

Whereas Whewell followed Kant (1929) in emphasizing the role of the 
mind in providing concepts that unify observations, Mill followed Bacon 
in concentrating on the way in which laws could be derived from nature. 
Mill and Bacon recognized that there is more to the formation of causal 
laws than induction by simple enumeration, in which we go from noticing 
that all observed A's are B's to the conclusion that all A's are B's (this is 
similar to Mill's method of agreement). We should also apply the method 
of difference, in which we consider cases where the absence of A is asso­
ciated with the absence of B, as well as considering the extent to which 
A's and B's vary together. In all such cases, though, we never go far from 
what is observed. Whewell, in contrast, emphasized how concepts such as 
"force" and "light wave", which cannot be derived directly from sense 
experience, play an important role in the development of powerful theories. 

In the 1920s and 1930s, there emerged in Europe a school of very 
talented philosophers of science known as the Vienna Circle, advocating a 
doctrine that came to be known as "logical positivism" or "logical empiri­
cism". It combined an empiricist epistemology (theory of knowledge) with 
the techniques of formal logic that had been developed by Frege and 
Russell (see tutorial B). Those techniques made possible a degree of rigor 
new to philosophy, and led, in the hands of researchers such as Camap 
(1950), Reichenbach (1938), and Hempel (1965), to exact analyses of central 
scientific notions. According to the logical positivists, scientific theories are 
to be understood as sets of axioms in formal deductive systems. Theories 
are confinned by deducing their consequences from the axioms, and check­
ing to see whether the predictions hold. In contrast to earlier empiricist 
views such as those of Mill, this methodology is called hypothetico­
deductive because it emphasizes the use of hypotheses to make predictions, 
rather than the derivation of laws from observations. The views of Popper 
(1959) evolved around the same time as those of the logical positivists, and 
were also hypothetico-dedudive, but differed primarily in that he saw the 
main role of predidion to be the attempt to falsify theories, not to confinn 
them. The general hypothetico-dedudive scheme is 

Start with hypothesis H. 
Use logic to deduce predicted observation O. 
If 0 is observed, then H is confirmed (Hempel), but 

if not-O is observed H is falsified (Popper). 

Hempel developed in the 1940s a related account of scientific explana­
tion that remains influential. It is called the deductive-nomological model, 
because explanation is analyzed as deduction from laws (in Greek, nomos 
means law). The general schema for explanation (Hempel 1965) is 
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Statements of antecedent conditions. 

Description of the empirical phenomenon 
to be explained. 

Here the empirical phenomenon E is explained by showing that it follows 
from the antecedent conditions and the general laws. E is called the expla­
nandum (plural explananda). 

The logical positivist movement had great influence in philosophy and 
also in the sciences, particularly psychology, where its injunction to tie 
theory closely with observation fit very well with behaviorism. But in the 
late 1950s, critics influenced in part by the later writings of Wittgenstein 
(1953) began to attack some of its central tenets. Toulmin (1953) and 
Hanson (1958) criticized the hypothetico-deductive account of theories and 
argued that theory and observation were much more intertwined than 
empiricists allowed. In 1962, the first edition of Thomas Kuhn's Structure of 
Scientific Revolutions appeared, and it became the most influential work 
in the philosophy of science of the succeeding decades. Instead of neat 
logical theories, Kuhn talked of paradigms, complex conceptual schemes 
that govern not only how we see the world but even, at least in some of 
his pronouncements, how the world is. Kuhn, Feyerabend, and others used 
historical analyses to show that the elegant analyses of scientific theories 
that logical positivists offered bear little relat:on to scientific practice. 
Other criticisms of positivism came from proponents of scientific realism, 
the position that science is not restricted to what is observable but can 
achieve knowledge of what is nonobservable. Suppe (1977) provides a 
comprehensive account of the critique of the logical positivist view of 
science and some recent attempts to develop alternatives. 

Today, philosophy of science is characterized by a variety of approaches. 
In methodology, some philosophers look more to history, others to logical 
analysis. In metaphysics, some are relativist, denying any notion of truth; 
some continue the empiricist tradition and proclaim that science is con­
cerned with truth only with respect to what can be observed; and some are 
realists, attributing truth even to scientific theories. Discovery as well as 
justification is a topic of investigation for some philosophers. I have not 
attempted anything like a survey of contemporary philosophy of science, 
but many of these issues are discussed further in chapters of this book. 

B. Formal Logic 

In the late nineteenth century, the Austrian mathematician Frege developed 
a mathematical approach to logic, which fonnerly had been a largely 
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qualitative study of various forms of reasoning. Russell and Whitehead's 
Principia Mathematica, published in the early part of this century, developed 
Frege's work in a more palatable formalism, so that today formal logic is an 
indispensable tool for philosophers and computer scientists. This tutorial 
gives only enough of a sketch to provide a minimal background to matters 
discussed in the rest of this book. Texts by Copi (1979, 1982) provide basic 
introductions to the notions mentioned here, and Mendelson (1964) is a 
much fuller discussion. 

The simplest system of formal logic is propositional logic, in which 
formulas like p and q are used to stand for sentences such as "Paul is a 
philosopher" and "Quincy is a doctor". Simple formulas can be combined 
into more complex ones using symbols such as "&" for "and", "v" for "or", 
and "---+" for if-then. For example, the sentence 

If Paul is a philosopher, then Quincy is a doctor. 

becomes 

p ---+ q. 

To express negation, not-p is written as '" p. A deduction consists of a 
sequence of steps, each of which is licensed by a rule of inference. Two of 
the most common rules of inference make it possible to draw conclusions 
using conditionals (if-then sentences): 

Modus ponens: 

Modus tollens: 

p---+q 
p 

Therefore q. 

p---+q 
not-q 

Therefore not-po 

From the conditional "If Paul is a philosopher then Quincy is a doctor" and 
the information that Paul is a philosopher, modus ponens enables you to 
infer that Quincy is a doctor. From the information that Quincy is not a 
doctor it follows by modus tollens that Paul is not a philosopher. 

In propositional logic, statements such as "Quincy is a doctor" have to 
be treated as atomic wholes, but the predicate calculus, a modern version 
of Frege's ideas, allows further analysis. Predicate calculus distinguishes 
between predicates such as "is a doctor" or "is a philosopher" and con­
stants referring to individuals such as Paul and Quincy. In the version of 
predicate calculus most familiar to philosophers, "Quincy is a doctor" 
would be formalized as D(q), where "q" now stands for the individual 
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Quincy rather than for a proposition. Researchers in computer science tend 
to express this more mnemonically as is-doctor (quincy). In additional to 
simple properties, predicates can be used to express relations between two 
or more things. For example, "Quincy loves Hortense" becomes loves 
(quincy, hortense). 

Predicate logic is able to formalize sentences with quantifiers such as 
lIaB" and "some" by using variables such as "x" and "y". The sentence "All 
doctors are rich" can be formalized as 

(for-all x)(doctor(x) -+ rich(x» 

or, more compactly, (x) (Dx -+ Rx). The sentence "Some doctors are rich" 
becomes 

(there-is x) (doctor (x) & rich(x»; 

i.e., there is some x that is both a doctor and rich. New rules of inference 
enable deductions to be drawn from and to quantified sentences. For 
example, the rule of Universal Instantiation allows the derivation of an 
instance from a sentence involving "all", as when (for-all x) (doctor(x) -+ 

rich(x» is instantiated by doctor (quincy) -+ rich (quincy): if all dodors 
are rich, it follows that if Quincy is a doctor, then he is rich. 

So far, I have only described the syntax of propositional and predicate 
logic, that is, the form of expressions and the rules of inference that operate 
on them. Semantics is concerned with the relations of expressions to the 
world. In logic, semantics concerns how the truth of complex expressions 
can be a function of simpler expressions. In propositional logic, it is easy to 
see how the truth of p & q is a function of the truth of p and q: p & q is 
true if and only if both p and q are true. If-then is more complicated, but 
logic simplifies it by specifying that p --+ q is false if p is true and q is false, 
but true otherwise. 

Defining truth in predicate logic is more complex. An interpretation is a 
structure (D, I), where D is a set of objects and I is an interpretive 
function that provides an assignment to predicate letters and constants 
in a formal language. The function I would, for example, pick out an 
individual corresponding to the constant "quincy" and a set of indi­
viduals corresponding to the predicate "doctor". We can then say that 
dodor(quincy) is true just in case the assignment of quincy is a member 
of the assignment of doctor. The sentence (for-all x) (doctor(x) -+ rich (x) ) 
is true just in case the interpretation of doctor is a subset of the assign­
ment of rich. An interpretation under which a set of expressions all 
come out true is said to be a model for the expressions, so this kind of 
semantics, due originally to Tarski (1956), is often called model-theoretic 
semantics. 
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C. Data Sl'ructures and Algorithms 

A computer program is a set of instructions that produces a sequence of 
actions in a computer. More fully, we can say that a program consists of 
data structures and algorithms (Wirth, 1976; Aho, Hopcroft, and Ullman 
1983). There are many different kinds of data structures. LISP, the pro­
gramming language most used in artificial intelligence, is short for IILISt 
Processing"; its basic data structures are lists, consisting of atoms (words or 
numbers) enclosed in parentheses. These can range from simple lists such as 

(apple banana pear peach) 

to more complex structures with lists embedded in lists, as in 

«fruits (banana pear peach» (vegetables (carrot potato»). 

Lists can be used to create more complex structures such as trees, stacks, 
and queues. A stack, for example, is a linear list in which elements are 
created and deleted from one end, like a stack of papers on a desk where 
you only look at what is on top. Lists can naturally be used to represent 
expressions in predicate calculus, as in the following example, slightly 
modified from tutorial B: 

«for-all x) (doctor (x) --+ rich (x»). 

This consists of a list with two elements, each of which is a list, the first one 
containing two atoms: for-all and x. 

Data structures are useless without procedures that operate on them. 
Many useful procedures can be defined for lists, such as finding the 
first element of the list or what remains after the first element has been 
removed. Given a set of primitive procedures, more complex procedures 
can be defined. An algorithm is a procedure that operates in a sequence of 
well-defined steps and yields a solution. We could, for example, define a 

procedure for finding the second element of a list roughly as follows: 
remove the first element from the list and take the first element of what 
remains. The algorithms that can be performed depend on what data 
structures have been set up to work with; correlatively, the value of a data 
structure depends on what algorithms are available to process the informa­
tion that it contains. 

In current artificial intelligence, much attention is paid to the field of 
knowledge representation, which concerns ways of structuring knowledge for 
efficient use. Three main approaches to knowledge representation have 
developed (Barr and Feigenbaum, 1981). In logic programming imple­
mented in languages such as Prolog (Clocksin and Mellish, 1981), the data 
structures are simplified versions of expressions in predicate calculus, and 
the basic algorithm is a kind of deductive proof mechanism. In rule-based 
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systems, knowledge is expressed in production rules much like conditionals 
in predicate calculus: 

IF x is a doctor, THEN x is rich. 

The algorithms in rule-based systems match the rules against a base of 
knowledge and then draw conclusions in a procedural equivalent of two 
logical rules of inference, universal instantiation and modus ponens, inferring, 
for instance, that Quincy is rich because he is a doctor. Or they can search 
from desired conclusions back toward relevant information: given the goal 
of finding who is rich, the system can set the new subgoal of finding who 
is a doctor. Newell and Simon (1972) provide a classic description of the 
uses of rule-based systems, and Buchanan and Shortliffe (1984) describe 
some of the most important expert systems that have been constructed 
within this framework. 

The third kind of knowledge representation now prevalent in AI uses 
the notion of a frame (Minsky, 1975). Frames are used to describe typical 
objects or events, using slots and values. For example, we can describe a 
typical banana by the frame 

Banana 
A-kind-of: 
Grown-in: 
Color: 
Length: 

fruit 
tropics 
yellow 
8 inches etc. 

The A-kind-of slots establish a hierarchy: a banana is a kind of fruit that is 
a kind of food, and so on. Here yellow is the value of the slot for color. It 
is a "default" value, expressing the typical color of bananas rather than part 
of a deflnition. As Hayes (1979) has pointed out, we can translate the 
information in the frame into predicate calculus, or into production rules for 
that matter. But what is important to the selection of data structures is not 
just the information they contain, but the kinds of algOrithms that are 
natural to apply to them. Much very recent work in artificial intelligence is 
employing hybrid representations to make possible a variety of algorithms 
for processing information. 

A distinction is often drawn between algorithms and heuristics. A heu­
ristic is a rough rule of thumb that is not guaranteed to produce a solution 
but stands at least some chance of helping to produce one. Algorithms, in 
contrast, are guaranteed to produce a solution. You know an easy algo­
rithm for adding two long numbers together, but at best a set of rules of 
thumb for figUring out how to make the best roast chicken. Since we lack 
algorithms for performing most intelligent tasks, artificial intelligence is 
often said to use heuristics. It must be remembered, however, that all 
computer programs use algorithms at a lower level, so that the implemen-
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tation of a heuristic requires the use of a host of algorithms. These are the 
programming procedures that are used to carry out the heuristic. 

D. Schemas 

Tutorial C described the artificial intelligence data structures called frames. 
Empirical studies in cognitive psychology have suggested that human 
thinking employs structures that are framelike in chunking information into 
useful patterns and expressing default information. In cognitive psychol­
ogy, frames are more commonly referred to as schemas or "schemata". 
Although intense discussion of schemas has occurred only recently, the 
notion of a schema can be found in Bartlett (1932), and related notions 
occur in Head (1926) and Kant (1929). The psychological literature on 
schemas has become voluminous and diverse, and I shall not attempt 
to survey it. Useful surveys include Rumelhart (1980), Anderson (1980, 
chapter 5), Hastie (1981), and especially Brewer and Nakamura (1984). 

Whereas frames can be given a relatively exact characterization as struc­
tures in LISP, schemas are theoretical psychological entities postulated to 
explain a variety of observed phenomena of human cognition, so no exact 
definition is to be expected. Roughly, a schema is a large, complex unit of 
knowledge expressing what is typical of a group of instances. By the very 
nature of the term, schemas involve some sort of abstraction and general­
ization. Schemas are posited to provide the same advantages to human 
cognition that frames provide to a computer. A set of schemas serves to 
generate a set of expectations, so that the thinker need not confront 
external information passively. Incoming information is processed by 
matching it with existing schemas, which immediately makes possible the 
utilization of information already acquired. For example, recognizing some­
thing as a restaurant produces a set of expectations and possible inferences 
using procedural mechanisms such as inheritance and defaults. Schemas, 
like frames, are presumably organized into complex hierarchies at progres­
sively higher levels of abstraction. 

A script (Schank and Abelson, 1977) is an important kind of schema that 
describes a typical sequence of events. People generally expect events in a 
restaurant to occur in an order much like the following: be greeted, be 
seated, order drinks, order food, eat, order desert, pay bill, leave. You 
would be very surprised if food were brought to you before you had 
ordered it, or if you were in a standard full-service restaurant and were 
asked to pay immediately after ordering. The restaurant script has other 
scripts embedded within it, and is itself embedded in the general frame or 
schema for restaurant. 

Other examples of areas in which schemas have been thought to be 
psychologically important include category terms, such as bird, and social 
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stereotypes, such as Irish. A schema for bird would differ from a concep­
tual analysis providing necessary and sufficient conditions: the point of a 
schema is not to define what properties belong to all and only birds, but to 
list properties typical of birds. Thus, a schema for bird would likely contain 
the default information that birds fly. The schema for the stereotypical 
Irishman might include a default for being Catholic. Obviously, there are 
potential costs as well as bene6ts in the use of schemas in reasoning, since 
error can result from careless use of default values. 

The existence of such errors in human reasoning is one of the kinds of 
evidence that researchers have used to support claims for the psychological 
reality of schemas. In Brewer and Treyens (1981), subjects were asked to 
recall what items were in a university office in which they had been kept 
waiting. They often made the mistake of "recalling" that there were books 
in the office, even though there were none. Having a schema for univer­
sity office that included a default for the presence of books would explain 
their error. 

Schema theory also accounts for the fact that people are much better 
able to integrate new infonnation about familiar topics into memory than 
they are able to learn unfamiliar information. To take just one example, 
Chiesi et al. (1979) found that people who understood baseball remem­
bered much more new infonnation on the topic than did nonfans. Schemas 
also affect the speed with which items can be recalled from memory. It 
should be easier to recall events that instantiate schemas and thereby are 
more easily accessed. A mounting list of results supports the view that the 
human processing system employs something like schemas to facilitate 
encoding and recall of information. Schemas have been postulated to 
have important functions in perception, discourse understanding, learning, 
remembering, and problem solving. Although schema theory is by no 
means universally accepted, the wealth of empirical applications that have 
been found for it provides at least a presumption that the human informa­
tion processing system uses framelike structures. In addition to references 
already cited, see, for example, Bower, Black, and Turner (1979), Thorn­
dyke and Hayes-Roth (1979), Cantor and Mischel (1977), Lichtenstein and 
Brewer (1980), Abelson (1981), and Chi, Feltovich, and Glaser (1981). 

The relation between schemas and propositions is more difficult to 
discuss than the relation between frames and sentences in predicate calcu­
lus. Schemas are psychological entities, and there are grave problems in 
saying just what their structure is, how many of them there are, and how 
they are used. Of course, there are also great difficulties, both philosophical 
and psychological, in saying what a proposition is (see, for example, Gale, 
1967). In the foreseeable course of empirical inquiry, there does not seem 
to be an experimental way of determining whether schemas have proposi­
tions as constituents. Nevertheless, the schema notion clearly has signi-
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ficance that is independent of the issue of whether schemas are constituted 
of propositions, since even if they are, they nevertheless have important 
emergent procedural properties. The schema, as a whole, plays a role in 
information processing that cannot be ascribed to unconnected, unorga­
nized sets of propositions. Hence, despite the vagueness of the notion of a 
schema, there are empirical and conceptual reasons for supposing that 
schemas go beyond the propositional knowledge structures usually dis­
cussed by philosophers. 
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Appendix 2: Specification of PI 

This appendix provides an outline of the structure of PI, intermediate 
between the general description in the text and a listing of the LISP code. 
The program was written by the author, based on ideas developed in 
collaboration with Keith Holyoak. A well-written LISP program is not like 
a program in Basic or Fortran that consists of a long sequence of instruc­
tions with GOTO's. Rather, like programs in more structured languages, 
such as Pascal and C, it consists of routines encapsulated in functions that 
call other functions. A good introduction to LISP including production 
systems is Anderson, Corbett, and Reiser (1986). The following outline of 
the operation of the major LISP functions in PI omits descriptions of minor 
functions, of which there are more than 200. Full documented code is 
available from the author. LISP function names are indicated in capital 
letters. 

1. Data Structure C reaHon 

1.1 MAKE-RULE constructs rules whose names are LISP atoms, the 
property lists of which include the following features: conditions (the 
"jf" part), consisting of a list of clauses, each of which has the same 
structure as the messages defined in chapter 2; actions (the "then" 
part); strength; status (actual or default); slot-name; activation; con­
cepts to which the rule is attached. 
1.2 MAKE-CONCEPT constructs concepts whose names are LISP 
atoms, the property lists of which include the following features: 
superordinates, subordinates, attached rules, instances, activation. 
1.3 MAKE-PROBLEM constructs problems whose names are LISP 
atoms, the property lists of which include the following features: 
starting description, consisting of lists of messages; goals, which are 
also lists of messages; activation. Problems are Either planning prob­
lems, where the goals are states to be reached, or explanations, where 
the goals are facts to be explained. 
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2. Problem Solving and Explanation 

Figure A.1 outlines the problem solving and learning mechanisms in 
PI, showing the place in the program of most of the functions described 
below. The lines indicate that one function calls another: in execu­
tion of the program; EXPLAIN calls SOLVE_PROBLEM, which calls 
CHECK_FOR_SUCCESS, and so on. 

2.1 SOLVE-PROBLEM contains the main loop of PI. In explanation 
problems, SOLVE-PROBLEM is called by EXPLAIN (see 2.5). Prob­
lem solving proceeds as follows: 

2.1.1 Activate a given problem and the concepts from its goals 
and starting descriptions. Add the starting descriptions to the list 
of active messages. 
2.1.2 Begin loop by checking whether the problem is solved, i.e., 
whether all the goals have been matched by active messages. If 
so, store the solved problem with the concepts from its start­
ing conditions and goals. Also check whether any of the goals 
of the problem have been violated by projections started by 
EXECUTE-ACTIONS (2.2.3); if so, stop the projection. 
2.1.3 Look for analogous problems. See TRIG_ANALOGY (3.1). 

2.1.4 Trigger inductions. See TRIGGER (4.1). 

2.1.5 Evaluate, select, and fire the best rules. See FIRE-RULES 
(2.2). 

2.1.6 Spread activation. See CHANGE-ACTIVATION (2.3). 

2.1.7 Do subgoaling. See SET _SUB_GOALS (2.4). 

2.1.8 Repeat 2.1.2. 

2.2 FIRE-RULES selects what rules to fire by going through the 
follOWing sequence: 

2.2.1 EVALUATE looks at each active rule. If a rule has all its 
conditions matched by active messages, then the overall value of 
the rule is calculated on the basis of its activation, strength, and the 
minimum confidence of the messages that matched the conditions. 
Variables in the actions are bound to values established by the 
match between conditions and messages. 
2.2.2 SELECT _RULES uses the values calculated by EV ALVA TE 
to select the best n rules for firing, where n is an arbitrary number 
selected by the programmer. 
2.2.3 EXECUTE_ACTIONS creates new messages out of the 
actions of the rules selected for firing. If an action involves a 
projected move, i.e., something done rather than something merely 
deduced, then PI starts a projection. (For example, search for solution 
of the problem of how to get from New York to Los Angeles 
might involve this projected action: go to Newark airport. If there 
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are no flights at appropriate times from Newark to Los Angeles, 
this projection must be stopped and some other action considered.) 
Further inferences (such as that you are in New Jersey, if you are in 
Newark) are marked as depending on such a projection. 
2.2.4 STORE-ACTIONS stores the new messages with the rele­
vant concepts where they can be retrieved when the concept be­
comes active. 

2.3 CHANGE-ACTIVATION updates the state of activation of the 
system. Concepts from the actions of fired rules become active. Con­
cepts that are the subordinates or superordinates of active concepts 
become active. Concepts whose activation falls below a given thres­
hold are deactivated. Messages, rules, and old problem solutions 
attached to active concepts become active. 
2.4 SET -SUB-GOALS spreads activation backward from goals, un­
like CHANGE_ACTIV A TION, which spreads it forward from the 
starting conditions by rule firing. SET -SUB-GOALS matches the 
actions of active rules against the goals, and then activates the con­
cepts from the conditions of rules that might contribute to goal 
solution. 
2.5 EXPLAIN initiates solution of explanation problems. If what is to 
be explained is a set of facts (messages), it starts a problem whose 
goals are those facts. If what is to be explained is a rule, it starts a 

problem whose starting conditions are the conditions of the rule and 
whose goals are the actions. 

3. Analogical Problem Solving 

3.1 TRIG-ANALOGY triggers analogical problem solving, looking 
at the most active of stored problem solutions. That stored problem 
solution becomes the base for solution of the problem to be solved, 
the target. 
3.2 ANALOGIZE attempts to use the base (stored problem solution) 
in solution of the target problem, by the follOWing steps: 

3.2.1 Find what concepts are in the base are related to what con­
cepts in the target by TRACE_CONCEPTS (3.3). 
3.2.2 Find what objects in the base are related to what objects in 
the target by TRACE-OBJECTS (3.4). 
3.2.3 Note what effectors or hypotheses took place during the 
solution of the base. This information is stored by EXECUTE­
ACTIONS (2.2.3) and MAKE-HYPOTHESIS (4.7.2). 
3.2.4 Use these effectors or hypotheses to contribute toward a 
new problem solution by RECONSTRUCT (3.5). 

3.3 TRACE_CONCEPTS starts with concepts from the target and 
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attempts to trace them back to origins in the base. FlND-ACT_ 
ORIGINS traces back activation of a each concept C. The concepts 
that led to the activation of C were stored with the concept by 
CHANGE-ACTIVATION (2.3). FIND-ACT_ORIGINS then looks 
for the origins of the activating concepts and repeats until it finds 
a concept or concepts that were activated as part of the problem 
description. 
3.4 TRACE-OBJECTS finds pairs of analogous objects using the 
pairs of analogous concepts derived by TRACE-CONCEPTS (3.3). 
For each concept pair, TRACE-OBJECTS attempts to find systematic 
relations between the objects that have the concepts. 
3.5 RECONSTRUCT attempts to bring about solution of the target 
problem by using information from the base and the mappings con­
structed by TRACE-CONCEPTS (3.3) and TRACE-OBJECTS (3.4). 

3.5.1 If the problem is a normal planning type, it reconstructs new 
subgoals based on the effectors that worked in solving the base. 
3.5 .2 If the problem involves explanation, it reconstructs new 
hypotheses based on the hypotheses that aided in providing an 

explanation. 
3.6 If the new subgoals or hypotheses lead to a solution to the target 
problem, SCHEMA TIZE creates an analogical schema, which is an 
abstract problem solution formed from the base and the target. The 
starting descriptions and the goals of the new schemas are abstracted 
from those of the base and target, using the superordinates of the 
relevant concepts. For example, if the concept A is used in the starting 
description of the base, and the concept B is used in the starting 
description of the target, and A and B are both a kind of C, then the 
concept C will be used in the starting descriptions of the new problem 
schema. 

4. Induction 

4.1 TRIGGER initiates generalization, concept fonnation, and abduction 
by calling TRIG-GEN-COMB (4.2), FORM-CONCEPT _FROM­
RULES (4.6), TRIG_ABDUCE (4.3), and TRIG-ABD_GEN (4.9). 
4.2 TRIG_GEN_COMB searches through the list of active messages 
for active concepts A and B with instances in common. If there are 
any, it attempts generalization that all A and B and all B are A using 
GENERALIZE (4.3) and conceptual combination of A and B using 
COMBINE (4.5). 
4.3 GENERALIZE takes two concepts A and B that the active mes­
sages indicate have an instance in common and sees whether general­
ization is warranted by the following steps: 
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4.3.1 CHECK looks for counterexamples, i.e., A's that are not B's. 
These are found by comparing the messages (list of instances) 
stored with the concept A and the messages stored with B. If a 
counterexample is found, then the attempt to generalize is stopped; 
and if the generalization that all A are B has been previously 
formed, then the counterexample prompts specialization (see SPEC 
4.4). 
4.3.2 COMMON calculates the total number of instances shared 
by A's and B's by comparing the messages stored with A against 
the messages stored with B. 
4.3.3 The invariability of A with respect to B is calculated by 
retrieving from them concepts A· and B· that are, respectively, the 
superordinates of A and B. INV AR divides the number of sub­
ordinates of A If- about which it has information concerning Blf. by 
the total number of values of BIf- those subordinates possess. 
4.3.4 If the number of instances and the degree of invariability 
taken together pass a threshold set by the programmer, then the 
rule "If x is A then x is B" is formed. 
Note: PI can generalize if A and B are relations, for example, form­
ing the rule "If x loves y then y loves x." But it is not now capable 
of forming rules with multiple clauses, such as II All A's that are C's 
are B's." Rules with two clauses in their conditions can, however, 
be formed by a generalization followed by a specialization. 

4.4 SPEC takes a rule A -+ B to which a counterexample has been 
found and forms a specialized rule A & C -+ B. The condition C is 
some "unusual" property of the object that CHECK (4.3.1) found to 
be A and not B, where a property is unusual if it is possessed by the 
object but not by other A's. 
4.5 COMBINE produces a new concept by combining 2 existing 
ones A and B. 

4.5.1 It names the new concept by hyphenation: A-B. 
4.5.2 The instances of A-B are the common instances of A and B. 
4.5.3 The superordinates of A-B are A and B. 
4.5.4 The rules for A-B are constructed by BUILD-ALL-RULES, 
which considers all the rules of A and B. For each rule of A, it 
checks the rules of B to see if there is any potential conflict. A 
conflict is detected if A has a rule A -+ C with the same slot-name 
as a rule B -+ D. In cases of conflict, RECONCILE is called to 
decide whether to form A-B -+ C or A-B -+ D. 
4.5.5 RECONCILE produces a new rule by settling the conflict by 
preferring actual rules over defaults, less variable rules over more 
variable ones, stronger rules over weaker, or by looking at active 
instances of objects that are A and B. 
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4.6 FORM-CONCEPT -FROM-RULES does a pragmatic kind of 
bottom-up concept formation. It forms a new concept from two rules 
with the same conditions and different actions: from rules A & B � C 
and A & B � D, it forms the concept A-B, adding to it the rules 
A-B � C and A-B � D, etc. 
4.7 In explanation problems, TRIG_ABDUCE looks at the facts to be 
explained (goals) and the list of active rules to trigger abduction that 
in tum triggers inference to the best explanation. 

4.7.1 FIND_ABDUCTIONS selects from a list of rules those that 
are potential explainers of a message to be explained. It uses 
FIND -EXPLNS to look for any rule whose action matches the 
message to be explained and whose conditions are not all matched 
by the active messages. In the Simplest case, it finds a rule A � B, 
where B is to be explained, but it can handle relations and rules 
with any number of conditions. 
4.7.2 MAKE-HYPOTHESIS uses the result of FIND-ABDUC­
TIONS to produce new hypotheses. If all the variables in the 
conditions of the explanatory rule were bound by FIND -EXPLNS, 
it does a simple abduction. Otherwise, it does an existential abduc­
tion substituting in existential variables. It stores with the hypoth­
esis information about what it explains and what cohypotheses 
were formed at the same time, and stores with what is explained 
information about what explains it. If the hypothesis explains more 
than one fact, then it is evaluated by BEST _EXPLANATION7 (4.8). 

4.8 BEST _EXPLANA TION7 can be called by abduction to evaluate 
a message that explains other messages, or by SOLVE-PROBLEM to 
evaluate rules that explain other rules. 

4.8.1 FIND_COMPETITORS compiles a list of the competitors of 
a hypothesis H by considering what other hypotheses have been 
fOWld to explain the fads that it explains. It also compiles a list of 
the relevant evidence. Here is the algorithm: 

Let evidence = what H explains. 
LOOP 
Let competitors = the union of all explainers of pieces of 
evidence. 
Let evidence = the union of evidence explained by all 
competitors. 
Repeat loop until no new evidence is found. 

4.8.2 BEST _EXP -OF picks the best explanation out of a set of 
competitors, selecting hypotheses by a pairwise comparison of 
hypotheses, first qualitatively and then quantitatively. Qualitative 
comparison works if one hypothesis is both more consilient and 
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more simple than the other. Otherwise, a combined quantitative 
measure is used. 
4.8.3 BETTER_EXPLN_QUAL qualitatively picks the better of 
two hypotheses, preferring one that is both more consilient and 
more simple, determined by MORE_CONSILIENT and SIMPLER. 
4.8.4 MORE_CONSILIENT favors one hypothesis over another 
if what is explained by the latter is a proper subset of what 
is explained by the former. (What explains what was noted by 
MAKE-HYPOTHESIS, 4.7.2.) 
4.8.5 SIMPLER compares two hypotheses on the basis of the 
number of cohypotheses that were formed with them, which was 
noted when they were formed. The formula used is 

facts explained by H - cohypotheses of H 
SIMPLICITY(H) = 

f l· d b  H 
. 

ads exp alne y 

4.8.6 If the qualitative comparison fails, as it will if what is explained 
by one hypothesis is not a subset of what is explained by another, 
BETTER_EXPLN _QUANT does a quantitative comparison, pick­
ing the hypothesis with the highest explanation value, where 

VALUE(H) = SIMPLICITY(H) x CONSILIENCE(H). 

(Here the consilience of H is just the number of fads it explains. As 
mentioned in chapter 5, more complicated deBnitions of consilience 
and simplicity are required to handle the varying importance of 
facts.) 

4.9 TRIG-ABD-GEN triggers abductive rule formation by looking 
through the list of active messages for general hypotheses such as 
H(x) that have played a role in explaining why G(x) given F(x). It 
then forms the rule that F (x) -+ H (x). (The idea here is that it is 
because F's are H's that they are G'S.) 

Obviously, features such as threshold values and precise formulas for 
inference to the best explanation have a substantial arbitrary component, 
but the implementation as a whole gives an idea of how learning can take 
place in the context of problem solving and how algorithms for induction 
can be implemented. 
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Appendix 3: Sample Run of PI 

PI is written in FranzLISP and runs under UNIX on a Pyramid 90x com­
puter. It has also been translated into Common LISP to run on a Sun 3/75 
workstation. Here is a sample run of PI, with input in the fonn of concepts, 
rules, and problem description set up by the programmer, and output in the 
fonn of a trace of the program's execution. Plainly, the knowledge base is 
very impoverished and little knowledge has been given to the program 
beyond what enables it to spread activation from the concept of sound to 
the concept of wave. More realistic runs would require far more domain 
knowledge and more divergent paths of spreading activation, but the basic 
mechanisms of activation and triggering of inductive mechanisms should 
work the same. The run presented below does not display many of PI's 
mechanisms, such as analogical problem solving, spreading activation by 
subgoaling, generalization, and bottom-up concept formation, that have 
been tested on other examples. 

1. Input 

Here, translated into English, is the input given to PI. For simplicity, the 
problem of explaining why sounds reflect, propagate, and pass through 
each other has been stated in tenns of the starting condition, (sound 
($x) true), and three goals: (propagate ($x) true), (reflect ($x) true), 
(pass-through ($x) true). PI is also capable of getting the same inductive 
results by explaining sequentially the three rules: sounds reflect, sounds 
propagate, sounds pass through each other. Inference to the best explana­
Hon then evaluates the rule that sounds are waves instead of the hypothesis 
(wave ($x) true). 

Concepts with Information Provided by Programme:-: 

Sound: 
superordinates: sensation, physical_phenomenon 
subordinates: voice, music, whistle, bang 
rules [see below for all rules] 
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Propagate: 
superordinate: motion 

Reflect: 
superordinate: motion 

Motion: 
superordinate: change 
subordinates: propagate, reflect, pass_through 

Music: 
superordinates: sound, entertainment 
subordinates: instrumental-music, singing 

Instrumental-music: 
superordinate: music 
subordinates: lyre-music, flute-music 
instance: (instrumental-music (obj_a) true) 

Instrument: 
superordinate: device 
subordinate: stringed instrument 

Stringed_instrument: 
superordinate: instrument 
subordinate: lyre 
instance: (stringed-instrument (obj-b) true) 

Move_up_down: 
superordinate: movement 
subordinate: wave, jump 

Wave: 
superordinate: move-up-down 
subordinates: water-wave, hand-wave 

Motion_back: 
superordinate: motion 
subordinates: reflect, bounce 

Bounce: 
superordinate: motion-back 
instance: (bounce (obj-c) true) 

Concepts Made without Added Structure: 

sensation, physical-phenomenon, voice, music, whistle, bang, 
entertainment, singing, device, jump, is_heard, goes-through-air, 
near, hears, echoes, is-obstructed, spread-plane, swell, 
has-crest, vibrate, movement, spread-spherically, spread-plane, 
thing, plays, instrument, pass-through, lyre-music, flute-music, 
lyre, change, person, shape, ball, pleasant delicate. 
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Rules Made: 

R-O-sound 
attached_concepts: (sound) 
slot: superordinate 
conditions: «sound ($x) true» 
actions: «sensation ($x) true » 

R-l-sound 
attached_concepts: (sound) 
slot: superordinate 
conditions: «sound ($x) true» 
actions: «physical_phenomenon ($x) true » 

R-2-propagate 
attached_concepts: (propagate) 
slot: superordinate 
conditions: «propagate ($x) true» 
actions: «motion ($x) true )} 

R-3-refled 
attached_concepts: (refled) 
slot: superordinate 
conditions: «refled ($x) true» 
actions: «motion-back ($x) true » 

R-4-instrumental-music 
attached_concepts: (instrumental_music) 
slot: superordinate 
conditions: «instrumental-music ($x) true» 
adions: «music ($x) true » 

R-S _stringed_instrument 
attached_concepts: (stringed_instrument) 
slot: superordinate 
conditions: «smnged_instrument ($x) true» 
actions: «instrument ($x} true » 

R-6-move-up-down 
attached-concepts: (move _up-down) 
slot: superordinate 
conditions: «move-up_down ($x) true» 
adions: «movement ($x) true » 

R-7-wave 
attached_concepts: (wave) 
slot: superordinate 
conditions: «wave ($x) true» 
adions: «movement ($x) true » 
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R-8-bounce 
attached_concepts: (bounce) 
slot: superordinate 
conditions: ( bounce ($x) true» 
actions: «motion-back ($x) true » 

R_ 9-is_heard 
attached_concepts: (is-heard) 
slot: result 
conditions: «is-heard ($x) true» 
actions: «sound ($x) true » 

R-IO_sound 
attached-concepts: (sound) 
slot: transmission 
conditions: «sound ($x) true» 
actions: «goes_through-air ($x) true » 

R-ll-sound 
attached_concepts: (sound) 
slot: effect 
conditions: «sound ($x) true) (person ($y) true) (near ($x $y) true» 
actions: «hears ($y $x) true» 

R-12-sound 
attached-concepts: (sound) 
current_ value: 0 
slot: obstruction-result 
conditions: «sound ($x) true) (is-obstructed ($x) true» 
actions: «echoes ($x) true) ) 

R-13_sound 
attached-concepts: (sound) 
slot: spread-shape 
conditions: «sound ($x) true» 
actions: «spread-spherically ($x) true » 

R-14-wave 
attached-concepts: (wave) 
slot: spread_shape 
conditions: «wave ($x) true» 
actions: «spread-plane ($x) true » 

R-15-wave 
attached-concepts: (wave) 
slot: motion-shape 
conditions: «wave ($x) true» 
actions: «swell ($x) true » 

R-16-wave 
attached_concepts: (wave) 
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slot: motion 
conditions: «wave ($x) true) ) 
actions: «propagate ($x) true » 

R-17_wave 
attached-concepts: (wave) 
slot: motion 
conditions: «(wave ($x) true» 
actions: «has-crest ($x) true» 

R-18-wave 
attached_concepts: (wave) 
slot: obstruction-effect 
conditions: «wave ($x) true» 
actions: «reflect ($x) true» 

R-I9-wave 
attached-concepts: (wave) 
slot: motion 
conditions: «wave ($x) true» 
actions: «pass-through ($x) true » 

R-20-ball 
attached-concepts: (ball) 
slot: motion 
conditions: «ball ($x) true» 
actions: «propagate ($x) true » 

R-21_ball 
attached-concepts: (ball) 
slot: motion 
conditions: «ball ($x) true» 
actions: «reflect ($x) true» 

R-22-music 
attached-concepts: (music) 
slot: affect 
conditions: «music ($x) true» 
actions: «pleasant ($x) true » 

R-23 _instrument 
attached _concepts: (instrument) 
slot: quality 
conditions: «instrument ($x) true) ) 
actions: «delicate ($x) true » 

R_24_instrurnental-music 
attached-concepts: (instrumental-music) 
slot: method 
conditions: «instrumental-music ($x) true» 
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actions: «instrument (%y) true) (plays (%y $x) true» 
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R_25 _stringed-instrument 
attached-concepts: (stringed-instrument) 
slot: movement 
conditions: «stringed-instrument ($x) true» 
actions: «vibrate ($x) true » 

R-26-vibrate 
attached-concepts: (vibrate) 
slot: move-shape 
conditions: «vibrate ($x) true» 
actions: «move-up_down ($x) true » 

R-2 7 -bounce 
attached-concepts: (bounce) 
slot: performer 
conditions: «bounce ($x) true» 
actions: «ball ($x) true» 

Problem Made: 

Sound-reflect: 
type: explanation 
start: «sound ($x) true» 
goals: «propagate ($x) true explanandumO) 

(refled ($x) true explanandurnl) 
(pass-through ($x) true explanandum2» 

2. Output 

Here, lightly edited for intelligibility, is the printed output of PI given the 
above input. At time step 5, PI forms a ball (particle) theory of sound, which 
it judges to be the best explanation until timestep 9, when adivation of the 
concept of wave leads to production of a wave theory of sound. The 
problem is solved once all three goals have been reached (explained). 
Extraneous pieces of information that do not play a significant role in 
this simulation, such as the degrees of confidence of the messages and 
degrees of activation of concepts, are omitted. Names of the hypotheses 
and explananda are the fourth element in messages; for example, "hy­
pothesisl" is the name of "(wave ($x) proj-true hypothesis 1)". The truth 
value "proj-true" stands for "projected to be true" and indicates that 
the hypothesis is tentative. Some messages have in fourth place the 
name of a hypothesis in parentheses, as in (swell ($x) proj-true (hypoth­
esisl»; this shows that they depend on the hypothesis indicated: they 
are only projected to be true since they were inferred using a tentative 
hypothesis. 
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Franz lisp, Opus 38.91 
Tue Dec 2 10:56:28 EST 1986 
[load lu1/pault/pi/franz.1} 
Ifasl lu1/paultlpi/misc.o] 
[load lu1/pault/pi/begin.1J 
[load lu1/pault/pilprob.1J 
[load IU1/pault/pi/prob-nre.I] 
[load IU1/paultipi/prob-spread.I] 
[load IU1/pault/pi/store.I] 
(load lu1/pault/pi/analog.l] 
{load IUI/paultipiiana-schem.I] 
[load luI/pault/pi/concepts.ll 
{load /uI/paultipi/explain.I] 
[load luI/pault/pi/gen.l] 
[load luI/pault/pi/theory.lJ 
[load IUl/paultipi/trig.IJ 
[load data/wts.I] 

PI initialized. 
******************************* 

Running PI with input data/wts.l. 
Problem: How to explain properties of sound? 

SOLVING PROBLEM: sound-reflect 
STARTING FROM: «sound ($x) true» 
GOALS: «(propagate ($x) true explanandumO) 

(reflect ($x) true explananduml) 
(pass-through ($x) true explanandum2» 

PROBLEM: sound-reflect TIMESTEP: 1 
ACTIVE MESSAGES: «sound ($x) true» 

Sample Run of PI 215 

ACTIVE CONCEPTS: (propagate reflect pass-through sound) 
ACTIVE RULES: nil 
Triggering inductions . . .  
Problem not yet solved 
FIRING RULES: nil 
---------------------------- -------------------------

PROBLEM: sound-reflect TIMESTEP: 2 
ACTIVE MESSAGES: «sound ($x) true» 
ACTIVE CONCEPTS: (propagate reflect pass_through sound) 
ACTIVE RULES: (r-13-sound r-12-sound r-1I-sound 

r_IO-sound r-I-sound 
r -O-sound r _3_reflect r -2-propagate) 
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Triggering inductions .. . 
Problem not yet solved 
FIRING RULES: (r_I3_sound f_IO_sound f-I-sound r_O_sound) 
Activating concept (spread-spherically) by firing rule r-13-sound 
Activating concept (goes-through-air) by firing rule r _lO_sound 
Activating concept (physical-phenomenon) by firing rule r-I-sound 
Activating concept (sensation) by firing rule r -o-sound 
Activating concept (motion) by hierarchical spread from propagate 
Activating concept (motion-back) by hierarchical spread from refled 
Activating concepts (bang whistle music voice) by hierarchical spread 

from sound 

PROBLEM: sound-refled TIMESTEP: 3 
ACTIVE MESSAGES: «sound ($x) true) (spread-spherically ($x) true) 

(goes-through_air ($x) true) 
(physical-phenomenon ($x) true) 
(sensation ($x) true» 

ACTIVE CONCEPTS: (bang whistle music voice motion-back 
motion propagate 
reflect pass-through sound spread-spherically 
goes-through-air physical_phenomenon sensation) 

ACTIVE RULES: (r-I3-sound r_I2_sound f-II_sound 
r_IO_sound r-I-sound 
r-O-sound r-3-refled r-2-propagate r-22-music) 

Triggering inductions ... 
Problem not yet solved 
FIRING RULES: nil 
Activating concept (instrumental_music) by hierarchical spread 

from music 
Activating concept (bounce) by hierarchical spread from motion_back 

PROBLEM: sound-reflect TIMESTEP: 4 
ACTIVE MESSAGES: « bounce (obj-c) true) 

(instrumental-music (obj -a) true) 
(sound ($x) true) (spread_spherically ($x) true) 
(goes-through_air ($x) true) 
(phYSical_phenomenon ($x) true) 
(sensation ($x) true» 

ACTIVE CONCEPTS: (bounce instrumental_music bang whistle 
. . mUSIC VOice 

motion-back motion propagate reflect pass_through 
sound 
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spread-spherically goes-through-air 
physical_phenomenon 
sensation) 

ACTIVE RULES: (r-I3_sound r-I2_sound r-II_sound 
r_IO_sound r_I-sound 
r -3-refled r-2-propagate' r -22-music 
r -24-instrumental-music 
r _4_instrumental_music r -27 -bounce r -B-bounce) 

Triggering inductions . .. 
Problem not yet solved 
FIRING RULES: (r -24-instrumental-music r -4-instrumental-music 

r_8_bounce 
r _27 -bounce) 

Activating concept (plays instrument) by firing rule 
r -24-instrumental-music 

Activating concept (ball) by firing rule r -27 _bounce 
Activating concepts (flute-music lyre-music) by hierarchical 

spread from 
instrumental-music 

PROBLEM: sound-reflect TIMESTEP: 5 
ACTIVE MESSAGES: «bounce (obj-c) true) 

(instrumental-music (obj_a) true) 
(music (obi-a) true) (motion-back (obi-c) true) 
(sound ($x) true) (spread_spherically ($x) true) 
(goes-through_air ($x) true) 
(physical-phenomenon ($x) true) 
(sensation ($x) true) (plays (%y obi-a) true) 
(instrument (%y) true) (ball (obi-c) true» 

ACTIVE CONCEPTS: (flute_music lyre-music bounce 
instrumental_music bang 
whistle music voice motion-back motion propagate 
reflect 
pass-through sound spread-spherically 
goes-through-air 
physical_phenomenon sensation plays instrument ball) 

ACTIVE RULES: (r-2I-ball r_20_ball r_23_instrument 
r_I3_sound r_I2_sound 
r_II_sound r_IO_sound r-I-sound r_O_sound 
r_3_reflect 
r _2_propagate r _22_music r _24_instrumental-music 
r_4_instrumental-music r-27 -bounce r_8_bounce) 
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Triggering inductions ... 
Simple abduction of (ball ($x) proj-true hypothesisO) 

from (propagate ($x) true explanandumO) and r _20_baII 
Supplementary abduction of (baIl ($x) proj-true hypothesisO) 

from (reflect ($x) true explananduml) and r-21-baIl 
The best explanation is: hypothesisO 

(ball ($x) proj-true hypothesi sO) 
hypothesisO explains: (explananduml explanandumO) 
Competing hypotheses: (hypothesisO) 
Co-hypotheses: nil 
Total evidence: (explananduml explanandumO) 

Rule made: r -28-ball 
(sound) - > (ball) 

Abductive generalization formed from 
(ball ($x) proj-true 0.3 hypothesisO) 

Problem not yet solved 
FIRING RULES: (r-23-instrument r-22-music r-20-baIl 

r-21-ball) 
Activating concept (delicate) by firing rule r-23-instrument 
Activating concept (pleasant) by firing rule r -22-music 
Activating concept (stringed_instrument) by hierarchical spread from 

instrument 

PROBLEM: sound-reflect TIMESTEP: 6 
ACTIVE MESSAGES: «stringed-instrument (obj-b) true) 

(ball ($x) proj-true hypothesisO) (ball (obj-c) true) 
(bounce (obj_c) true) (instrumental-music (obj_a) true) 
(music (obj-a) true) (motion-back (obj-c) true) 
(sound ($x) true) (spread_spherically ($x) true) 
(goes-through_air ($x) true) 
(physical-phenomenon ($x) true) 
(sensation ($x) true) (plays (%y obi-a) true) 
(instrument (%y) true) (delicate (%y) true) 
(pleasant (obj-a) true) 
(propagate ($x) proj -true (hypothesisO» 
(reflect ($x) proj-true (hypothesisO») 

ACTIVE CONCEPTS: (stringed-instrument ball flute_music 
lyre-music bounce 
instrumental-music bang whistle music voice 
motion-back 
motion propagate reflect pass-through sound 
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spread_spherically goes-through_air 
physical-phenomenon 
sensation plays instrument delicate pleasant) 

ACTIVE RULES: (r_23-instrument r-I3-sound r-I2-sound 
r-II-sound r-IO-sound 
r-I-sound r-O_sound r-3-reflect r-2-propagate 
r-22_music 
r -24-instrumental_music r -4-instrumental-music 
r -27 -bounce 
r-8-bounce r_28_ball r-2I_ball r_20_ball 
r -25 -stringed-instrument r -5 -stringed-instrument) 

Triggering inductions .. . 
Problem not yet solved 
FIRING RULES: (r-25-stringed-instrument 

r -5-stringed-instrument r _2_propagate 
r _3 _reflect) 

Activating concept (vibrate) by firing rule r-25-stringed-instrument 
Activating concept (lyre) by hierarchical spread from 

stringed-instrument 

PROBLEM: sound-reflect TIMESTEP: 7 
ACTIVE MESSAGES: «stringed-instrument (obi-b) true) 

(ball ($x) proj-true hypothesi sO) 
(ball (obj-c) true) (bounce (obi_c) true) 
(instrumental-music (obj-a) true) (music (obj-a) true) 
(motion-back (obi-c) true) (sound ($x) true) 
(spread-spherically ($x) true) 
(goes_through-air ($x) true) 
(physical-phenomenon ($x) true) (sensation ($x) true) 
(plays (O/oy obj-a) true) (instrument (obj_b) true) 
(instrument (O/oy) true) (delicate (Oky) true) 
(pleasant (obj_a) true) (vibrate (obj-b) true) 
(motion-back ($x) proi-true (hypothesisO» 
(motion ($x) proj_true (hypothesisO» 
(propagate ($x) proj-true (hypothesisO» 
(reflect ($x) proj_true (hypothesi sO») 

ACTIVE CONCEPTS: (lyre stringed_instrument ball flute-music 
lyre_music 
bounce instrumental-music bang whistle music 
voice motion-back motion propagate reflect 
pass-through 
sound spread_spherical goes_through-air 
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physical-phenomenon sensation plays instrument 
delicate pleasant vibrate) 

ACTIVE RULES: (r _26_ vibrate r _23-instrument r _13_sound 
r_12_sound r-ll_sound 
r-IO-sound r_l_sound r_o_sound r_3_refled 
r _2_propagate 
r -22-music r _24_instrumental-music 
r _4_instrumental_music r -27 _bounce r -8-bounce 
r-28-ball r-21_ball r-20-ball 
r -25 -stringed-instrument 
r -5 _stringed_instrument) 

Triggering inductions .. . 
Problem not yet solved 
FIRING RULES: (r-23-instrument r_26_vibrate) 
Activating concept (move_up-down) by firing rule r -26-vibrate 

PROBLEM: sound-refled TIMESTEP: 8 
ACTIVE MESSAGES: «stringed-instrument (obi-b) true) 

(ball ($x) proj-true hypothesisO) 
(ball (obi-c) true) (bounce (obi-c) true) 
(instrumental_music (obi-a) true) (music (obi-a) true) 
(monon-back (obi-c) true) (sound ($x) true) 
(spread-spherically ($x) true) 
(goes_through_air ($x) true) 
(physical-phenomenon ($x) true) 
(sensation ($x) true) (plays (%y obj_a) true) 
(instrument (obj_b) true) (instrument (%y) true) 
(delicate (obj-b) true) (delicate (Oky) true) 
(pleasant (obj-a) true) (vibrate (obj_b) true) 
(move-up-down (obj_b) true) 
(motion-back ($x) proj-true (hypothesi sO) ) 
(motion ($x) proj-true (hypothesisO» 
(propagate ($x) proj-true (hypothesisO» 
(refled ($x) proj_true (hypothesisO») 

ACTIVE CONCEPTS: (lyre stringed-instrument ball flute_music 
lyre-music 
bounce instrumental-music bang whistle music voice 
motion-back motion propagate reflect pass--through 
sound 
spread_spherically goes-through-air 
physical-phenomenon 
sensation plays instrument delicate pleasant vibrate 
move_up-down) 
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ACTIVE RULES: (r_6-move-up-down r-26-vibrate 
r -23 -instrument r -13 _sound 
r-IS-sound f-II-sound r-IO-sound 
r_I_sound r-O-sound 
r -3_refled f -2-propagate r -22_music 
f -24-instrumental-music r -4-instrumental_music 
r-27 -bounce r-8-bounce r_28_ball r_21_ball 
f-20-ball 
f -25 -stringed_instrument r -5 -stringed_instrument) 

Triggering inductions ... 
Problem not yet solved 
FIRING RULES: (r -6_move_up_down) 
Activating concept (movement) by firing rule r-6_move_up-down 
Activating concepts (jump wave) by hierarchical spread from 

move_up_down 

PROBLEM: sound-reflect TIMESTEP: 9 
ACTIVE MESSAGES: «stringed_instrument (obi-b) true) 

(ball ($x) proj-true hypothesisO) (ball (obj-c) true) 
(bounce (obj_c) true) (instrumental_music (obj_a) true) 
(music (obj-a) true) (motion-back (obi_c) true) 
(sound ($x) true) (spread-spherically ($x) true) 
(goes-through-air ($x) true) 
(physical-phenomenon ($x) true) (sensation ($x) true) 
{plays (%y obj-a) true) (instrument (obj_b) true) 
(instrument (%y) true) (delicate (obi-b) true) 
(delicate (%y) true) (pleasant (obj_a) true) 
(vibrate (obj_b) true) (move-up_down (obj-b) true) 
(movement (obi-b) true) 
(moHon_back ($x) proi-true (hypothesisO» 
(motion ($x) proj _true (hypothesisO» 
(propagate ($x) proj_true (hypothesisO» 
(reflect ($x) proj-true (hypothesisO») 

ACTIVE CONCEPTS: (jump wave lyre stringed-instrument ball 
flute-music 
lyre-music bounce instrumental_music bang whistle 
music voice motion-back motion propagate reflect 
pass-through sound spread-spherically 
goes-through-air 
physical-phenomenon sensation plays instrument 
delicate 
pleasant vibrate move-up_down movement) 
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ACTIVE RULES: (r -6-move-up-down r -26-vibrate 
r-23-instrument r-13-sound 
r-12_sound r-II-sound r-IO-sound r-I-sound 
r-O-sound 
r-3-reflect r-2-propagate r-22-music 
r _24_instrumental_music r _4_instrumental_music 
r-27-bounce r_8_bounce f_28_ball r_2I_ball 
T_lO_ball 
r_ls_stringed_instrument r-s_stringed_instrument 
T_I9_wave T_18_wave r_17_wave T-16-wave 
T_lS_wave 
T-14-wave r-7 -wave) 

Triggering inductions ... 
Simple abduction of (wave ($x) proj-true hypothesis I) 

from (propagate ($x) true explanandumO) and r -16-wave 
Supplementary abduction of (wave ($x) proj-true hypothesis I) 

from (reflect ($x) true explanandumI) and T_I8_wave 
The best explanation is: hypothesisO 

(ball ($x) proj-true hypothesisO) 
hypothesisO explains: (explanandumI explanandumO) 
Competing hypotheses: (hypothesis I hypothesisO) 
Co-hypotheses: nil 
Total evidence: (explanandumI explanandumO) 
Tied hypotheses: (hypothesisO hypothesisl» 

Supplementary abduction of (wave ($x) proj-true hypothesisI) 
from (pass-through ($x) true nil explanandum2) and 

r-I9-wave 
The best explanation is: hypothesis I 

(wave ($x) proj-true hypothesisl) 
hypothesisl explains: (explanandum2 explanandumI 

explanandumO) 
Competing hypotheses: (hypothesis I hypothesisO) 
Co-hypotheses: nil 
Total evidence: (explanandum2 explananduml explanandumO) 

Rule made: T-29_wave 
(sound) - > (wave) 
Abductive generalization formed from (wave ($x) proj-true 

hypothesis I) 
Problem not yet solved 
FIRING RULES: (r-I9-wave r-16-wave T-18_wave r_I4_wave 

r_7_wave f-IS_wave) 
Activating concept (spread-plane) by firing rule T-14-wave 
Activating concept (swell) by firing rule r _15 -wave 
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Activating concepts (hand_wave water-wave) by hierarchical 
spread from wave 

-------- ---------------------------------------------

PROBLEM: souna-reflect TIMESTEP: 10 
ACTIVE MESSAGES: {(wave ($x) proj-true hypothesisl) 

(stringed_instrument (obi-b) true) 
(ball ($x) proi-true hypothesisO) 
(ball (obj-c) true) (bounce (obi_c) true) 
(instrumental_music (obj-a) true) 
(music (obj_a) true) (motion-back (obj-c) true) 
(sound ($x) true) (spread-spherically ($x) true) 
(goes-through_air ($x) true) 
(physical-phenomenon ($x) true) 
(sensation ($x) true) {plays (%y obi-a) true) 
(instrument (obi-b) true) (instrument (%y) true) 
(delicate (obj-b) true) (delicate (%y) true) 
(pleasant (obi-a) true) (vibrate (obj-b) true) 
(move-up_down (obi-b) true) (movement (obi-b) true) 
(motion-back ($x) proj_true (hypothesi sO» 
(motion ($x) proj-true (hypothesi sO) ) 
(propagate ($x) proj-true (hypothesisO» 
(propagate ($x) proi-true (hypothesisl» 
(reflect ($x) proj -true (hypothesi sO) ) 
(reflect ($x) proi_true (hypothesisl» 
(pass-through ($x) proj-true (hypothesisl» 
(movement ($x) proi-true (hypothesisl» 
(spread_plane ($x) proj-true (hypothesisl» 
(swell ($x) proj-true (hypothesisl») 

ACTIVE CONCEPTS: (hand-wave water-wave wave jump lyre 
stringed-instrument 
ball flute-music lyre_music bounce instrumental-music 
bang whistle music voice motion-back motion 
propagate 
reflect pass_through sound spread_spherically 
goes-through-air physical-phenomenon sensation 
plays 
instrument delicate pleasant vibrate move_up-down 
movement spread-plane swell) 

ACTIVE RULES: (r-6_move-up_down r_26_vibrate 
r _23_instrument r -13-sound 
r_12-sound r-II-sound r_lO_sound r-I_sound 
r_O_sound 
r_3_refled r-2-propagate r-22_music 
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f -24-instrumental_music r -4-instrumental-music 
f-27 -bounce 
r-8-bounce r-28-ball f-21-ball r-20-ball 
r -25 -stringed-instrument r -5 -stringed-instrument 
r-29-wave r-19-wave r_18_wave r_17_wave 
r-16_wave 
r-lS-wave r-14-wave r-7 -wave) 

Triggering inductions ... 
Conceptual combination producing: wave_sound 

Concept made: wave-sound 
Rule made: r-30-wave-sound 
(wave-sound) - > (wave) 
Rule made: r-31-wave-sound 
(wave-sound) - > (sound) 
Rule made: r-32-wave-sound 
(wave_sound) - > (spread_spherically) 
Rule made: r-33-wave-sound 
(wave-sound) - > (movement) 

Problem sound_reflect solved. 

Tue Dec 2 10: 59 : 42 EST 1986 
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