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Tasso: I've struggled day and night against this need;
I'm worn out with the contest in my breast.
It’s useless! Sing I must or life’s not life.
Forbid the silkworm’s spinning industry,
On pain of death, but he will still go on
Drawing the costly web from his entrails
And leave not off until his cerecloth’s done.

From a translation by Peirce of a
section of Goethe’s Torquato Tasso for
William Hirsch’s Genius and
Degenerarion (MS. 1517)

It is not a hankering after applause and success nor a regard for his in-
terests which make the artist of genius work. It is solely hankering to
give shape to the work of art that exists in his mind. The true poet does
not versify because he will but because he must. Goethe has painted
this poetic impulse in Tasso.

(MS. 1118)



PREFACE

It is believed by many scholars that all Peirce materials worthy of further
scholarly probing have already appeared in the Collected Papers of Charles
Sanders Peirce, vols. I-V1, edited by Charles Hartshorne and Paul Weiss,
and vols. VII and VIII edited by Arthur W. Burks. There is a belief also
that Murray G. Murphey in his Development of Peirce’s Philosophy has
definitively summarized Peirce’s mathematical thought in elucidating his
own thesis on Peirce, especially in the discussion of Peirce’s conception
of “multitude” and its application to his philosophical architectonic.

But Peirce’s widely diversified researches as a pure mathematician have
yet to be understood, yet to be assessed, yet to be related to the develop-
ments in the mathematics of his own lifetime, The unpublished manu-
scripts are to be found, for the most part, in the Charles 8. Peirce Collec-
tion in the Houghton Library, Harvard University. Unless otherwise
indicated, the materials in these volumes are from that Collection.

The editor has attempted in the several introductions to provide in the
rough the background against which Peirce’s thought may be evaluated.
They are not intended to evaluate critically Peirce’s mathematical output,
a task that competent scholars in diverse fields must face in the coming
years. The editor’s responsibility has been that of making accessible in
some cohesive form the major elements of Peirce’s mathematical activity.
Peirce’s unflagging hope of success in his efforts to ape his father and
other mathematical contemporaries in the profitable venture of textbook
writing makes it possible at the present time to present the spectrum of
his mathematical thought beginning with the simplest elements in arith-
metic and ending with his general mathematical philosophy. Despite the
fact that some of the material is now clearly dated, although by no means
obsolete, one finds refreshment always in Peirce’s integrated presentation
of the diverse branches of mathematics, arrayed as they often are in the
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context of the metaphysical problems that crowded in on his thought.
But most surprising is the mathematical foresight and openmindedness
that impelled him to adopt a teaching stance in the eighteen-nineties that
has come to be advocated and officially implemented on the highest
academic levels seventy-five years later. A short notice of Peirce’s philoso-
phy of education in mathematics by the editor of these papers appears in
the Second Series of Studies in the Philosophy of Charles Sanders Peirce,
edited by E. C. Moore and R. 8. Robin.

To avoid unnecessary duplication in dating of manuscripts, etc., the
editor assumes that the Annotated Catalogue of the Papers of Charles S.
Peirce by Richard S. Robin (University of Massachusetts Press, 1967)
is accessible to the reader desiring further detail. Manuscript numbers
used here correspond to those appearing there. The “s” designation
refers to “The Peirce Papers: A Supplementary Catalogue,” by Richard S.
Robin, in Transactions of the Charles S. Peirce society 7:1 (1971). She
also reminds the reader that some mathematical studies already appear
in the Collected Papers. These have not been duplicated. In preparing
materials for publication the editor has attempted to minimize footnote
commentary. A reading of the entire text will bring Peirce’s own answer
to many a question. For his writings shimmer with the light of revela-
tion. Peirce’s footnotes are incorporated in the body of the text in
pareniheses. Brackets enclose editorial addenda. Editorial footnotes
carry numeral identification in the usual way. References to paragraphs
in the Collected Worls will be made in standard fashion, i.e. 4.212 means
paragraph 212 in Volume 4.

In the preparation of manuscript tampering with punctuation and
spelling has been minimized. For Peirce observed certain psychological
principles underlying punctuation, especially in the use of the comma.
“We ought to make it a rule that the burden shall lie upon every mark
of punctuation of proving its possible utility” (MS. 1221). As to spelling,
Peirce wrote: “I would suggest that every man who thinks that the tyran-
ny of orthography ought to be broken down should regard it as a duty
to begin spelling a few words, — not so many as to shock people very
badly, — in a rational way; and let every man make his own selection,
for the very purpose of disproving the popular prejudice that all educated
people spell one way. For instance, I have for some time been asserting
my individual liberty so far as to write most words in ise by ize, to spell
intrinsec, and to indulge a few other protests against the tyrant. 1 know
very well that I am in consequence of this heroic deed, generally set
down as a semi-educated crank and nihilist; but I mean to wear the crown
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of martyrdom with a smile. C.” (MS. 1204). The editor has retained
intrinsec although there have been other changes, notably in Peirce's
indispensible.

The editor has been privileged to gather together and coordinate these
materials with the aid of so many helping hands that these acknowledg-
ments will surely fail of being complete. Yet specific mention must be
made of the continual interest, encouragement, and sponsership of Carl
Boyer and I. Bernard Cohen; of Max Fisch and Victor Lenzen; of the
permission of the Philosophy Department at Harvard University to
examine and use the Peirce manuscripts under its auspices, and of the
confidence of the Department in the worthiness of the end result of such
a study; of the particular interest of Donald Williams and Burton Dreben
of that Department and of the late Ruth Allen; of the financial support
in the early stages of the research on the part of the National Science
Foundation and of the American Philosophical Society; of the special
help of Carolyn Jakeman and her staff at the Houghton Library of
Harvard University where the Peirce manuscripts are preserved; of the
very special cooperation of the staffs of the Archives Section and of the
Duplicating Office at Widener Library, and of Frank Giella of Du-
plicating Services at Hunter College; of the staff of Special Collections
at Columbia University in making accessible materials in the D. E. Smith
Collection; of the sympathetic understanding and appreciation of Dean
Kerby-Miller of Harvard University and of Eleanor Ross in making
possible for the editor the privilege of special residence as a visiting
scholar in Cambridge during the preparation of manuscript; of the en-
couragement and advice of Joseph D. Elder, former Science Editor of
the Harvard University Press; of the interest of Ernest Nagel that has
eased the last stages of publication. The editor is most grateful to Peter
deRidder of Mouton Publishers for the vision and enthusiasm that brought
at last to the printed page this lengthy chapter in the story of Peirce’s in-
tellectual life; and to Joel Kasow, the editor of this material at Mouton,
for his meticulous care and dedicated labors towards the completion of
this task. Mr. Alexander R. James has graciously given permission for
the publication of three letters from the William James Collection at
Houghton Library (Peirce to James [18 April 1903 (2) and 25 December
1909]). But the individuals to whom the editor is most deeply indebted
are Max and Ruth Fisch whose close association in Peirce researches
over many years has been an inspiration always. Their helping hands
made negotiable many a rough passage along the road to this presenta-
tion of Peirce’s thought in mathematics.
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Gratitude must be expressed also to Victoria Raymer who undertook
the task of transliterating Greek forms into Roman, as they appear in
the Appendix. Peirce sprinkles his writings freely with Greek allusion
and only rarely does he transliterate. There is today no established
universal system of transliteration. The equivalents, as used in this
work, are often chosen nowadays because they readily identify Greek
words with related English loan words while not removing them two
steps from the Greek, as was the case years ago when they were first
“Latinized.” The reader will occasionally find a Greek word appearing
twice, spelled in each of two different ways, e.g. cae, kai. The first version
is Peirce’s own transliteration, which he sometimes supplies in his manu-
script, the second a rendering of the word he wrote in Greek letters.
Peirce’s system of transliteration, the traditional “Latinizing” one, has
not been adopted in this edition because it is not in general use today.

Appreciation is expressed at this point, too, of the heroic typing of
manuscript undertaken by Nancy Donovan whose early commitment to
the Peirce canse carried her through many an endless tedious page in the
copying of manuscript.

The early stages of this study were supported by two sets of grants:
one, institutional grants from the National Science Foundation to Hunter
College with the editor as Director, GS-419 and GS-1276; the other from
the American Philosophical Society, Penrose Fund #3618 and the
Johnson Fund #668. Without them, the undertaking of the project
would have been impossible. A subvention from the John Dewey Foun-
dation has aided substantially in effecting the publication of these volumes.

Should anyone wonder why the editor was willing to devote so many
years of labor to the organization of these materials in their present form,
she would wish to quote the late Leonard Dickson in the preface to the
second volume of his History of the Theory of Numbers. For he explained
there that he had made this great effort over a period of nine years “be-
cause it fitted in with his convictions that every person should aim to
perform at some time in his life some serious, useful work for which it
is highly improbable that there will be any reward whatever other than
his satisfaction therefrom.”

Carolyn Eisele
Hunter College of the City University of New York
August 1970

GENERAL INTRODUCTION

Charles S. Peirce was born in 1839 into a Cambridge family that enjoyed
the finest academic connections to be found in the United States at that
time. His father, Benjamin, came to be the most highly regarded American
mathematician of his generation, holding, as he did, the Perkins Chair in
Mathematics and Astronomy at Harvard (1842-1880), after having served
that institution as University Professor of Mathematics during the previous
nine years. He became Superintendent of the Coast and Geodetic Survey
for the period 1867-1874, and its Consulting Geometer over a long span
of time, He was one of the most influential men of science in the country,
being a prime agent in the founding of the National Academy of Sciences.
In an American Mathematical Society Semicentennial address in 1938
George Birkhoff quoted A. Lawrence Lowell, former President of Harvard
University, in the following words: “Looking back over the space of fifty
years when I entered Harvard College, Benjamin Peirce still impresses
me as the most massive intellect with which I have ever come into close
contact, as being the most profoundly inspiring teacher that I have ever
had. His personal appearance, his powerful frame and his majestic head
seemed in harmony with his brain,”

It is generally conceded that America was afflicted with mathematical
sterility during the first three hundred years of its existence, its mathe-
matical needs arising mostly from surveying, map-making, and problems
in astronomy. As for native mathematicians there was Nathaniel Bowditch
(1773-1838), author of The New American Practical Navigator that came
to be used the world over. His contribution to mathematical research
may be appraised by his 1815 paper entitled “On the motion of a pen-
dulum suspended from two points” and from his English translation
(1829-1839) of the first four volumes of Laplace’s Traité de mécanique
céleste (1798-1805) with notes and commentary. Then there was Robert
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Adrain (1775-1843), mathematician, physicist, and astronomer, who edited
Hutton's Course in Mathematics and gave an original proof of the law of
least squares, with investigations relating to the figure of the earth and
the study of “g” at different latitudes.

But it was not until the 1880s that a flowering of native mathematical
talent was to be found on the American scene. In his historical survey
of “Fifty Years of Algebra in America (1888-1938)” written for the
American Mathematical Society Semicentennial Publications (vol. 1),
E. T. Bell remarked that “Sylvester’s enthusiasm for algebra during his
professorship at the Johns Hopkins University in 1877-1883 was without
doubt the first significant influence the United States had experienced in
its attempt to lift itself out of the mathematical barbarism it appears 0
have enjoyed prior to 1878. Elementary instruction was good enough,
perhaps better than it is today; research on the European level, with one
or two conspicuous exceptions, was non-existent.” Bell notes that the
United States had had but one great algebraist. And yet “Benjamin Peirce
made only a negligible impression on his American contemporaries in
algebra, and his work was not appreciated by their immediate successors
until it had received the nod of European condescension.” Dirk Struik
also deemed Benjamin Peirce’s linear associative algebra to be the first
major original contribution to mathematical progress in the United States.
Indeed, before the time of Benjamin Peirce research was not considered
to be one of the basic responsibilities of a mathematics department at
4 university.

At the beginning of the fifty-year period (1888-1938), linear algebra
was still in the tradition of Peirce, Bell speaks of a new American tradi-
tion being set up around 1905 in the work of Dickson, Wedderburn, and
Albert. More specifically, “the year 1905 is also memorable in the sub-
ject for Wedderburn’s proof that a Galois field is the only algebra with
a finite number of elements that is a linear associative division algebra
in the domain of real numbers, the analogue for finite algebras of the
theorem of Frobenius and C. S. Peirce.” But progress was made quickly
and recognition was already being accorded the work of G. W. Hill,
Simon Newcomb, G. A. Miller, and E. H. Moore around the turn of
the century.

In the earlier days the mathematically talented were attracted to the
work of the national scientific organizations in which there was need of
applied mathematics. The Coast and Geodetic Survey was such an or-
ganization, the first scientific institution to be created by the government
of the United States. It was started by act of Congress in 1807 under the
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superintendency of the Swiss mathematician Ferdinand Rudolph Hassler
(1770-1843) whose work on the accuracy of standards led later to the
establishment of the Bureau of Standards. Many of these Coast Survey
workers, like Charles A. Schott, had mathematical gifts that in a later
generation would have insured them high status on college campuses, a
status enjoyved, indeed, by a number of them during the 1870s. Since
his father was so prominent a figure in the administration of the Survey
it was natural for Charles Peirce to enter the ranks of workers there, even
as a lowly aide, in 1859, to specialize in a science in order, as he said,
to carry out his researches in the logic of science. Further reference will
be made in the introductory remarks to Volume IIT regarding the thirty-
year accumulation of his reports in the files of the National Archives in
Washington that today tell the story of his inventiveness in applied mathe-
matics, and of his skills in using tools that bespeak talent in pure mathe-
matics as well.

The bureau for the American Ephemeris and Nautical Almanac was
another institution that attracted the gifted in mathematics, talented men
like Chauncey Wright. It was organized in 1849 and Benjamin Peirce was
its Consultant in Astronomy from the very beginning until 1867. Charles
Henry Davis, an uncle of Charles Peirce, was to become its Superintendent
in 1865 as well as the Superintendent of the Naval Observatory. Then,
too, Abraham Lincoln founded in 1863 the National Academy of Sciences
with A. D. Bache as its first President, The Academy harbored a few
mathematicians, and Charles Peirce, who was elected to membership on
18 April 1877, read many papers there. However, an amusing story is told
of a meeting at which Benjamin Peirce spent an hour filling the black-
board with equations only to remark: “There is only one member of the
Academy who can understand my work and he is in South America.”

As has been observed, mathematics in America began to flourish with
the advent of Sylvester on the academic scene at the newly established
Johns Hopkins University. President Gilman had been given permission
to engage the best mathematical talent available for the chairmanship of
the mathematics department there and with the appointment of Sylvester,
American mathematical horizons widened tremendously, Sylvester’s
mathematical vitality and his ability to inspire others to great achievement
nourished the nucleus of a powerful mathematical group, the equal of
its European counterparts. In collaboration with W. E. Story, Sylvester
founded in 1878 The American Journal of Mathematics, published by the
Johns Hopkins University, In an address in 1904, Thomas Fiske, then
President of the American Mathematical Society, spoke of the first ten
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volumes as containing about ninety different writers, thirty from foreign
countries and about thirty as being Sylvester's pupils. Among the con-
tributors to the early numbers were such scholars as Sylvester himself,
Cayley, Hill, Josiah Gibbs, C. S. Peirce, Benjamin Peirce, Simon
Newcomb, Thomas Craig, Emery McClintock, all endeavoring to broaden
the frontiers of current mathematical knowledge. Craig and Newcomb
were both members of the Coast and Geodetic Survey forces even as
the two Peirces were. .

Associated with Sylvester as teachers on the staif at the University were
Thomas Craig and William E. Story and Fabian Franklin. J. W. Gibbs
lectured in the Physics Department. Cayley came from England as a
special lecturer for a year in the spring of 1882 and conducted seminars
during two semesters. At the April meeting of the Mathematics Seminar
in 1882, Cayley spoke on “Associative Imaginaries,” and said, “I did not
perceive how to identify the system with any of the double algebras of
B. Peirce’s Linear Associarive Algebra ...; but it has been pointed out to
me by Mr. C. S. Peirce, that my system in the general case ad-bc, not equal
to zero, is expressible as a mixture of two algebras ....”

Charles Peirce’s blossoming into what today would be regarded as a
professional mathematician was accelerated by his affiliation in the fall of
1879 with the new Johns Hopkins University. By this time his activities
on the Buropean scene as well as on home grounds as Assistant in the
Coast and Geodetic Survey had established his reputation as an out-
standing scientist. He had managed also to publish in professional jour-
nals enough of his researches in logic to warrant an invitation to join the
staff at The Johns Hopkins University as Lecturer on Logic, offering
other courses in the Mathematics Department as well. Over the ensuing
five-year period he was to lecture on medieval logic, advanced logic,
probabilities, methods of science including methods of mathematics, and
the logic of relatives. During that time his courses attracted more students
from the Mathematics Department than from any other Division at the
University. He also conducted a mathematics seminar on relative forms
of quaternions. Illustrative of his mathematical status is the report of
a meeting of the Mathematics Seminar, Januvary 1882, when Sylvester
and Cayley and Peirce were the speakers, Peirce speaking on “Relative
Forms of Quaternions.”

Although Peirce’s association with the University was abruptly termi-
nated in 1884, it is apparent from his writings that his thought thereafter
was of a mathematical cast not to be found so explicitly in the pre-Johns
Hopkins period. Had this association with a professionally oriented
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group of mathematicians not been denied him, he might have become
even more deeply concerned with the discovery and proof of new theory
— and not essentially in the examination of the validity of the logical
processes involved in proof. But the University contact had brought him
very far at that into mathematical foundations: number theory, topology,
projective geometry, existential graphs and, above all, speculations on the
nature of the continuum.

Another organization that accelerated the pace and depth of mathemati-
cal research on the American scene after 1885 was the American Mathe-
matical Society organized originally as the New York Mathematical
Society. After Thomas Fiske had returned from post-graduate studies at
Cambridge University, England, he joined Edward W, Stabler and Harold
Jacoby in establishing a mathematical society in New York that might
encourage a stronger feeling of comradeship among those interested in
mathematics. Thus was born on Thanksgiving Day (24 November 1888),
at ten in the morning, the New York Mathematical Society with six
members. Membership was by election and by 1890 the number of
members had been increased to twenty-three. Charles S. Peirce, B.Sc.,
M.A., member of the National Academy of Sciences, was elected at the
November meeting in 1891, the year in which the genius Carl Steinmetz
became a member. Moreover, by this time Peirce was already a member
of the London Mathematical Society.

Thomas Fiske had been influential in attracting Steinmetz to member-
ship in the group and in making the now flourishing Society the reality
that had been but his personal dream in 1888. Some of Fiske’s remi-
niscences are in the American Mathematical Society Semicentennial
Publications (vol. I). He recalls that

conspicuous among those who attended the meetings of the Society in the early
nineties was the famous logician Charles S. Peirce. His dramatic manner, his
reckless disregard of accuracy in “unimportant” details, his clever newspaper
articles (in The Evening Post and The New ¥ork Times) on the activities of the
young Society, interested and amused us all. He was the adviser of the New
York Public Library for the purchase of scientific books, and wrote the mathe-
matical definitions for the Century Dictionary. He was always hard up, living
partly on what he could borrow from friends, partly on what he got from odd
jobs like writing for the newspapers. He seemed equally brilliant whether under
the influence of liquor or otherwise. His company was prized by the various
organizations to which he belonged ; and so he was never dropped from member-
ship even though he failed to pay his dues. He infuriated Charlotte Angus Scott
by contributing to the Evening Post an unsigned obituary of Arthur Cayley, in
which he stated, upon no grounds whatsoever, that Cayley had inherited his
genius from a Russian mother.
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Now Cayley’s mother was English. His father and uncle were both
English merchants in St. Petersburg. Arthur was born during a visit of
his parents in England and he did not return to England until he was
eight years old. Fiske continues with the following statement:

At a meeting of the Society in November 1894 in an eloquent oration on the
nature of mathematics, C. 8. Peirce proclaimed that the intellectual powers
essential to the mathematician are “Concentration, imagination, and generaliza-
tion.™ Then, after a dramatic pause, he cried, “Did I hear someone say demon-
stration? Why, my friends,” he added, “demonstration is but the pavement on
which the chariot of the mathematician rolls.”

Fiske’s recollection of Peirce’s service to the Astor Library in New York
brings to mind the copy of the letter in the files of that institution from
J. M. Markoe to Peirce written on 4 June 1890. It reads: “I write to thank
you on behalf of the Astor Library for your very full and valuable lists
of works on mathematical subjects which you deem worthy of a place in
our Collection. It is a great help to us in selecting books to have such
a careful and thorough examination made for us by an expert, and we
would be glad at any time to receive suggestions from you in the future.”
That mathematics collection is still, incidentally, of great use to mathe-
maticians.

We learn from the first volume of the Bulletin of the New York Mathe-
matical Society that “Mr. Charles S. Peirce attended a regular meeting
of the Society on Saturday afternoon November 7, 1891.” But of still
greater interest was his active participation in the presentation of not one
but two papers during the year 1894, At the meeting on 7 April

Peirce exhibited an arithmetic of 1424 from the valuable collection of Mr.
George A. Plimpton of New York. It is an extensive manuscript work written
in Latin, and has been entirely unknown to the historians of mathematics. The
author was Rollandus, a Portuguese physician, known for a work upon surgery
and another upon physiognomy. He was a minor canon of the Sainte-Chapelle
and a protégé of John of Lancaster, to whom the arithmetic bears a flowery
dedication.

Peirce’s correspondence with Thomas Fiske and H. B. Fine and E. H.
Moore and other prominent mathematicians associated with the Society
that became the American Mathematical Society in 1894 will be treated
in a later place. But one communication from Fiske to Peirce on behalf
of the Committee on Publication (27 February 1894) deserves mention
here. Fiske wrote:

Ever since we began the publication of our Journal, The Bulletin of the New York
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Mathematical Society, we have been very desirous of securing for publication
some contribution from your pen.

We hope that in the near future you may find it convenient to favor us in
this manner,

Would it not be possible for us to reap the advantage of your experience and

ohservations in connection with your work on the Century Dictionary in an
article, to be written by you, and entitled, say, “English Mathematical Nomen-
clature.”
In April, Fiske again invited Peirce to “throw™ his remarks on Rollandus
“into a form for publication in the Bulletin.” Peirce had already written
a report of the meeting and had included in it his own translation from
the Latin of the “flowery dedication™ to John of Lancaster. This story
was published in The New York Times on Sunday, 8 April.

Hence one concludes that Peirce’s interest in attendance at meetings
was that of the professional mathematician and that he was influenced
in his thought in those years by what was presented there. Particularly
important to the story of that influence on Peirce’s educational philosophy
was the advent of Felix Klein on the American scene. Klein had come to
deliver the inaugural address on 21 August 1893 at the general session
of the International Congress of Mathematicians and Astronomers in
Chicago held in connection with the International Exposition there, and
these remarks were available to all in the October issue of The Monist
under the title “The Present State of Mathematics.” Klein was the Honor-
ary President of the Mathematical Congress and W. E. Story, the Presi-
dent. The Evanston Colloguium was sponsored by Northwestern Uni-
versity and Klein delivered his famous series of lectures there from 28
August to 9 September. Moreover on 30 September, a meeting of the
New York Mathematical Society was called for the special purpose of
giving its members an opportunity to meet Klein. Klein addressed them
on a non-Euclidean development of spherical trigonometry by Dr. Schilling
“in which the fundamental formulae found a real geometrical interpreta-
tion when applied to a generalized spherical triangle whose sides and
angles have complex values,” He then outlined the then recent investiga-
tions by himself and Professor Study of the University of Marburg.
Klein was present again at another meeting of the Society in October 1896
at Princeton, in connection with the sesquicentennial celebration of that
University.

The Society brought Klein’s philosophy and influence to bear on the
course of mathematics and its teaching in America by publishing in the
July Bulletin of 1893 an English translation of Klein's Erlanger Pro-
gramm, his dissertation on entering the Philosophical Faculty and the
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Senate of the University of Erlangen in 1872 now entitled “A Compara-
tive Review of Recent Researches in Geometry.” It is therefore to be
assumed that Peirce was well aware of the philosophy of this great teacher
and organizer of the then current developments in mathematics. Klein’s
mission became that of publicizing such mathematical advances to all
persons whose business was mathematics. It was Klein who generalized
Cayley’s demonstration that Euclidean metrics may be regarded as a
special aspect of projective geometry in his own description of three
metric geometries, the elliptic (Riemann), the hyperbolic (Lobachevsky),
and the parabolic (Euclid). Indeed Peirce owned a copy of the litho-
graphed lectures of Klein on Nichi-Euklidische Geometrie 1 and II,
given at Géottingen during the winter-session 1889-1890, and the summer
of 1890. It reposes, with his marginal notations, in the Harvard Univer-
sity Library today. A companion piece, Riemannische Fldchen, Vorlesung
von F. Klein, is also there as a gift from Mrs. Charles Peirce. The many
uncut pages seem to imply a tepid reception on Peirce’s part. He also
owned a copy of the translation into English by George G. Morrice of
Klein’s Lectures on the Ikosahedron. Peirce had undoubtedly been ac-
quainted with the subject matter much earlier since “Klein’s Ikosaheder”
by F.N. Cole appeared in the American Journal of Mathematics TX (1886-
1887).

Evidence of Klein's influence runs all through Peirce’s manuscripts as
he attempts to follow Klein’s suggestions. A few of Peirce’s scattered
notations remain in the last-mentioned book, which in the rebinding has
had many of the marginal notations cut away. On page 30, Peirce directs
one to see the fly-leaf at the end that is, alas, no longer there.

But Peirce was undoubtedly influenced in his mathematical and edu-
cational philosophy by the many Bulletin items that reflected the new
revolution in mathematical thought, especially in geometry. A hasty
sampling of some of the papers brings to light, for example, Newcomb'’s
“Modern Mathematical Thought,” an address delivered at the annual
meeting of the Society, 28 December 1893, and printed in the January
1894 issue. He is quoted as saying:

The mathematics of the twenty-first century may be very different from our
own; perhaps the schoolboy will begin algebra with the theory of substitution-
groups, as he might now but for inherited habits. But it does not follow that
our posterity will solve many problems which we have attacked in vain, or
invent an algorithm more powerful than the calculus.

Earlier in the paper Newcomb took the same stand one finds in a letter
to Peirce, 24 December 1891, and published by the editor in the “Charles
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S. Peirce-Simon Newcomb Correspondence” (Proceedings of the American
Philosophical Society 101: 5). Newcomb disapproved of the “concept of
what is sometimes called curved space,” as he did not see “how space
itself can be regarded as curved. Geometry is not the science of space,
but the science of figures in space, possessing the properties of extension
and mobility which we find to be common to all material bodies. The
question raised here is a very old one, and in a general way its history is
familiar.” This was the voice of scientific conservatism with which Peirce
was inclined to be in open rebellion.

Other papers of undoubted interest to Peirce in those years were G, W,
Hill’s “Application of Analysis to Polyhedra” read at a meeting, 2 Decem-
ber 1893; Vasiliev’s “Lobachevsky as Algebraist and Analyst,” June 1894;
E. McClintoch’s “On the non-Euclidean geometry,” Bulletin 11, 1892-
1893, and his “On the Eatly History of the Non-Euclidean Geometry,”
Bulletin, March 1893; W. Woolsey Johnson's “A Case of non-Euclidean
geometry,” April 1893; Maxime Bécher’s address on 4 June 1892 on
“Collineation as a Mode of Motion,” in which Clebsch and Klein are
prominently referred to.

Peirce undoubtedly was influenced also by the work of George Bruce
Halsted, the prolific American writer on non-Euclidean geometry who
took his post-graduate work under Sylvester at the Johns Hopkins Uni-
versity after his graduation from Princeton in 1875 and who was later to
inspire L. Dickson, R. L. Moore, and H. B. Fine to aspire to careers in
mathematics. In his biographical statement on Felix Klein in The Ameri-
can Mathematical Monthly 1 (December 1894), Halsted called attention
to Peirce in speaking of Klein's five theses in his doctoral dissertation.
“It may be interesting, as characteristic of this germinating state, to note
that of his five theses, the second calls attention to one of Cauchy’s slips
in logical rigor, slips now known to be so numerous that C. S. Peirce
makes of them a paradox, maintaining that the fruitfulness of Cauchy’s
work is essentially connected with its logical inaccuracy.” Halsted’s ar-
ticles on non-Euclidean geometry were run serially during 1894 and
1895, in volumes I and II of The American Mathematical Monthly under
the title of “Non-Euclidean Geometry, Historical and Expository.” He
published an account of “Lambert’s non-Euclidean Geometry™ in the
Bulletin {1893-1894), and “The non-Buclidean Geometry Inevitable” in
volume IV of The Monist (1893-1894), a journal to which Peirce was also
a contributor. He was to translate later into English, from the Italian,
Doria’s “Sketch of the Origin and Development of Geometry Prior to
1850 (in The Monist 13[1902-1903]). Halsted published several textbooks
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in geometry after he became a professor of mathematics at the University
of Texas at Austin, and his Elementary Synthetic Geomerry was praised at
home and abroad for its originality. His English translation of Nicholaus
Lobatschewsky's Non-Euclidean Geomefry appeared in 1891 and of Jokhn
Bolyai’s Science Absolite of Space in 1893, His translation of Girolamo
Saccheri’s Euclides Vindicatus did not appear until 1920. He published an
extensive “Bibliography of Hyper-space and non-Euclidean Geometry™ in
the very first volume of the American Journal of Mathematics. A copy of
Halsted’s article-review in Science (9 June 1899) of Urkunden zur Geschich-
te der nichteuklidischen Geometrie, I. Nikolai Ivanovitsch Lobatschefski by
F. Engel and P. Staeckel are among the Peirce items presented to the
Widener Library by Peirce’s widow.

The foregoing gives some awareness of the persons and the publica-
tions that helped to shape Peirce’s thought on the “new mathematics” of
his time. In depicting him as a mathematician it will help also to examine
references that were made to his mathematical talents by his peers. One
recalls Sylvester’s belief that Charles’s mathematical talents might indeed
have exceeded those of his father, Benjamin. Max Fisch tells that E. L.
Youmans in a letter to his sister from London (29 October 1877) said
that “Charles Peirce isn't much read on this side. Clifford, however, says
he is the greatest living logician, and the second man since Aristotle who
has added to the subject something material, the other being George
Boole, author of The Laws of Thought.”

Yet Peirce felt that his real power lay in logic rather than in mathematics.
That was said at a time when the lines between the two fields were tightly
drawn in terms of medieval categorization. Peirce’s kind of logic, that of
Boole, is today an acknowledged part of the mathematical discipline. He
himself once wrote, “It does not seem to me that mathematics depends
in any way upon logic.... On the contrary, I am persuaded that logic
cannot possibly attain the solution of its problems without great use of
mathematics. Indeed all formal logic is merely mathematics applied to
logic.”

It is baffling to today’s scholar to find so reliable an authority as Smith
and Ginsburg in 4 History of Mathematics in America before 1900 over-
looking, perhaps as a result of Peirce’s underestimation of his own
mathematical powers, the very real mathematical contributions that Peirce
made, even in the applied field. For example, they list the American
mathematicians who gave particular attention to the problem of the pen-
dulum. Bowditch, Adrain, Farrar, Newcomb, Mendenhall are all men-
tioned. But thereis no reference in any form to C. S. Peirce whose geodetic
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researches in his time won the acclaim of the international community of
geodesists and mathematicians. He was the Assistant of the Coast Survey
in charge of the measurement of gravity and the determination of the
figure of the earth. Not only was he conversant with the mathematical
tricks of that trade but in meeting challenging new problems he was most
inventive in the use of the calculus of finite differences. In a Coast Survey
report dated 23 September 1875 he speaks of having “assisted at the seances
of the International Geodetical Association and also of the Permanent
Commission, where the subject of pendulums has been minutely discussed,”
while he was on a Coast Survey mission in Paris. He had been invited to
attend these meetings as an individual and subsequently made a lasting
contribution in a twenty-three page report entitled “De I'influence de la
flexibilité du trépied sur I'oscillation du pendule a reversion,” which was
read for him at Geneva on 27 October 1877, and in which he confirmed
his original criticisms. The recent researches and writings of Victor Lenzen
on this subject highlight Peirce as a leader in this field. Then, too, there
was his clever use of an elliptic function in his invention of the quincuncial
map projection which was originally published by the Coast Survey in
Appendix 15 (1877) as well as in the American Journal of Mathematics
(1879). Further details may be found in “Charles S. Peirce and the.
Problem of Map-Projection™ by the editor in Proceedings of the American
Philosophical Society 107:4.

One finds in the D. E. Smith correspondence in Special Collections at
Columbia University that Smith was chided by both Cajori and J. Cool-
idge for not having fully appreciated the talents of this son of Benjamin.
Coolidge complained in a letter dated 21 March 1934 that though he
liked Smith’s treatment of Benjamin Peirce in the book mentioned above,
he felt that Smith could have given more credit to the “erratic® son,
Charles Sanders. Cajori wrote on 27 October 1926 about a list of mathe-
maticians that Smith had drawn up. The most serious omission, he felt,
was that of C. 8. Peirce whom Sylvester, he recalled, had considered an
abler mathematician than Benjamin himself.

In Cajort’s History of Mathematics Charles Peirce’s work 1s noted in
several places. In the matrix section, Cajori speaks of Peirce’s representa-
tion of Grassmann’s system in the logical notation. In the analytic
geometry section, Cajori writes, “Thus Newcomb showed the possibility
of turning a closed material shell inside out by simple flexure without
either stretching or tearing; Klein pointed out that knots could not be
tied; Veronese showed that a body could be removed from a closed room
without breaking the walls; C. S. Peirce proved that a body in four-fold
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space either rotates about two axes at once, or cannot rotate without
losing one of its dimensions.” Smith’s critical yardstick was apparently
not used in all of the contemporary critical thought of his time.

George Birkoff in his “Fifty Years of American Mathematics™ noted
that “Although the logician and philosopher, C. S. Peirce, son of Benjamin
Peirce, contributed to Boolean Algebra, definite mathematical work on
this subject may be said to have begun in this country with E. V. Hunting-
ton’s set of postulates of 1904.” Now E. V. Huntington had published
“Sets of Independent Postulates for the Algebra of Logic” in the Trans-
actions of the American Mathematical Society in July 1904. The opening
sentence speaks of “the algebra of symbolic logic, as developed by Leibniz,
Boole, C. S. Peirce, E. Schréder, and others.” Tt was described by White-
head as “the only known member of the non-numerical genus of universal
Algebra.” In a later explanation regarding the similarity of certain of his
postulates to fundamental propositions in Schréder, Huntington says:
“For the possibility of this simplification 1 am especially indebted to
Mr. C. S. Peirce who has kindly communicated to me a proof of the
second part of the distributive law (22a,b) on the basis of postulate 9.”
Again, in the second edition of his The Continuum and other Types of
Serial Order he writes that “Cantor has proved that when any class is
given, a class can be constructed which shall have a greater cardinal
number than the given class,” and footnotes the names of Cantor, Borel,
and C. S. Peirce, the latter’s Monist article in vol. 16 (1906) being cited.
Peirce’s name did not appear, however, in the original article in the Annals
of Mathematics (1905).

Although Peirce’s name is here associated with that of Borel, he was to
complain later (24 May 1908), in a note to an Open Court article that had
been published earlier, that he had been unable to procure a copy of a
particular paper by Borel that might justify his position on the matter of
there being room on a line for any multitude of points. He admitted to
not being fully satisfied with his own demonstration because it was based
on a logical analysis and not on mathematical demonstration. Manu-
script 203 tells of his lack of acquaintance with Borel's work.

George Birkhoff also noted that “Although the idea of lattices goes
back partially to C. S. Peirce and Ernst Schréder, it was Richard Dedekind
who first saw their true nature and importance.” Indeed credit for basic
assumptions and notations is given to Peirce in several references by
Garrett Birkhoff in his Lartice Theory.

Benjamin's opinion of Charles’s contribution to his own field may be
sensed from what he says in “On the Uses and Transformations of Linear
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Algebra” in the Proceedings of the American Academy of Arts and Sciences,
an address given on 11 May 1875. Benjamin refers to the letters or units
of the linear algebra, “or to use the better term proposed by Mr. Charles S.
Peirce, the vids of these algebras,” as being fitted to perform a certain
function. He says that “The best definition of quadrates is that proposed
by Mr. Charles S. Peirce.” And again he claims that “Mr. Peirce has
shown by a simple logical argument that the quadrate is the legitimate
form of a complete linear algebra, and that all the forms of the algebras
given by me must be imperfect quadrates, and has confirmed this conclu-
sion by actual investigation and reduction. His investigations do not how-
ever dispense with the analysis, by which the independent forms have
been deduced in my treatise, but they seem to throw much light upon
their probable use.” More will be said of C. 8. Peirce’s contributions to
this field in the Introduction to Volume 3.

The foregoing represents, then, an outline of Peirce’s exposure to the
mathematical influences of his time. Mention has already been made of
that other form of mathematical productivity — that of bringing to the
student and general reader an explanation of current mathematical
methodology, the writing of mathematical textbooks. In this Peirce was
also an expert. But unlike other experts, he suffered from foreseeing
needs that would be recognized three quarters of a century after his time
when drastic attempts would be made to fill them. His own contempo-
raries were in no position to judge the value of his textbook output which
never reached the publication stage.

Indeed the French influence in school textbooks was so strong in the
U.S.A. in Peirce’s time that Legendre’s Eléments de géométrie and his
Traité de trigonométrie served as models to textbook writers. Legendre
was first translated into English by John Farrar of Harvard (1819) and
was revised by Thomas Carlyle and again by Charles Davies. Charles’s
father also wrote elementary textbooks as did Simon Newcomb and
George Halsted. The successful Beman and Smith Geometry appeared
in 1895,

Farrar further translated the Eléments d’algébre of Bourdon (1831).
Charles Davies was the third person to translate Lacroix’s Eléments
d’algébre, which met with great success. Farrar also translated Lacroix’s
trigonometry, his arithmetic, and the calculus of Bézout, while Davies
translated Bourdon’s Application de I'algébre a la géométrie in his Ana-
Iytical Geometry (1836) which went through several editions. In the Smith
and Ginsburg History mentioned above, Benjamin Peirce is quoted as
saying: “The excellent treatises on Algebra ... containing as they do the
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best improvements of Bourdon and the other French writers, would seem
to leave nothing to be desired in this department of mathematics.... The
investigation of each proposition has been conducted according to the
French system of analysis.” Smith and Ginsburg also tell of Charles
Davies’s presentation of one of his books to Lieutenant-Colonel S. Thayer,
superintendent of the military academy at West Point, with the inscrip-
tion: “In the organization of the military Academy under your immediate
superintendence, the French methods of instruetion, in the exact sciences,
were adopted ; and near twenty years experience has suggested few altera-

tions in the original plan.” Textbooks written and used in elementary -

mathematics in America up to the time of C. S. Peirce’s involvement in
the problem reflected little of the revolutionary mathematical thought of
the mid-nineteenth century.

However by the end of the century the need of a review of mathematical
curriculum and instruction throughout the world became apparent, and
steps were taken at the International Congress of Mathematicians in
Rome in 1908 to implement just that. A commission with Felix Klein
at the head was appointed to make recommendations for the necessary
changes.

Peirce anticipated such revision in his own textbook writing, as will be
seen in Volume 2. His logical development of subject matter, his fruitful
symbolism, his inventiveness as exemplified in existential graphing, his
careful nomenclature — reflecting his work as a linguist and a contributor
to dictionaries — his deep appreciation of topological structure at a time
when nothing was being written to introduce the basic topological ideas
on the lower school level, and little on a higher level, his fascination with
non-Euclidean notions that is reflected in the appearance of the Moebius
strip in his geometry even though Klein himself had advised against the
introduction of non-Euclidean concepts on so low a level in his Evanston
lectures, all tend to make of C. S. Peirce a mathematical prophet, as well
as a superb mid-twentieth century teacher.

Actually topology began to develop only with the work of Brouwer
after the first decade of the twentieth century. In the Epilogue of his
History of Geometrical Methods (1940) Julian Coolidge says that “the
subject of topology, which has scarcely been mentioned in the preceding
pages, has come in the third and fourth decades to be one of the most
eagerly and fruitfully studied of all the mathematical fields. It may one
day be looked upon as a separate domain to be classified under no par-
ticular heading except that of Mathematics.” Yet topology in the 1890s,
like non-Euclidean geometry, had not reached textbook recognition; un-
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like the non-Euclidean materials, little of it was to be found in widely
circulated research papers.

David Eugene Smith, who had a long experience in writing popular
mathematical textbooks, once wrote of having been both a radical re-
former and a conservative one as well, but that only in the latter role
can one meet with success in a textbook. He had learned that radical
reforms belong in books for teachers and in speeches, but that they are
“dead weights” in a book for pupils. Therein lies, perhaps, the explana-
tion of Peirce’s inability to get a hearing on his textbooks for the past
seventy-five years, diverging as he did from the earlier practices of our
times as well as of his own. It will be obvious that Peirce’s “radical”
ideas have become the “conservative” ones at last,
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On Thanksgiving day, 1888, Charles Peirce wrote a letter to his brother
James Mills Peirce (Jem) in which he told of having read Dee’s preface
to Euclid, Thiriot’s History of Arithmetic, and of having examined some
Arithmetics from the past as well as other rare books. We learn from a
letter to his wife Juliette a year later (December 6) that Peirce had dined
at the Pinchot’s in New York and that Pinchot, hearing of a new Peirce
arithmetic project, had exclaimed that Peirce’s “Arithmetic will be better
than Butler’s iron-mine.” In a general estimate of his possible earnings
from the writing of textbooks, Peirce felt that this one book alone could
bring him $1000 a year in royalties.

Just after Peirce’s enforced resignation from the Coast and Geodetic
Survey on 1 January 1891, Jem tried to help get the project started by
offering arithmetic textbook suggestions. He was in New York City at
the time of what he called “the splendid conflagration in the Fifih Avenue
Theatre” and in a letter dated 3 January 1891 suggested Wentworth and
Hill’s Arithmetic, “to which Hill made some good contributions, published
by Ginn, Boston.... Also in Sonnenschein and Nesbitt’s Arithmetic ...,
Is there a German Arithmetic by Richard Baltzer?”

Peirce was seeking advice on other fronts as well. Allan Douglas
Risteen had been a computing assistant to Peirce in pendulum experi-
mentation in the Coast Survey and had become Peirce’s assistant as well
in the preliminary research for Peirce’s Century Dictionary contributions
in mathematics, mechanics, astronomy, weights and measures, and logic
and metaphysics. By 1891 Risteen was employed by the Hartford Steam
Boiler Inspection and Insurance Company in Hartford, Connecticut, and
hence his assistance was restricted to hours away from his regular job. His
devotion to Peirce and his own talent and diligence enabled him to qualify
for a Ph.D. at Yale under Gibbs by the summer of 1903 and he later be-
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came a member of the Department of Physics at the University of Penn-
sylvania. He was devoted to Peirce to the end, the correspondence between
them flourishing in the period 4 August 1887 to 21 September 1913. The
serioustiess of purpose with which Peirce was approaching the composition
of his Arithmetic is revealed in letters between the two men. Risteen wrote:
“Regarding the Arithmetic. I have been busy at it in my spare hours,
though I have not written you much about it, I will send shortly, a skele-
ton of it, for criticism and revision” (3 March 1891); “The Arithmetic is
still coming on as well as possible, considering that I can devote only my
spare time to it” (24 March 1891); “I send you your manuscript on the
Arithmetic by today’s express.... Just before I went away I destroyed
a considerable part of my own work, foolishly perhaps, but the fact is
as [ read it over it was really unbearable, and would never do at all
I am not logical enough to arrange the early part of the book in a shape
intelligible to a youngster and T ought to have known better than to try
it.” He suggested that Peirce do the text and that he, Risteen, would
supply the examples, with himself supplying text and examples for the
commercial part (16 October 1891).

Another friend who was to play a role in this venture was Judge Francis
Russell of Chicago. In a letter to his wife (7 February 1893) Peirce tells
of his projected visit to his friend in Chicago on the morrow and that
matters had been so arranged that he could see his way to writing his arith-
metic. The “way” was apparently to be through Edward C. Hegeler, pub-
lisher of The Monist and of The Open Court who had become interested
in sponsoring the new project. As a stipend of $2000 during the next year
seemed to be necessary to enable Peirce to write his book it must be
inferred that no completed manuscript was on hand at the time of Peirce’s
visit. By 9 March 1893, Peirce was complaining to his wife in a letter
from Albany that the LaSalle visit with Hegeler had not met with the
success he had hoped for. Nevertheless on 22 May 1893 a report on the
state of his work was sent to Hegeler. A year later (5 April) Peirce was
still writing to Jem that “Of course the arithmetic is the first thing to be
done, could it be done .... I can’t finish my arithmetic till I can get ahead
of my expenses by $500 at least.”

Further details come to light in an undated letter to Russell in which
Peirce explains that the “arithmetic has been finished also, all but the
examples and parts of the advanced book. But it had been rewritten and
rewritten in the effort to adapt it to children and is now in the hands of
a lady for criticism. I am rushing everything to try to get that to press.
But my idea is to finish the geometry first and I hope it won’t take me
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much longer.” Five months later, 5 September 1894, Peirce complained
that Hegeler had changed his mind about publishing Charles’s papers
and flatly refused to keep his promise to do so. “My arithmetic was un-
avoidably delayed,” he wrote. “I shall soon be in condition to repay all
I owe to Hegeler, pack up the books and send them to him, and go about
my proper business of making the exposition of my philosophy.” Indeed
a letter to Russell on 8 September reveals the startling fact that “the arith-
metic is out of” his hands and another letter on 23 September told of
his inability to understand Hegeler’s antagonism. “I am inclined to think
that it is because I did not finish my arithmetic within the time specified.”
With personal misfortunes engulfing him during those months, Peirce
could still write to his brother on 3 March 1895 that his arithmetic will
be profitable — “very profitable but only after a long time.”

Unhappy litigation had apparently ensued. But as late as 7 March
Peirce was still hoping “to square accounts with Hegeler” and then to
recover “The manuscript of my arithmetic which was seized long ago ...
and I am afraid Hegeler has it and is determined not to let me have if.”
On 28 September 1896 he reminds Judge Russell of the Arithmetic
“seizure” two years before; “and if I don’t have the money to get that
back soon, it will be gone forever.”

The report of 22 May 1893 to Hegeler gives the clue as to the contents
of the Arithmetic and makes it possible to carry out Peirce’s intentions
by a proper selection from the extant manuscripts in the Houghton Li-
brary. For the materials used in this edition conform exactly to the
descriptions of them given out by Peirce at that time. It may well be that
these were the very materials sent to Hegeler later but listed by Peirce
in the following terms:

The following MS, is in my hands for my arithmetics

Copy for Primary Ar.

About 50 pages, with very numerous rough sketches

for illustrations, eguivalent to about 5000 words

Copy for Advanced Ar.

About 20 pages typewritten 60 lines, or 1000 words

to page, say 20000 ,,

About 50 [pages] written, about 120 words to page,

say 6000,
Total copy about 31000 words

Preparation for copy

Detailed notes for Primary Arithmetic 50 pages, about

Examples mostly statistical for Advanced A. 50 &

Calculations for physical examples o, .
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In addition to the above, there is a quantity of MS, which, though it will not
serve for copy for the arithmetic, was prepared to guide me in writing it, and
out of which one or two articles can be made. Namely there are

Notes on previous arithmetics. About 40 textbooks now in the
schools are carefully noticed (I much regret not having German,
French, and Italian textbooks). About 20 older books are noticed.
In all about 150 pages MS.

Notes on apparatus to be used in teaching arithmetic, on the psy-
chology of the subject, on my method of teaching each operation,
various attempts at laying out the work so as to get the whole subject
into moderate compass. Memoranda of matters to be introduced,
etc. About 100 pages MS. In all there are about 500 pages MS.

The work is in rather a backward condition, but by no means desperately so.

Yours very truly
C. S. Peirce

On an isolated sheet one finds a further breakdown of the 500 pages as
Peirce estimated it. It runs as follows:

20 Pages typewritten copy for Advanced Arithmetic
50 Pages written copy for Advanced Arithmetic
50 Pages examples for Advanced Arithmetic
30 Pages calculations for examples for Advanced Arithmetic
50 Pages for Primary Arithmetic
50 Pages detailed notes for same
150 Pages notes on Existing arithmetics
100 Pages Remarks on methods, apparatus, Plan of the Work

500 pages of MS.

The story has a sequel beginning in 1900, Edward S. Holden, apparently
in answer to a letter from Peirce, felt that fwe school arithmetics were
needed to cover the whole ground. He advised Peirce to send the arith-
metic manuscripts to him for review by publishers for joint publication
by himself and Peirce with both sharing profits equally (18 October 1900),
And in Januvary 1901, Peirce sent Holden a full review of his arithmetic
materials. Holden, in turn, listed the manuscripts he had received from
Peirce and that list corresponds roughly to the materials now in the
Houghton Library and to that appearing in the early report to Hegeler.
Holden’s letter (28 January 1901) reads as follows:

My dear Peirce,

I've gone over your Arithmetic papers and sorted them (and let me say it
has been an intellectual pleasure to find ideas and a man in all the writing!)
into
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I Primary Arith. ms. 31 pp. pretty well complete to counting by
eight.
11 Misc. pp. of Primary Arith. perhaps 100 — thro Multipl™ and
Div® — but needing, I think now, some changes.
II1 Practical Arith® — perhaps 15 typewritten pages.
IV Misc. pp. of notes ete. — all useful in their place and time.
(I enclose a page of MS. that I think is in the wrong Box.)
I should say that pretty much all the Practical Arith® — was still to write;
and the Primary A. perhaps more than half done. As soon as you can find
the rest of your Ms. you'd better send it to me — and then we can see what
to do.
1 saw your review of Herschel; but I've not seen Sime’s book yet. “Chevalier”
made me laugh.
Let me have the Ms. when you can. In the meantime, I'm yours faithfully,

Holden

Over the years Peirce had apparently mislaid what he considered “the
principal piece.” For he told Holden it had been lost. However, Manu-
seript 189 in the Peirce Collection fits perfectly the description given by
Peirce and thus is reinstated to its rightful position in this collection.

On 5 April 1901 Holden returned the manusecript — collect. He ex-
plained to Peirce that he had “spoken to Brett (MacMillan Co.) again
about the plan and he is interested.” He also volunteered to speak to
Ginn and Co. and to others and, as occasion arose, would “iry to have
them bidding against each other.” With these words, Holden seems to
have ended his association with the project.

In a letter to Albert Stickney that Max Fisch dates circa 15 October
1906, Peirce speaks of the disposition of his estate, were he to pass on, and
mentions his lack of interest in his nephews and nieces. He continues,
“Should my arithmetic bring me a considerable sum, — a lack of dollars,
— (I have more than that already in my impregnable Jack thereof), I might
do something for some of them; but it is highly improbable that I or
Juliette shall live to get one dollar’s profit from the Arithmetic though it
be worth half a million, as I am inclined to think it will be. In any case,
1 should not wish to give them over one fifth of the net profits, be they
large or small.” The letter continues,

But now as to Arithmetic, which, properly speaking, has nothing to do with
arithmeric, the mathematics of number, but solely with the art which Chaucer
and others of his time called awugrirm, the art of using the so-called “Arabic”
numeral figures, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. It is a great pity that the word
“augrim” has become obsolete, without leaving any synonym whatever. The
nearest is “logistic”, which means the art of computation generally, but more
especially with the Greek system of numeral notation. *Vulear arithmetic” is
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a rather incorrect and decidedly uninviting sign for a book to put out on its
title page. “Practical Arithmefic™ is a phrase inevitably to be universally mis-
understood, and supposed to be a sort of self-puff, which no sell-respecting
writer would indulge in, and which consequently is much the same as if one
were to give this title

THE CIPHERING ART:
A Humbug Treatise on this Subject

If I could find a really good title in the Elizabethan taste, I would adopt it,
I think. Recorde’s book of augrim, which was the book in England on the
subject for more than a century, its first edition being of date 1540, and its last
of 1699, was very charmingly and veritably entitled

The Ground of Artes

Well, to recover my grammar in a new breath, my Augrim is at present in the
following condition: firstly, a plan of the whole work fills a guarto blankbook
of 48 pages and runs into another. But were it now rewritten, it would be
longer; and a provisional table of Contents of the Second Book, — for it is
to be a “Two-Book” arithmetic, — has been drawn up. It includes processes
of which ordinary arithmetics give no account. For one example among many,
I will, on a slip which 1 will insert herewith, do twice over this sum “Give,
correctly to the thousandth part of itself, the number whose fifth power exceeds
a hundred times its cube by 1.” There is nothing particular about this problem.
I have just invented it to illustrate what I was saying just now.

But no undue stress will be placed on out of the way methods. On the
contrary, the greatest point in the first volume is to make the matter interest-
ing to the little tots, and trial by practical teachers has more than once shown
that it is successful in this and in training them in addition and the other opera-
tions. In both volumes but more particularly in the second, whole numbers and
decimals are everywhere treated, as being purely ordinal, without reference to
the values of the intervals, vet af the same time as being quotal that is as con-

.. cerning the question “How many?” For number is treated entirely from the
point of view of counting.

Addition is the operation of finding how many in all there are in two or
more mutually exclusive collections.

Mulriplication is the operation of finding how many pairs there are of which
one member comes from one and the other from another collection. Continued
multiplication finds how many sets there are of which one member is drawn
from a collection of given guotal number. Thus, twice three is

AN L PP B!
Fig. 1 (6 ways)

Involution is the operation of finding in how many ways every member of
one collection can be paired with a member of another collection. Thus 27 is
as follows
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| AL AN A 2A] x| 2 21 on
Fig. 2 (8 ways)
while 32 is as follows
PNV NVIRTIAT 2% X |
Fig. 3 (9 ways)

Factorials are treated in the same way. Thus 412 [4-31] is the number of ways
in which 3 objects can be paired each with a different one of 4 other objects.
Thus [18 of the 24 ways]:

VRV AVANTAS IS
BAP AV AR B2 AYY
[ 5] A KM X X

Fig. 4 (24 ways)

The editor believes that Peirce had in mind at that time a Primary Arith-
metic consisting of the Elementary Arithmetic as given in MS. 189 (Lydia
Peirce’s Primary Arithmetic) and MS. 181 (Primary Arithmetic — MS. 182
is a draft of 181 with Suggestions to Teachers); a Vulgar Arithmetic, as
developed in MS. 177 (The Practice of Vulgar Arithmetic) for students
and in MS. 178 (C. 5. Peirce’s Vulgar Arithmetic: Its Chief Features) for
teachers; a Practical Arithmetic, as given in MSS, 167 and 168. In an
Advanced Arithmetic he probably intended to encompass number theory
as given, for example, in Familiar Letters about the Art of Reasoning “
(MS. 186) and in Amazing Mazes; and Secundals, the binary number
system so popular today.

Peirce had truly made an exhaustive study of arithmetic textbooks.
There is still extant a sheaf of pages entitled Copy and notes for arithmetic
(MS. 1545) in which he registered his reactions to some of the textbooks
he had examined. For example, the Wentworth & Hill book is deemed
“No doubt the best advanced arithmetic. Most intelligent and bright.
Printing tolerably good.” And Ray’s New Higher Arithmetic brings forth:
“This has been immensely popular. It contains many tables and every-
thing a little fuller than most arithmetics. Easy to surpass it in all its
strong points. Contains a great deal of information. Little useless stuff.
Its logic is beneath contempt.” Among mathematical works, ancient as
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well as current in Peirce’s time, listed on another sheet is “Peacock, Geo.
Arithmetic, 4*°. A most valuable work and difficult to obtain separate. I
was about five years hunting for mine. The plate referred to is wanting. $6.”
{MS.1542). By a happy circumstance this copy was found in the stacks of
Widener Library and today is being preserved at Houghton Library. A
list of Arithmetics owned by Peirce on 21 March 1893 contains 44 nine-
teenth-century titles. He owned a dozen rare arithmetics of the sixteenth,
seventeenth, and eighteenth centuries. In addition he listed one con-
temporary and six old titles he had been using. The old ones were prob-
ably in the George A. Plimpton Collection in Plimpton’s home or in the
Astor Public Library.

Since Peirce apparently intended to include secundal numeration in the
arithmetic, the editor has taken the liberty of placing the manuscripts on
secundals in this arithmetic section. Indeed MS. 64 is a large notebook
entitled Notes for My Treatise in Arithmetic and dates from his Coast
Survey period. There is a notation “1876 Paris Pend. swings. Diffs. of
transits right and left.” Most of the notebook remains blank but there
is a section in which the importance of the idea of separation is stressed
and in which secundal arithmetic and its various applications are de-
veloped. The advantages of number scales on bases other than ten were
well appreciated in those years. For example, a paper on “Octonary
Numeration™ by W. Woolsey Johnson appeared as the first article in
the very first volume of the Bulletin of the New York Mathematical Society
and Johnson lists the many advantages of that system, advantages that
have made possible the IBM machine age in which we now live. Benjamin
Peirce had published in 1876, while Consulting Geometer of the United
States Coast and Geodetic Survey, a pamphlet entitled “A New System
of Binary Arithmetic” as Appendix 6 in the United States Coast Survey
Report for that year. Charles, however, with his interest in the work of
Boole and in its probability aspects, of necessity would have developed
an interest in the binary system. In MS. 812 he wrote of the Boolean
Calculus as follows: “This algebra marks the merit of propositions on a
scale of two. Good and bad, or true and false are its only grades. It is
a system of quantity having but two values; and each of its equations is,
as it were, an arithmetical congruence having 2 for its modulus.” His
own algebra of relatives admitted only two values which he naturally
used, for reasoning was to determine whether ideas are true or false.

Moreover, from the standpoint of number theory he found the Gaussian
congruence modulo 2 of great interest. That cyclic arithmetic held a
particular fascination for Peirce is evident throughout the mathematics
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manuscripts. It is the basis of his many card tricks and of much of the
“Amazing Mazes.” It will be seen in Volume 3 of this edition that the
secundal notation was indispensable to his purpose in the development of
the idea of a primipostnumeral collection. With secundals he made
fractions “express nothing but relative places in a linear series™ (4.212,
4.338) and this became an important element in his expository method-
ology.

With the experience of a thirty-year service in the Coast and Geodetic
Survey behind him, Peirce was always alert to the possibility of new or
shorter or simpler computing techniques. In a letter to H. B. Fine at
Princeton University in 1903, Peirce contrived a scheme to find by sec-
undals the millionth fraction in the decimal notation as a special case
of the general problem of setting up a one-to-one correspondence between
the positive rationals and all the ordinals (see 3,18,c).

Peirce’s ingenuity in creating symbols is striking, and this skill can be
seen in his attempt to develop a secundal notation. Feeling that it was
a violation of good mathematical method to introduce the decimal point
between the place of multiples of 10 to the zero power and the places of
multiples of ten to negative powers, he contended that a mark should
have been used instead to identify units place. He said that “The remark-
able facility of the differential calculus is due to Leibniz’s mind having
been eminently one to whom such hybrids between different kinds of
ideas were offensive.” However, Peirce finally succumbed to the pressures
of current usage and placed the decimal point as we do in the decimal
notation,

Although Peirce was interested in the possible development of logic
machines and wrote in 1888 about the Jevons and Marquand machines
for the American Journal of Psychology, he could in no way foresee then
the tremendous value of the use of the binary system in the logic and
computing machines of the second half of the twentieth century.
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LYDIA PEIRCE’S PRIMARY ARITHMETIC (189)

LESSON 1

{The children are not supposed to be able as yet to read. Nevertheless,
they will need copies of this book, as will appear, soon. The first lessons
are to be read to them by the teacher, who must be provided with a
separate copy of the book.)

Once upon a time, many, many, many long years ago, when the world
was young, there was a little girl, — a very pretty little girl, she was, too,
with eyes like golden thread in the sunshine and hair like the sky in June,
— or perhaps it was her hair that was like the gold thread, and her eyes
that were more like the sky — which do you think? — who lived in the
midst of a great wood; nothing but trees, trees, trees, in every direction
for further than I could tell you until you have learned arithmetic, — in
a funny little old house, the only one in all that forest, with her poor,
old gvammah.

Now this grand-ma was very fond of numbers, she was; and she was
always marking numbers against things; because she said there was one
right number for everything, and all the other numbers were wrong. She
said the right number of meals for people to eat every day was three, —
breakfast, one; dinner, two; supper, three. But the right number of shoes
for a little girl to wear, was fwe, — the right shoe, one, the left shoe, two.
And the right number of mammas for a little girl to have was one. There
was even a right number of fibs for a little girl to tell every day. “What
number was that,” asked the little granddaughter in Blue and Gold,
whose name, by the bye, was Barbara. “Why, none, my dear,” said her
grandmamma; “I thought you knew that. Didn’t you know, little Bar-
bara, that nome was the right number of fibs to tell? “Yes, [ knew it,”
said Barbara. “Then why didn’t you tell me? It is not a secret, is it?”
“I did not know that mone was a number,” said Barbara. “When you
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get up in the morning, how many meals do you expect io eat before you
go to bed, Barbara?” asked her grandma. “Three.” “After you have done
breakfast, how many more meals do you expect to eat that day?” “Two,”
said Barbara, “Very good indeed,” said the grandma, “one may hope
you will soon be very bright about numbers. Now after you have done
dinner, how many more meals do you expect that day?” “One,” replied
Barbara. “Good again. And after you have done supper how many
more meals do you expect to eat?” “T don’t expect to eat any more,”
said Barbara. “Yes, that is true. But another way of saying ‘I don't
expect to eat one’ is to say ‘I expect to eat none.” So as three is a how
many, and two and one are how manies, none is another how many. By
a number we sometimes mean a good many; but we sometimes call any
how many a number, whether it is many, or few, or is not any. Now tell
me; how many persons hear what I am saying to you? Give me the right
number.” “None,” says Barbara. “What! Well, you don’t mean that
you are not a person, do you?” “One.” “Dear me! Am I deaf?” “Two.”
“Now, my dear Barbara, you are giving me a very wrong answer. You
are forgetting God. You must not forget for one single minute that God
hears whatever you say and all that you think without saying. There is
a right number to everything. The right number of persons who hear
what I am saying to you is three. Never forget that!”

1 am going to tell you more about Barbara and her grandma, another
day. But now I am going to ask you some questions.

How many spots are there here? »
Cover one, and how many can you see? ] @ Fig. 1
How many ends has this line? T~ Fig. 2

How many has this line? Fig. 3

=>0
How many has this line? \_@ Fig. 4

How many has this line? Fig. §
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How many this? O Fig. 6

How many has this line? Fig. 7

How many has this? \C( Fig. 8
How many has this line? A

Fig. 9

(The teacher to take cards numbered 0, 1, 2, 3 and require various things
to be counted by laying 0 card down first, then one of the others against
each object counted. The first card is the answer if there is none of the
kind sought. Otherwise the last card laid down is the number.)

LESSON II

Do you remember about the little girl who lived with her grandmother
in the little old house in the wood? What was the little girl’s name? The
grandmamma’s name was Lydia. What did Lydia say about right and
wrong numbers? She said there was a right number for everything. An-
other day she said, “Barbara, my child, there is a right way of doing
everything, or else the only right way is not to do it at all. There are
some things we have to do very often; such as getting up in the morning,
eating, speaking, playing, learning, sitting down, talking to friends. These
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things we must be very, very careful to do in the right way; because any
wrong way will be apt to turn out badly, and make everybody sorry,
ourselves and other people. If we don’t want to make people sorry but
want to make them glad, we must begin by finding out what the right way
is, and then we must learn to do that right way and last we must do what
we have to do in the right way. That makes three things: st to find out
the right way; 2nd to learn the right way and third to do the right way.
One of the things that we have to do very often is to find out how many
things of the same kind there are in some box or bag, or basket or barrel
or bank or basin or bucket, or bureau, or bottle, or bowl, or bunker, or
bird’s nest, or buffet, or boiler, or barrow, or barn-bay, or book, or be it
what it may, or to find out how many times anything happens, or any
other kind of how many. To cut a long story short, we very often want
to know how many somethings are. Now what is the right way to answer
the question, ‘How many things there are anywhere?’ Can you not tell
me, Barbara?” “To count them, I think,” said Barbara. “That is right;
and it is arithmetic that teaches us the right way to count. Sometimes we
have to count in one way and sometimes in another way. But the first
way you must learn is plain counting, or numbering by the words one,
two, three, and so forth. So dear Barbara,” said Lydia, “the right way
for me now is to begin by teaching you the right way to do plain counting
and the right thing for you is listen closely and try to learn exactly how
to number things so as not to make a mistake. I will count these cards.

Fig. 10

I first put them where I can reach them, and I put them all face down.”

(Just as old Lydia had the cards put down in a row, she and Barbara
heard voices in the entry, and immediately the door opened, and in came
a gentleman and a little boy, neither of whom Barbara had ever scen.
They all uttered exclamations, and the gentlemen came and kissed Lydia
and called her “Mother”; so that Barbara knew that they must be her
uncle Charles and her cousin Ben. After some talk, the old lady said,
“] was just beginning to teach Barbara arithmetic.” “I wish you would
teach Benjie, too,” said Uncle Charles. So it was arranged that Benjie
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should stay with them, although his father could not stay; and the next
day they had another lesson.)!

[Lydia continued with the lesson.]

“I then ask myself, ‘How many of the cards are turned face up? I
look them over, and answer None. If I did not do that, I might make a
mistake. I now turn one over, and as I do so I say ‘One!’

Fig. 11
I now turn another over, saying ‘Twe’ as I do so.

! &

Fig. 12

I next turn another over, saying as I do so, *Thres!”

[ P2 J

Fig. 13

I next turn another over, saying as I do so, ‘Four!’

! L 3 4

Fig. 14

Now there is no other to be turned over. So the last number that I called,
Four, is the number of cards.

“Have you never picked the petals from a daisy and said, ‘Big-house,
little-house, pigsty, barn; big-house, little-house,” and so forth. Then the
last one called is supposed to be your future home. That is like counting.

“To find out who shall be It, one can put all the children in a row, and

f Lydia, Charles, and Benjamin are all Christian names in the Peirce family. “Barbara”
is, of course, a mode in logic.
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point at them with the words:

B%~ Feny, D Meeny, B9 Mony, -T& Méye,
5% Tusca, % Rora, ¥&~ Bonas, 5~ Try,
ZF~ Cabell, W™ Broke a well,

B Wee, D%~ Woe, B% Whack!

Or with the words:

o Peck, 3% a Doorway, B Tries, B& What wore he,
@~ Punchy, 5% Switches, ¥®™ Caspar Dory,

g~ Ash-pan, D& Navy,

o%~ Dash them, B~ Gravy, ;

o~ Do you knock 'em, B Down!

Or thus:

8% One o’ you, % You area, 2% Trickier, 2% Ann,
D@ Phil [ see, 3% Fol [see, % Nicholas John,
B~ Queevy, @@~ Quavy, @ Join the navy,

B~ Sting all 'em, D@ Strangle 'em, D& Buck!™

When dear old Lydia was a child, as she was once, she and her playmates
used to stand strictly serious while such words were being repeated. There
seemed to be in them something solemn and secret and strong. That was
the tradition. Do you know what a tradition is? It is anything that older
people have commonly taught to younger people from for how long no-
body knows. The words are really nothing but numbers or counting
words.? Thousands of years ago before our grandfather’s greatgrand-
father's great great great grandfather’s people had learned to build houses
or do anything but fight and hunt and cook a little, only a few men knew
how to count. It was a wonderful thing to know so much; and everybody

: Or “vocables” as Peirce says throughout the manuscripts.
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thought when the last word of the counting came out with snap, that it
did something, they didn't know what, but something great.

When they wanted a jury of twelve men to decide any matter, and they
had more than twelve men to choose from, they would stand them up
and very solemnly count to thirteen and send away the thirteenth man;
and they would go on in that way until there was no longer a thirteenth
man. Then those that were left were just twelve. They used old tradi-
tional numbers for this purpose; and in that way people came to have
two curious feelings. One was that there was something strange and
strong and secret about those old fashioned number-words. The other
feeling they came to have was that the number thirteen was a sign of
separation. This feeling was caught by one person from another, like
a sickness, and even now when that way of choosing a jury or council
has been given up hundreds and hundreds of years ago, many people
continue to have these feelings. There is no harm in the feelings if we
know there is no truth in them; but in some persons they are much too
strong and quite unreasonable. Because after all these words are nothing
but old words of numbers, that have got changed since they have been
little used so that people forgot exactly how to say them; and all that the
number thirteen has to do with separation is because being the number
next after twelve, the number generally used for a jury or council, counting
to thirteen was a convenient way of separating out the extra persons not
wanted.®

All the real old jingles of counting out words make thirteen.

2 A letter to W. W. Newell on May 15, 1904, reads as follows:
“Milford Pa 1904 May 15
My dear Newell:

1 have a beautiful theory. All it needs is some facts to support it, of which at
present it is almost entirely destitute. Perhaps you could supply them.

1t is that in the ancient times and the ages long gone by, men preferred a jury
of 12, or any council or committee of 12, and used to count up to 13 to throw
out extra candidates or to reduce the panel; and that they used archaic or strange
numerals, which would give an air of solemnity to the proceeding.

Now the only facts to support this that I have so far are, 1st, that the number 13
is widely associated with the idea of severance; 2nd, that our childhood’s counting-
rhymes (as well as I remember) counted up to 13

Eeny, Meeny, Mony, Meye,
1 2 3 &

Tusker, Leaner or Roarer, Boner, Stri,
5 & 7 a2
Cabell, Broke a wall,
L] 10

Wee, Woe, Whack!

11 12 13
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One o'you, You are a, Trickier, Ann,
1 2 : | 4
Phil 1 see, Fol I see, Nicholas John,
5 L] T
Queery, Quavy, Royal Navy,
- ] L] i0

Sting "em all, Strangle "em, Buck!
11 1z i3

Int::ry, Miniery, Cur.erg corn,
Apple seed anf. apple thorn,
W;rc, Brliiar, Limbe:‘ lock,
Five g::csasin a flock,

Catch ’{:Im Mary

Hold 'em Tom
10

Out=out

11 12 13
To be sure, as these cannot be identified with any numerals, there is nothing to show
that they preserve the original count; — unless it be that all, or nearly all, the
really ancient ones (if such there be) count up to 13. I seem to remember that it
was ctiquette to be very solemn during such countings.

1t scems a natural guess that the panel for a jury would have been reduced to 12

in that way. The only thing wanted is some fact to show it was so, and the 13
superstition then will be sufficiently accounted for.

Of course, such count words as children use differ from numerals solely in their
limited application. Their want of meaning is not more complete. Numerals differ
from all other words in constituting an apparatus for experimentation, and in being
nothing else, though the lowest numerals are not mere numerals always.

very faithfully
C. S. Peirce
Peter's Daughter eres Hot :vater
1 2

Punches Witches Hadn't ought to
5 [3 7

Ashpan Never
B 2
Dash "em Ever
10 11
Tweedledee and Dum
11 13

This is nothing but a counterfeit, to show what I would /ike to find, — or rather
something less manifestly artificial is desirable.”

LYDIA PEIRCE'S PRIMARY ARITHMETIC*

LESSON I

Once upon a time many, many, many years ago, when the world was young,
there was a little girl named Barbara, a very pretty little girl she was, too,
with hair red gold in the sunshine and eyes like the sky in June, who lived
in the midst of a great wood, nothing but trees, trees, trees, in every
direction, for a good year’s journey, in [a] funny rambling old house,
the only house in all that forest, with her poor old gyammah. Now this
gyammah was a cheery and active old lady, who enjoyed keeping the
house as clean and neat as a pin and arranging the furniture prettily in
all its rooms. Of course, there was no butcher nor baker; but water came
down in pipes from a spring far up on the side of a neighboring mountain,
and came down icy cold with such force that if they let it run through
a little turbine wheel, it makes this go round, and makes some machinery
move that would do sawing, or hammering, or beating rugs, or ironing,
or washing, or ploughing, or almost anything they wished. Then there
was a well of natural gas which was led into the house in pipes, furnishing
light and heat as much as they wished.* There were no roads in the forest;
but it was easy to walk under the trees; for there was no great tangle of
bushes anywhere. One could not get lost because of telegraph wires that
were stretched from tree to tree, at about the height of a low table. Three
such wires started from the house, one from the back, two from the front.
The two front wires joined a mile from the house; and every wire was
joined by other wires at every half-mile, so that by walking along by the
side of any wire for three miles from where it joined any other, you would
always come back to that same place. And by noticing which way any
wire was wound round the trees one could tell which way it ran toward
the house. Thus, one could not long be lost.

This is a second draft of the manuscript.
8 Peirce was very much interested in natural gas at this time,
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Barbara and her grandmother, whose name was Lydia, lived alone in
the great house. But they had some great dogs and some little dogs; and
these dogs were all trained to scrub the floors and wash the windows and
do many other things.

But one day when they were wandering in the forest they heard a sound
of crying, and going towards it they found a little boy. So they brought
him home. He talked a strange language and wore strange clothes. These
Lydia took off and found him a suit of clothes; for there was no end to
the things that were stored away in closets, and chests, and presses in the
great house; and Lydia thought his own clothes ought to be kept in case
his parents should ever come. He soon learned to talk as they did, and
then told them the strange history of how he came there. They called
him Benjy.

LESSON II

Lydia took pleasure in teaching the children whatever they wished to
learn and could learn, as well as some other things that they would have
great reason to wish they had learned if they should not learn them.
Among other things Benjy had been carefully trained to distinguish the
mushrooms which could be found growing in places from poisonous
toadstools. Therefore, when he said one afternoon, “Gramma Lydia,
I know where I could find some mushrooms for supper,” she was glad
to hear it. “But how will you find the place?” she asked. “I shall go
along the left-hand wire in front of the house and say

Peter’s, Daughter, Cries, Hot water,
Punch’s, Witches, Hadn’t ought to,
Ashpan, Never,

Dash ‘em, Ever,

Tweedledee and, Dum.

I shall call the first tree the wire goes round Peter’s, and the next Daughter,
and the next Cries, and so on; and the mushrooms are in the grass about
the tree where I shall call Dum.” So she gave him a small basket, and off
he went, and soon returned with the mushrooms. “Now,” said Barbara,
“I can bring some asparagus, if you like.” “How can you find it?" asked
Lydia. “Why, I shall follow the wire at the back of the house; and I shall
say,
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Intery, Mintery, Cutery corn,
Apple seed and apple thorn,
Wire, Briar, Limber lock,
Several geese in a flock,
Catch one Mary,

Hold him Tom,

Blow the bellows,

Old man, Out.

I shall call the trees the wire passes round, first, Intery; then Mintery;
then Cutery corn; then Apple seed and apple thorn; then, Wire, then
Briar; then, Limber lock; then, Several geese in a flock; then, Catch one
Mary; then, Hold him Tom; then, Blow the bellows; then, Old man;
then, Qut! And round the tree where I shall call Out there grows lots of
asparagus.” So Barbara was given a basket and a knife, and soon came
back with a fine great bunch of asparagus. “Now,” said Lydia, “I know
where to find some eggs. Come with me, and you shall see what my way
is; although it is just like yours.” So she went along the right hand wire
and the children with her. When she came to a tree that the wire wrapped,
she said, “Benjy, what do you call this tree?” “I call it Peter’s,” said Benjy.
“And Barbara, what is your word?” “Intery,” said Barbara. “Well, those
are very good names. But I call it, One.” At the next tree, Benjy without
waiting to be asked said, “Daughter;” and Barbara said “Mintery.”
“Good,” said Lydia; “but I will call it, Two.” The next tree was called
“Cries” by Benjy, and “Cutery corn” by Barbara. Lydia called it, “Three.”
The next was called “Hot water™” by Benjy, and “Appleseed and apple
thorn” by Barbara; but Lydia called it “Four.” The next was called
“Punches” by Benjy, and “Wire” by Barbara; but Lydia called it “Five.”
The next was called “Witches” by Benjy, and “Briar” by Barbara; but
Lydia called it “Six.” The next was called “Hadn’t ought to” by Benjy,
and “Limber lock” by Barbara; but Lydia called it “Seven.” The next
was called “Ashpan” by Benjy and “Several geese in a Flock™ by Barbara;
but Lydia called it “Eight.” The next was called “Never” by Benjy, and
*Catch one Mary” by Barbara; but Lydia called it “Nine.” The next tree
was called *Dash 'em” by Benjy, and “Hold him Tom” by Barbara; but
Lydia called it “Ten.” The next was called “Ever” by Benjy, and “Blow
the bellows” by Barbara; but Lydia called it “Eleven.” The next was
called “Tweedledee” by Benjy, and “Old man” by Barbara; but Lydia
called it “Twelve.” The next was called “Dum” by Benjy, and “Out”
by Barbara; but Lydia called it “Thirteen.” “This is the same tree,” said
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Lydia. “I saw several nests of new-laid eggs about here, this morning.”
They searched and soon found them, sure enough.

On their way back to the house, Lydia asked, “Benjy, what if the mush-
rooms had been under the tree before the one they were under? What
would you have done then?” “I should have stopped at Tweedledee,”
said he. “And I,” said Barbara, “should have said the asparagus was
at Old man, if it had been near the tree before, and if it had been near
the tree before that I should have said it was at Hold him Tom.”™ *Well,”
said Lydia, “your words in such cases would do just what my words
would do; but you must learn my words. They are the best.” Benjy said,
“Why are they the best?” Lydia answered, “Benjy you are going to grow
up to be a man, and you will not always live in this wood, but will live
among men. Your body will be ever so much bigger and stronger than
it is now. You cannot begin to lift now what you will be able to lift
easily. But your mind will grow much, much more than your body; and
you will have thoughts that you cannot now think, at all. You will then
understand reasons that you cannot now understand. For the present,
you must do many things because I tell you it is best to do them, without
being able to understand why. The strongest and greatest reasons why
my words are best you cannot yet understand. But there is one reason
that you can understand. If instead of a few trees, you wished to count
the days that come before your next birthday comes, your words would
be too few. You would get all mixed up, and would not be sure when
your birthday came that it was your birthday. But my words, which are
the words that all grown people use who speak our language, go on with-
out stopping. There is no row that comes to an end that is too long for
them to count. Each of you wants to grow up to be a child of God and
a brother or sister of men and women; and you want to do as other grown
people do, so far as God approves of their ways.”

*Benjy, show me your right hand. Barbara, show me your right hand.
Good, you both know which your right hand is. If you had not known,
that would have been the first thing to learn. Now each of you hold out
the right hand with the palm up. That is the palm. Now put the tip of
the little finger of the left hand down upon the palm of the right hand and
say, ‘One.” Good! Now put the tip of the next finger of the left hand
down upon the right palm along with the little finger, and say, “Two.’
Good! Now put the tip of the next left hand finger down along with the
others, and say, ‘Three.” Now put the tip of the next left hand finger
down along with the others, and way, ‘Four.” Now put down the end of
the thumb with the tips of the other fingers, and say, ‘Five.” Good. Do
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it, now, again! Now again! That is your first lesson. Do it many times
today and tomorrow; and when you have learned this well, we will go on
to the other numbers.

[MULTIPLICATION]®

0 time 1 is 0
1 time 2 is 2
2 times 3 are 6
3 times 4 are 12
4 times 5 are 20
5 times 6 are 30
6 times 7 are 42
7 times 8 are 56
8 times 9 are 72

Next remember the “quarter-squares,” as they are called.

The quarter square of 0is 0 time 0, or 0
The quarter square of 1is 0 time 1, or 0
The quarter square of 2is 1 time 1, or 1
The quarter square of 3is 1 time 2, or 2
The quarter square of 4 is 2 times 2, or 4
The quarter square of 5is 2 times 3, or 6
The quarter square of 6 is 3 times 3, or 9
The quarter square of 7 is 3 times 4, or 12
The quarter square of § is 4 times 4, or 16
The quarter square of 9 is 4 times 5, or 20
The quarter square of 10 is 5 times 3, or 25
The quarter square of 11 is 5 times 6, or 30
The quarter square of 12 is 6 times 6, or 36
The quarter square of 13 is 6 times 7, or 42
The quarter square of 14 is 7 times 7, or 49
The quarter square of 15 is 7 times 8, or 56
The quarter square of 16 is 8 times 8, or 64
The quarter square of 17 is 8 times 9, or 72
The quarter square of 18 is 9 times 9, or 81

* This material is on sheets separated from the notebook but belonging to it.
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Now, if you want the product of 6 and 7, you must add the factors,
giving 13 and subtract the smaller from the larger, giving 1. Then sub-
tract the quarter square of 1, or 0, from the quarter square of 13, or 42,
and you have the product.

So if you want 7 times 9, the sum is 16, the difference 2. The quarter
square of [16 is] 64 and the quarter square of 2 is 1, which subtracted
from 64 leaves 63, the answer.

So if you want 3 times §, the sum is 11, the difference 5. The quarter
square of 11 is 30, and that of 5 is 6, which taken from 30 leaves 24 as
the answer.

But you must remember that such devices are merely [to] aid you in
learning the multiplication table and to enliven the task, a little, not to
serve instead of a knowledge of the multiplication-table. That must be
learned so that you do not recognize a letter of the alphabet quicker than
you remember the product of two numbers less than 10.

The multiplication-table is learned, and we ought to have a festival.
But today I want to teach yvou long multiplication.

From the beheading of Charles I to the Declaration of Independence
was 127 years and a fraction. Supposing each year had 365 days, that
would be how many days? We have to multiply 365 by 127. Call 365
multiplicand, 127 multiplier. Write the multiplier directly under the
multiplicand, units exactly under units, tens exactly under tens, hundreds
exactly under hundreds, and draw a line under the multiplier, thus:

365
127

Multiply each figure of the multiplicand by every figure of the multiplier
and set down the product so that its units place shall be that number of
places to the left of the units place of the factors which is the sum of the
numbers of places by which the two figures multiplied are to the left of
the units” place. Thus, 1 time 3 is 3; the 1 is 2 places to the left of the
units, the 3 is 2 places to the left of the units. 2 and 2 make 4. So we set
down the 3, the product, 4 places to the left of the units, thus:

365
127

3

Next, 1 time 6 is 6. The 1 is 2 places to the left of the units, the 6 is 1 place
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to the left of the units. 2 and 1 make 3. So, the 6 is set down 3 places to
the left of the units, thus:

365
127

36

Mext, 1 time 5is 5. The 1 is 2 places to the left of the units, the 5is 0 place
to the left of the units. 2 and 0 make 2. So the 5 is set down 2 places to
the left of the units, thus:

365
127

365

Next, 2 times 3 make 6. The two is 1 place to the left of the units, the 3
is 2 places to the left of the units. 1 and 2 are 3. So the 6 is set down
3 places to the left of the units, thus:

365
127

3635
6

Next, 2 times 6 make 12, The 2 is | place to the left of the units, the 6
is 1 place to the left of the units. 1 and 1 make 2. So the 12 is set down
with its units 2 places to the left of the units of the factors, thus:

365
127

365
6
12

Next, 2 times 5 make 10. The 2 is | place to the left of the units, the 5
is 0 places to the left of the units. 1 and 0 make 1. So the 10 is set down
with its units 1 place to the left of the units of the factors, thus:

365
127

365
6
12

10
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Next, 7 times 3 make 21 the 7 is 0 place to the left of the units, the 3 is
2 places to the left of the units. 0 and 2 make 2. So, the 21 is set down
with its units 2 places to the left of the units of the factors, thus:

365
127

365
6
12

10
21

Next, 7 times 6 make 42. The 7 is O place to the left of the units, the 6
is 1 place to the left of the units. 0 and I make 1. So the 42 is to be
set down with its units 1 place to the left of the units of the factors, thus:

365
127

365
6
12

10
21
42

Next, 7 times 5 make 35. The 7 is 0 place to the left of the units, the 5
is 0 place to the left of the units. 0 and 0 make 0. So, the 351s to be set
down with its units O place to the left of the units of the factors, thus:

365
127

365
6
12
10
21
42
35
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Now draw a line under these numbers and add them up.

365
127

365
6
12
10
21
42
35

——

46355

Then 46355 are the number of days in 127 years of 365 days each, and
somewhat less than the number of days between the execution of CharlesI
and the Declaration of Independence.”

“But Lydia,” said Benjie, “why do you set down the products in those
places?”

“Why, can’t you see for yourself?”

“I don’t know.”

“How much is 6 times 77"

B i

“And how much is 6 times 707"

“Ten times as much, that is, 420.”

“And how much is 60 times 707"

“Ten times as much, 4200.”

“Well, that makes the whole thing clear does it not,”

“I must think over that,” said Benjie.

“But Lydia,” said Benjie, “why are those products added up to get the
answer?"

“Why, you see 2 times 7 and 3 more times 7 make, in all, 5 times 7,
don’t they?”

“Yes‘”

“So 7 times 2 and 7 times 3 make 7 times 5, don't they?”

ilYes.”

“Then, 100 times 365 and 27 times 365 make 127 times 365, don’t they?”
“‘Yes-”

“And 100 times 300 and 100 times 65 make 100 times 365, And 27 times
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300 and 27 times 65 make 27 times 365. So:

100 times 300
and 100 times 65
and 27 times 300
and 27 times 65

make 127 times 365. Now 100 times 60 and 100 times 5 make 100 times
65. And 20 times 300 and 7 times 300 makes 27 times 300. So:

100 times 300
and 100 times 60
and 100 times 5
and 20 times 300
and 20 times 60
and 20 times 5
and 7 times 300
and 7 times 60
and 7 times 5

make 127 times 363.”

*Oh, yes, [ see it,” said Benjie.

“Now,” said Lydia, “I will show you a quicker way of doing long multi-
plication. Set down the factors, as before, one exactly under the other,
units under units, tens under tens, and hundreds under hundreds, and
draw a line below, thus:

365
127

Now, begin at the right, and say 7 times 5 make 35. Set down the 5 in
the units place and carry the 3 for the tens place, thus:

365
127

5

Then say 7 times 6 make 42; and 3 added makes 45. Set down the § in
the tens place and carry the 4 for the hundreds place, thus:

365
127

55
43
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Now say 7 times 3 make 21; and 4 added makes 25. Set it down, thus:
365
127
2555

43

Now, say 2 times 5 make 10. Set down the 0 under the 2 in the tens place
and carry the 1 for the hundreds’ place, thus:

365
127

2555

43

0

Then, you say 2 times 6 make 12; and 1 added makes 13. Set down the
3 in the hundreds’ place and carry the 1 for the thousands’ place, thus:

365
127

——

2555

43

30

11
Then, you say 2 times 3 make 6; and 1 added makes 7. Set it down, thus:

365
127

2555
43

730
11

Now you say 1 time 365 makes 365. Set it down, with the units under the
1, thus:

365
127

2555
730
365
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Now, draw a line and add, thus:

365
127

—_—

2555
730
365

46355
Now, I will show you a way which is still shorter, sometimes. Say, 5
times 7 make 35. Set down the 5 and carry the 3.

365
127

5

Say 7 times 6 make 42, and 2 times 5 make 10; 42 and 10 and 3 make 55.
Set down the 5 and carry the 3.

365
i27

r————

35

Say 7 times 3 make 21, 2 times 6 make 12, 1 time 5 makes 5. 21 and 12
and 5 and 5 make 43. Set down the 3 and carry the 4.

365
127

355

Say 2 times 3 make 6, and 1 time 6 makes 6. 6 and 6 and 4 make 16.
Set down the 6 and carry the 1.

365
127

6355

Say 1 time 3 makes 3. 3 and 1 make 4. Set down the 4.

365
127

46355

But the second way is the best way; because this third way is too hard.
You are apt to make mistakes. But if there are only two figures, it is a
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good way. Thus, how much is 27 times 13. Set down the factors

27
13

Now say 3 times 7 are 21. Set down the 1 and carry the 2. 3 times 2 make
6, and 7 makes 13, and 2 makes 15. Set down the 5 and carry the 1. 2
and 1 are 3, So 351 is the answer.

If there are decimals, you follow the rule of putting the units of the
product that number of places to the right of the units place which is the
sum of the places by which the factors are to the right.

If gold is worth 62 cents a gram, how much is 16.042 grams worth?

16.042
.62

.32084
9.6252

9.94604

Answer: nearly $9.95.

But, in fact, gold is worth over 62.3 cents a gram. Then we correct
the calculation, thus:

16.042
.623

32084

9.6252
48126

9.994166
Answer: $9.99.”

DIVISION

“Tell me, Lydia dear, if I deal 38 cards into 7 packets, how many cards
will there be in each packet?”

“Your multiplication table tells you how many cards it will take to
make 7 packets of 5 cards each. How many is it?”

“35.11

“And how many cards will it take to make 7 packets of 6 cards each?”
((42.11
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“Then if you deal out 38 cards, when you have dealt 35 of them you
will have put 5 cards into each of the 7 packets. Now after you have dealt
35 cards from 38, how many will you have left?”

wy »

“So if you deal out 38 cards into 7 packets 3 of the packets will have
6 cards and the rest 5. This s called division. The 38 is called the dividend:
the 7 the divisor, the 5 the quotient, and the 3 the remainder, which is
left over.” '

“Benjie,” said Lydia, “there are 24 hours in a day. If I give just as
much time to sleep that I do to eating and play and just as much time
to work, also, how many hours shall T give to each?”

“Eight,” said Benjie.

“Good. Now if I have in those 8 hours, 3 kinds of work to do, house-
keeping, teaching, and writing, and I give just as much time to one as
to another, how many hours shall I give to each?”

*2, with a remainder of 2 hours left over.”

“Yes, but I want to work the whole 8 hours, without having any left
over.”

“Then you must write part of the two hours and teach part of them and
keep house part of them.”

“Yes, but how much?”

“I shall have to think over that,” said Benjie.

“Well, tell me tomorrow,” said Lydia. “Only, you must suppose that
I know how to divide an hour into any number of equal parts.”

The next day, Benjie said: “Lydia dear, you said you could divide an
hour into any number of equal parts.”

“Yes, Benjie.”

“Well, if you divide those 2 hours each into 3 equal parts, and then
give 2 hours and 2 parts to housekeeping, and the same to teaching, and
the same to writing, that will just make 8 hours in all.”

“That is right, Benjie. I thought you would find it out, though if you
had not I should not have been surprised. When an hour or anything else
is divided into 3 equal parts, those parts are called thirds. So you should
say 2 hours and 2 thirds. And it is written

2%
If a thing is divided into 4 equal parts, each part is called 1 fourth,
written 1; if into 5 equal parts, each part is called 1 fifth, written 43
if into 101 equal parts, each part is called 1 one hundred and oneth, or
1 one hundred and first, written 47, and so on. If a thing is divided
into two equal parts, each part ought to be called 1 twoth; if people
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liked that word; but people prefer to say 1 half, written 1.

2 halves, or 2, is a whole one, or unit; so is 3 thirds, 4; so is 4 fourths,
or quarters, $; and so on.

3 halves, 4, is 2 halves, 4, and 1 half, 4, or one and a half, 11.

4 thirds, £, is 3 thirds, 4, and 1 third 4, or one and a third, 14.

5 quarters, <, is 4 quarters, 4, and 1 quarter 4, or one and a quarter 13,

And so on.

Fis £ and £, or 14.

4l is § and 3, or 13.

12 is 43 and 1%, or 14%.

And so on.

12is2. A2is3. 22is 4,32 is 5, and so on.

14452, 2Llis 3. 28 is 4, 32 is 5, and so on.”

“Benjie,” said Lydia, “a week has 7 days; a common year has 365 days.
How many weeks, then, are there in a year?”

“That is a pretty hard question,” said Benjie.

“Yes,” said Lydia. “We find that out by short division. So, I must show
you how to do short division. You want to divide 365 by 7. The dividend
is 365, the divisor is 7; we want to find the quotient and the remainder.
You write down the dividend and draw a line under it. You make a
curve to the left of it and to the left of that you write the divisor, thus:

T)365
Now you say, what whole number of times does 7 go into 3. It does not
go in once. Then take the first two figures of the dividend, 36. What
whole number of times does 7 go into 36, or thirty-six? We know that
5 times 7 is 35. So it goes in 5 times and 1 over; because 35 subtracted

from 36 leaves 1. Then we set down the 5 under the 6 and write the 1
small over the 6, thus:

i
7)365
5

Now, you ask how many times does 7 go into 15?7 We know that 2 times
7 make 14. And 14 from 15 leaves 1. So it goes in 2 times, with 1 over.
Then we set down the 2 under the 5 and write a little 1 over the 5, thus:

11
7)365
52
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Now the answer is 52 weeks and 1 day, or 523 weeks,
Or, we can add some decimal places, thus:

11
7)365.000000000000000000
52

Now, you can ask how many times 7 goes into 10, Answer.”
“] time and 3 over.” _
“Right. Make the decimal point and set down | under the first 0 and

a little 3 above it, thus:

11 3
7) 365.000000000000000000
52.1

Now, you go on in the same way. 7 into 30 goes 4 times and 2 over and
so on and you get
11 326451326451326451
7)365.000000000000000000
52.142857142857142857

You see these 6 figures 142857 keep coming round and round. So 365
divided by 7 gives
524
or 52.1%, that is, 52.1 and 5%,
or 52.14%, that is, 52.1474,

or 521427?-‘, that iS., 52.142:,*3%,
or 52.1428%, that is, 52.1428+5%57,

and so forth.
We also write this

52.142857

where we put dots over the 1 and 7, to show that those figures and all
between them come round over and over again. That is called a circu-
lating decimal.

Express 1 in decimals; that is, divide 1.0000 by 2

oQoooo

2)1.000000
500000

Then, 4 is the same as .5 or 0.5
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Express 4 in decimals; that is divide 1.000 by 3

111111

3)1.000000
333333

Then, 1 is 0.3, that is 0.33333%
Express 4 in decimals; [also] 4, 4, 4, . 3.7

AVERAGE

“Benjie, my boy,” said Lydia, “I am going to explain to you what is
meant by an average, or arithmertical mean. A common vear has 363
days. But besides common years, there are leap years which have 366
days. Commonly, there come three common years and then a leap year
then three more common vyears and then a leap year. Now, I must tell
you that there are two ways of counting time, called Old Style and New
Style. Old style, called also the Julian calendar, is used in Russia and in
Greece, and used, 200 years ago, to be used here. New style, called also
the Gregorian calendur, is used here and in England, France, Germany,
Spain, Ttaly, and many other places. This has nothing to do with the
average; but I am going to talk about Old Style and New Style in order
to explain what an average is.

In the Julian calendar every fourth year is always a leap year. Then
if we take 365 and multiply it by 4, it will be one day less than any four
successive years of the Julian calendar,

Let us multiply 365 by 4

365
4

22
1460

Now let us add one day for the leap year, and we get 1461, which is the

number of days in 4 successive years of the Julian calendar. Let us divide
1461 by 4

221 20

4)1461.000
365.25
Then, 365.25 is the length which a year would have, if all years were alike,
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and if four of them were equal to four successive years of the Julian
calendar. Such a year of 365.25 days is called an average Julian year.
An average is a number which is what several numbers would become
if they were all made equal and if their sum were to remain unchanged.

A hundred years are called a century. In a Julian century there are
36525 days. In any four successive Gregorian centuries, there are 3 days
less, than in 4 Julian centuries. In four Julian centuries, there are how

many days? Let us see.

36525
4

2212
146100
Now subtracting 3, we get 146097 for the number of days in 4 successive
Gregorian centuries. What is the average number of days in a Gregorian

century?

22011 20

4)146097.00
36524.25

Then, what is the average number of days in a Gregorian year? Answer.”
#365.2425.”

LONG DIVISION

“Lydia,” said Benjie, “there are 365.2425 days in an average year, aren’t
there?”

“Yes.”

“And there are 12 months in each year, aren’t there?”

“Twelve calendar months, yes.”

“Then, how long is an average calendar month?”

“Ah, that is a question in long division. I must show you how to do it.
You set down the dividend and divisor as before, only you draw a line
above the dividend, and set down the figures of the quotient, as fast as
you find them, above that line, thus:

12 |365.2425

Now you take the successive multiples of the last figure of the divisor,
and write the last figures of nine of them successively under the last figure
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of the divisor and every time the first figure changes, you make a dot in
the tens’ place, thus:

12 |365.2425
4 ]

S o hD e

Now you successively add the next figure to the right, adding one more
whenever you come to a dot, thus:

12 |365.2425
24
36
48
60
72
84
96
108
120

Here you have the successive multiples of the divisor, and you know they
are right, if the tenth is ten times the first. You number them on the
right from 1 to 9, omitting the tenth, thus:

1 12 |365.2425
2 24
3 36
4 48
5 60
6 72
7 84
8 96
9 108
120
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The divisor, 12, is larger than 3, but less than 36. You look for the 30.43
largest multiple of 12, which is as small as 36. It is the 3rd. You set it 1 12 |365.2425
down under the 36 writing the 3 above, and then you subtract it from 2 24 36
the 36, thus: 3 36 048
3 4 48 4
1 12 |365.2425 2 gg %
2 s % 7 84
3 36 0
4 48 : %
5 60 9 108
6 T i
7 84 You now ask, 12 into 82 how many times? Your table of multiples
8 96 shows that 6 times 12 are 72. You set down the 6 above the units of the
9 108 82 and set down the 72 below and subtract, thus:
120 30.436
1 12 |365.2425
You now say 12 into 5 goes 0 time. You write 0 above the 5, and say ) 24 36
12 into 50 how many times? Your table of multiples shows that 4 times 12 3 36 048
is 48. You set down the 4 above the units of 52 and the 48 below and 4 48 4
subtract it, thus: 5 60 16
30.4 6 72 8
1 12 [365.2425 ¢ ‘% 1
2 24 36 3 96 10
3 36 048 9 108
4 48 4 120
5 60 Proceeding in the same way we get
S 30.436875
i 1 12 [365.2425
8 9 2 1%
9 108 3 36 048
120 4 48 4
You now ask, 12 into 44 how many times? Your table of multiples : ?g 3—2
shows 3 times 12 is 36, You set down the 3 above the units of 44, set 7 84 7
down the 36 below, and subtract, thus: -
8 96 10
9 108 96
120

9
s
6
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Here is a better example. How many average Gregorian ycars are there
in an average Julian Year. The first step gives

365.2425 |365.25

SCLoeowLwoO Lo Lo

The next step gives

365.2425 |365.25
50
75
.00
25
50
75
.00
23
50

The next step gives

365.2425 |365.25
850
.275
700
125
550
975
.400
825
.250
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The next step gives

365.2425 |365.25
4850
J275
9700
2125
4550
6975
.9400
1825
4250

The next step gives

365.2425 ]365.25
.0.4850
5.7275
.0.9700
6.2125
. 1.4550
6.6975
.1.9400
7.1825
.2.4250

The next step gives

365.2425 [365.25
.30.4850

95,7275
.60.9700
.26.2125

91,4550
.56.6975
.21.9400

87.1825
.52.4250

31



32 LYDIA PEIRCE'S PRIMARY ARITHMETIC (189)

The next step gives

1 365.2425 [365.25
2 730.4850
3 1095.7275
4 1460.9700
3 1826.2123
6 2191.4550
7 2556.6975
8 2921.9400
9 3287.1825
3652.4250

We now go on [as in the previous example].”

THE RULE OF THREE

“Lydia,” said Benjie, “addition and multiplication both make numbers
greater, don’t they?
“Yes, that is so, if you are speaking of positive whole numbers.”
“But,” said Benjie, “addition increases a number by putting something
to it, multiplication increases a number by increasing every part of it and
all parts alike. For instance, here are three dots

Now make every single dot a two

There is three multiplied by two.”

“That is true,” said Lydia. “Now here is an india rubber band. I cut
it open and lay it down on this ruled paper and make 5 pen-lines so as to
mark off 4 spaces equal to the spaces between the lines on the paper.”

“Does equal mean just as large?” asked Benjie.

“Yes. Now I stretch the rubber, so that each space is equal to 2 spaces
on the paper, and now, of course, the whole 4 spaces on the rubber are
equal to § spaces on the paper. The 4 has been multiplied by 2. So,
stretching is multiplication, that is, supposing all the parts are stretched
alike.”

“But,” said Benjie, “suppose you don’t stretch the rubber so much.
Suppose you only stretch it to make 2 stretched spaces cover 3 unstretched
ones. Then, 4 stretched spaces will cover 6 unstretched ones. That
stretching isn’t multiplication, exactly, is it?"
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“Why, certainly,” said Lydia. “That is multiplying by 1.5; for 2 multi-
plied by 1.5 gives 3, and 4 multiplied by 1.5 gives 6.”

*So it does,” said Benjie.

“MNow, Benjie,” said Lydia, “suppose a dozen bananas cost 10 cents,
how many will 18 cost?”

“A dozen is 12, is it not?” asked Benjie.

“Yes.”

“Then if 12 are stretched so as to become 18, you want to know how
much 10 will be stretched to?”

“Yes,”

“Let me think,” said Benjie. “If 12 are stretched so as to become 18§,
every one of the 12 will become +; of 18. Now 12 goes into 18 1.5 times.
So every 1 will be stretched to 1.5 and 10 will be stretched to 15.”

“That is right,” said Lydia. “Now let me ask you another question.
If 42 is stretched to 66, how much will 105 be stretched to?”

“Let me see,” said Benjie. “I divide 66 by 42.

1.5714
1 42 |66
2 84 42
3 126 24
4 168 210
5 210 300
6 252 294
7 294 60
8 336 42
9 378 180
420 168
12
Call it 1.5714. Now I multiply this by 105.
1.5714
105
7.8570
157.14
164.9970

It is 164.9970."
“Not exactly,” said Lydia, “because you neglected some figures in the
division. You had to divide 66 by 42 and multiply by 105. It will come
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to the same thing to multiply by 105 first and then divide by 42 ...

66
105
330
66
42|6930(165
=
273
252
210
210

[CARD PROBLEMS]

Another day Lydia had the cards dealt in 3 piles and had the children

read them off in turn.

Benjie. Third pile: 3
33
63
93

Eulalia. First pile:
13
43
73

George. Second pile:
23
53
83

Another day Lydia made them deal the cards into 4 piles and to read

6
36
66
96

16
46
16

26
36
86

9
39
69
99

19
49
3

29
59
89

off the cards in each pile, in turn.

* We find here the beginning of Peirce’s precccupation with cards numbered 1-101.

12

15

18

42 45 48
72 75 78

_L 1

22
52
82

25
55
85

28
58
B8

21
51
81

31
61
91

27
57
87

7
37
67
97

30
60
90

10
40
70
100

2
32
62
92

5
35
65
935

8
38
68

98 101.

11
41
71

This will be the basis for the cyclic tricks in “Amazing Mazes.”

17
47
77

20
50
80

LYDIA PEIRCE’'S PRIMARY ARITHMETIC (189)

Benjie. 4th pile:

4 8 12
24 28 32
44 48 52
64 68 72
84 88 92

\
3 7

19 23 27
39 43 47
59 63 67
79 83 87

99\
2

14 18 22
34 38 42
54 58 62
74 78 82
94 98

9 13 17
29 33 37
49 353 57
69 73 17
89 93 97

16
36
56
76
96

11
3l
51
71
91

6
26
46
66
86

g

21
41
61
81
101

20
40
60
80
100

15
35
55
75
95

10
30
50
70
20

25
45
65
85

35
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[When the cards are dealt into 5 piles]

5th

pile:

4th

pile:

3rd
pile:

2nd
pile:

1st

pile:
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Lydia. George what are the 2nd, 7th, 12th, 22nd, 27th, and so forth cards
of the one-pile?

George. They are 3, 13, 23, 33, 43, 53, 63, 73, 83, 93.

Lydia. Eulalia what are the 2nd, 7th, 12th, 17th and so forth cards in the

3 4 3 2 1
10 9 8 7 6
15 14 13 12 11
20 19 18 17 16
25 24 23 22 21
30 29 28 27 26
35 34 33 32 3l
40 39 38 37 36
45 4 43 42 41
50 49 48 47 46
55 54 53 52 51
60 59 58 57 56
65 64 63 62 61
70 69 68 67 66
75 74 73 72 71
80 79 78 77 76
85 84 83 82 81
90 89 88 87 86
95 94 93 92 a1
100 99 98 97 96

101

Lydia. George, how do those in the three-pile end?

George. In 3 and 8.

Lydia. Eulalia, how do those in the two-pile end?

Eulalia. In2and 7.

Lydia. Benjie, how do those in the one-pile end?

Benjie. In 1 and 6.

Lydia. Now, Eulalia, when they are dealt in 2 piles, take the one-pile and
tell me the cards that are in places whose numbers end in one and six.
I mean what are the 1st, 6th, 11th, 16th, 21st, 26st, 31st, 36th, and so
forth cards?

Eulalia. The cards are 1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101.

Lydia. Benjie what are the 1, 6, 11, 16, and so forth cards in the second

pile?
Benjie. They are 2, 12, 22, 32, 42, 52, 62, 72, 82, 92.

second pile?

Eulalia. They are 4, 14, 24, 34, 44, 54, 64, 74, 84, 94,
Lydia. Benjie, what are the 3rd, 8th, 13th, 18th, and so forth cards in

the first pile?

Another day the cards were dealt in 6 piles, and read off,

Benjie. 6th pile: 6
36
66

96

|
1

31
61
91

26
56
86

21
51
81

16
46
76

11
4]
71
101

Another day Lydia had the cards dealt into 7 piles and had the children
read off the cards in each pile.

12
42
72

7
37
67

97
|
2

32
62
92

27
57
87

22
52
82

17
47
77

18
48
78

13
43
73

8
38
68

98

|
3

33
63
93

28
58
88

23
53
83

24
54
84

19
49
79

14
44
74

)
39
69

99

|
4

30
60
90

235
55
85

20
50
80

15
45
75

10

34 40

64

70

94 100

29
59

b
35
65

89 95
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Benjie. Seventh pile: 7 14 21 28 35 42 49 56 63 70

77 &4 91 98
—
Eulalia. Fourth pile: 4 11 18 25 32 39 46 53 60
67 74 Bl 88 95
George. First pile: 1 8 15 22 29 36 43 50
57 64 71 78 B85 92 99
3 B ——
Benjie. Fifth pile: 5 12 19 26 33 40
47 54 61 68 75 82 89 96
e
Eulalia, Second pile: 2 9 16 23 30
37 44 51 58 64 72 79 86 93 100
George. Sixth pile: 6 13 20
27 34 41 48 54 62 69 76 83 90
Benjie. Third pile: 3 10
17 24 31 38 44 52 59 66 73 80
87 94 101

/

Another day Lydia dealt the cards into 9 piles, and bade the children
read off the cards in each pile in turn.

Benjie. 9th pile: 9 18 27 36 45 54 63 72 81 90
99

Eulalia. Tth pile: 7 16 25 34 43 52 61 70
79 88 97

George. 5th pile: NS 148 341 %0
59 68 77 86 95

Benjie. 3rd pile: N3 122 o
39 48 57 66 75 84 93~

Eulalia. 1st pile: ~1 10
19 28 37 46 355 64 73 82 91 100

George. 8th pile: N8 17 26 35 44 53 62 71 80
89 938

Benjie. 6th pile: \6 15 24 33 42 51 60
69 78 87 96 G

Eulalia. 4th pile: N4 13 22 31 40
49 58 67 76 85 94

George. 2nd pile: \ 2 11 20

29 38 47 56 65 74 83 92 101
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Lydia. The first card in the pile containing 30 is 3. What comes between?
George. 12 and 21,
Lydia. The first card in the pile containing 40 is 4. What comes between?
George. 13, 22, 31.
Benjie. Please; I want to tell you. The figures on the first two cards in
the first pile count up to 1 and the rest to I0.
The first 3 cards in the 2nd pile count up to 2; the rest to 11.
The first 4 cards in the 3rd pile count up to 3; the rest to 12.
The first 5 cards in the 4th pile count up to 4; the rest to 13.
The first 6 cards in the 5th pile count up to 5; the rest to 14,
The first 7 cards in the 6th pile count up to 6; the rest to 15.
The first 8 cards in the 7th pile count up to 7; the rest to 16.
The first 9 cards in the 8th pile count up to 8; the rest to 17.
The first 10 cards in the 9th pile count up to 9; the rest to 18.
Eulalia. The figure in the tens place [in each pile]

of the 1st card is 0,

of the 2nd card is 1,

of the 3rd card is 2, except the st pile, where it is one less,

of the 4th card is 3, except the first 2 piles, where it is one less,

of the 5th card is 4, except the first 3 piles, where it is one less,

of the 6th card is 5, except the first 4 piles, where it is one less,

and so forth.
George. And where the ten’s figure is two less than the number of the
card is just where the two count up to more than the number of the pile.
Benjie, So the figures on every card in the 9th pile count up to 9, don’t
they?
George. The figures of 99 don’t count up to nine.
Benjie. How much do they count up to?
George. Why, 18, of course; because 18 is the next card after 9.
Eulalia. Well the figures of 18 count up to 9. So, if the figures on cards
in the 9th pile count up to a number written with one figure itis 9, and
if not it is some other number in the 9th pile. Keep counting up the
figures and you will get to 9 at last.
Benjie. What do the figures on the cards of the 8th pile count up to?
Eulalia. Why to one less than those in the 9th, of course.
George. The figures of cards of the 8th pile count up to 8.
Eulalia. Yes; and those of the 7th pile to 7 and so on,
Benjie. How about 977
George. Why 9 and 7 count to 16; because 16 is the card after 7 in dealing
by 9s; and 1 and 6 count up to 7.
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Lydia. Yes that is quite true. But now answer me this, George, without
looking at the cards. What number ending with 0 comes into the first
pile?

George. 10 and 100,

Lydia. How do you know?

George. Because the figures add up to 1.

Lydia. Where do 20, 30, 40, 50 come?

George. In the 2nd, 3rd, 4th, 5th piles. -
Lydia. So the first card in the pile containing 20is 2. What comes between?
George. 11.

Lydia. We dealt the cards out into nine piles, and here are the cards in the
ninth pile:

O 18 27 36 45 54 63 72 81 90 9%

Let us lay them down five one under another and then one over another,
thus:?
99
9 90
18 81
27T 12
36 63
45 54

Let us put down 9 beans to represent the 1st card

Take away one bean and put it in the tens’ place

This represents the second card
Move over another, and you get the third card:

Move over another, and you get the fourth card:

Move over another, and you get the fifth card:

Move over another, and you get the sixth card:

Move over another, and you get the seventh card:
Move over another, and you get the eighth card:

Move over another, and you get the ninth card:

Move over another, and you get the tenth card:

MNow there is not another to be moved over; so instead,
put down nine in the units’ place and you get the
eleventh card

¥ Peirce shows in the primitive “set” arrangements the basic symmetry in the pairing
of numbers on the cards as indicated.
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Lydia. Well, Benjie, what is the 5th card of the 4th pile? Benjie. 40.
Lydia. What is the 3rd card of the 6th pile. Benjie. 24.

Lydia. What is the 6th card of the 3rd pile. Benjie. 48.

Lydia. Very good. Eulalia, where is 417 Eulalia. The 5th card of the 5th
pile.

Lydia. George, where is 677

George. The 4th pile, 8th card.

[When the cards are dealt into ten piles]

10th  9th 8th 7th 6th Sth  d4th  3rd 2nd  Ist

pile: pile: pile: pile: pile: pile: pile: pile: pile: pile:
10 9 8 7 6 5 4 3 2 1
20 19 18 17 16 15 14 13 12 11
30 29 28 27 16 25 24 23 22 21
40 39 38 37 36 35 34 33 32 31
50 49 48 47 46 45 44 43 42 41
60 59 58 57 56 55 54 53 52 31
70 69 68 67 66 65 64 63 62 6l
80 79 78 77 76 75 74 73 12 71
90 89 88 87 86 85 34 83 82 81
100 09 98 97 96 95 94 93 92 91
101

Another day Lydia had the cards dealt into 8 piles and bade the children
read them off in turn:

Benjie. 8th pile: 8 16 24 32 40
48 56 64 72 80
88 96

_ -
Eulalia. 3rd pile: 3 11 19 27 35
43 51 59 67 75
83 91 99

/

¥ No. of pile + [one less than no.] X 9 = no. on card,
of card in pile

4+ 49 =40
6429 =24
34359 =48
5449 =4}
4479 =67
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George. 6th pile: 6 14 22 30
3B 46 54 62 70
78 86 ,94

Benjie. 1st pile: I 9 17 25
33 41 49 57 65
73 81 89 97

Eulalia. 4th pile: 12 20

28 36 44 52 60
68 76 84 92 100

wt
George. Tth pile: 7 15
23 31 39 47 55
63 71 79 &7 /95
Benjie. 2nd pile: 2
18 26 34 42 50
58 66 74 82 90
o8 /
Eulalia. 5th pile: / 5
13 21 29 37 45
53 61 69 77 85
93 101

Benjie. Some of the piles are all odd numbers and some all even.
Eulalia. Yes, all the odd numbers are in odd piles and all the even numbers
in even piles.

Lydia. Tt was the same when you dealt them into 10 piles, and when you
dealt them into 2 piles.

Eulalia. 1t is because 2, 8, and 10 are even numbers. For the first card
will be in an odd pile if it is odd and in an even pile if it is even; and if
there are an even number of piles, the cards won't change from odd to
even nor from even to odd, but if there is an odd number they will.
Benjie. When we dealt them into 5 and 9 piles, then the odd places in the
odd piles had odd numbers, and so did the even places in the even piles;
but the even places in the odd piles and the odd places in the even piles
had even numbers.

PRIMARY ARITHMETIC
[With Suggestions to Teachers] (181 and 182)

it must not be supposed that so long as children learn arithmetic, it
makes no difference how they learn it. Many persons know numbers;
yet cannot imagine them without such fantastic accompaniments of shapes
and colors, that they are greatly hampered in endeavoring to operate
upon them with rapidity.

Many persons, — even professors of mathematics, — have no clear
idea of what numbers are; though they have been using them all their
lives.

The first thing to be done is to convey to the pupil as clear an idea
of number as a child can have and to teach him to think of the digits,
in simple, useful, and flexible diagrammatic images; and to associate with
these the Arabic figures.

LESSON I

All together:

One, two, three!
One, two, three!
ONE, TWO, THREE!

The teacher drops successive cents, nuts, or other objects familiar to
children and to which he already attaches some idea of number, on
account of his wishing to possess them: and as he drops he counts:

One cent: One nut: One block: One card:
Two cents: Two nuts: Two blocks: Two cards:
Three cents. Three nuts. Three blocks, Three cards.

The teacher marks spots on the blackboard, writing the Arabic figures
beneath.* (*It is not intended to draw the child’s attention particularly to



44 PRIMARY ARITHMETIC (181 and 182)

the Arabic [numerals]. But if the teacher always [writes them], the child
will half-learn them impercept{ibly and will] find it easier to [use them],
when the time comes. The “Egyptian™ ...)

@ e 00

1 2 3
The first three cards of the pack are now to be produced; and the pupil
is required to count various sets of two and three things in the room by
laying the first card upon the first thing, the second on the second, and
the third on the third, if there is a third, pronouncing at the same time
the words ong, two three. Then, the cards being laid aside, the following
is read from the book:

0
1 e f~.-_-' U?A
W = T

John Brown had a little Indian Boy

D VL) ¢y

1 little Indian 2 little Indians 3 little Indian Boys
Fig. 1

LESSON II

All together:

One, two, three, four!

One, twa, three, four!

One, two, three, four!

One, two, three, four!

One!

One-two!

One-two-three!

One-two-three-four!

Three-four! Three-four! Three-four! Three-four!
One-two-three-four!
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The teacher takes four biscuits and puts them up so as to display them,
one by one, all counting

One! Two! Three! Four!
The teacher places a card before each, and all say, as he does so:
One! Two! Three! Four!

Teacher: How many biscuits are there? Answer: Four.
The teacher makes a spot on the blackboard.

@

Teacher: How many spots are there? Answer: One!
Teacher: Yes. We will mark it.

e
1

The teacher adds another spot.

e @

1
Teacher: How many spots are there now? Answer: Two!
Teacher: Let us count them. (Pointing) One, two. Yes, two. We will
mark them.

e @

1 2
The teacher adds a third spot.
e @ e

1 2
Teacher: How many spots are there now? dnswer: Three!
Teacher: Let us count them. As I point you count. (The teacher points
at them successively.) AN: One: two: three.
Teacher: Let us count them backward. (Operation repeated in reverse
order.) So, there are three. The third must be marked.

@ @ ©
1z 3

The teacher adds a fourth spot.

e @ @ o

1 2 3
Teacher: How many spots are there now? Answer: Four!
They are counted forward and backward.
Teacher: We must mark the fourth spot.
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® © 9 @
1 2 3 4

Here the pupil is exercised in counting sets of things up to 4 in number,
using the cards, which he lays in order upon or against the single things
as they are counted, at the same time pronouncing [the] numbers.

[In the following figure 2]

How many heads are there [in (2)]? g | :Q"Jl ; Z
\\ T

How many arms have they between them?

How many people are [in (b)]? ﬁ »&

How many lines [in (c)]?

How many points [in (c)]? E[IE'

How many arms to a cross [in (d)]?

How many dots [in (&)]?

How many [in (£)]7

How many [in (g)]? ¥

How many [in (h)]? ‘: !

How many [in (i)]? 2 ¢
Fig. 2 (a-i)

[How many elements in each picture in figure 37)

AL Tl R e

T = NN

000 V figis
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LESSON 11

Teacher: The next number is five. Say five. All: Five.

Four-five! Four-five! Four-five! Four-five! Five!
One-two-three-four-five!
Two-three-four-five!
Three-four-five!
Four-five!
Five!

The teacher makes 3 spots on the board.
e 92 9 e @

Teacher: How many spots are there?  Answer: Five.
Teacher: Let us count them. (He points.) All: One; two: three: four: five.
Teacher: They must be marked.

e © 9 © o

T T
The teacher counts the fingers of one hand with the forefinger of the
other; and calls on each one of the class to do the same thing, several
times both forward and backward. Then follow exercises in counting with
the first 5 cards and with the fingers,

[In the following figure 4]

How many dots are [in (a)]? -
*
How many stars are [in (b)]? * ok
How many lines are [in (c)]? ;}'("F}(
How many points has this star [in (d)}? %
How many lines [in (d}]?
How many crosses are [in (e)]? o
How many lines make a cross? —I— + +
How many arms to a cross? -

Fig. 4 (a-¢)
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How many apples are [in (£}]?

How many pears are [in (g)]?
How many eggs are [in (h)]?

How many toes does your right foot walk on?
How many toes does a dog’s foot walk on?
How many toes does a goose’s foot walk on?
How many toes does a pig’s foot walk on?
How many toes does a horse’s foot walk on?

Ik
SRR

How many petals has a lily?
How many has a laurel-blossom?
How many has an apple-blcssom?

LESSON 1V

Teacher: Say six! All: Six.
One-two-three-four-five!
One-two-three-four-five!
One-two-three-four-five!
One-two-three-four-five-six!

Two-three-four-five-six!
Three-four-five-six!
Four-five-six!

Five-six!

Six!

eleYete
560

oo o
Fig. 4(-h)
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The teacher makes 6 spots on the board.
@ ® & o & o
Teacher: How many spots are there? Answer: Six.

Teacher: Let us count them. (Points.) A//: One: two: three: four: five six.
Teacher: They must be marked.

¢ @ @ o o ¢
1z 3 4 5 &

Many sets of six and fewer things are now to be counted forward and
backward with the cards.

LESSON V

Seven!

Six-seven!

Five-six-seven!

Four-five-six-seven!
Three-four-five-six-seven!
Two-three-four-five-six-seven!
One-two-three-four-five-six-seven!
How many squares are [in Fig. 5(a)]?

COOOOO0

Count them. They must be marked [as in Fig. 5(b)].
OOOOOSO
4 & 1 7

Counting forward and backward and with the cards to be practised here
upon articles in the room.

2 a
How many spots are [in Fig. 5(c)]? ° ° o °

L
How many are [in Fig. 5(d)]? ¢ :“ 3

o @
How many are [in Fig. 5(e)]? ° o o
How many are [in Fig. 5(f)]? ren



50 PRIMARY ARITHMETIC (181 and 182)

How many moons are [in Fig. 5(g)]?
How many are [in Fig. 5(h)]?

How many rounds are [in Fig. 5(i)]?
How many crossings?
How many enclosures?

How many rounds are [in Fig. 5()]?
How many crossings?
How many enclosures? Seven!

The days of the week are Sunday 1
Monday 2
Tuesday 3
Wednesday 4
Thursday 5
Friday 6
Saturday 7
How many days are there in all?
Explanations of this will conclude the lesson.

an A oa
PR A A

A A

Fig. 5(a-j)

P
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LESSON VI
Eight!
One!
One-two!

One-two-three!
One-two-three-four!
One-two-three-four-five!
One-two-three-four-five-six!
One-two-three-four-five-six-seven!
One-two-three-four-five-six-seven-eight!
Two-three-four-five-six-seven-eight!
Three-four-five-six-seven-eight!
Four-five-six-seven-eight!
Five-six-seven-eight!
Six-seven-eight!
Seven-eight!
Eight!

How many hay cocks are there [in Fig. 6(a)]?

2 A2 342542

Count them. They must be marked [as in Fig. 6(b)].

A2a22454 %

Counting objects in the room forward and backward and with the cards
is now to be practised. Afterwards, give the child four dress-hooks and
ask him how many he has? Then, four eyes for the hooks and [ask] how
many he has of them. Then, ask how many hooks and eyes he has in
all. Then, taking away the hooks and eyes, give him back a hook and
eye attached and ask how many things are there? Then give another hook
and eye and ask how many he has in all; and so on up to eight.
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o ; N/
How many lines in this figure [7(a)]? <N <
How many points? /N
N

How many crossings?

How many black squares [in Fig. 7(b)]?
How many white squares?

How many circles in this wheel [in Fig. 7(c)]?
How many spokes?

How many eggs are [in Fig. 7(d)]? F
How many chicks? % % g
How many eggs and chicks together? O

How many different figures are [in Fig. 7(e)]?

How many are [in Fig. 7(f)]?

How many are [in Fig. 7(g)]?

How many are [in Fig. 7(h)]? @
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The teacher now brings out about 247 reddish marbles, with 24 white
bags (with strings) to hold 10 marbles each, just comfortably, and 2 or
more green bags (with sirings) to hold 100 marbles and ten white bags
each. He also brings out an abacus, consisting of a frame with seven
parallel wires, and nine beads on each wire. All the beads on one wire
are the same color. Those of the first wire are copper-colored, those on
the second wire white or silver, those on the third green (from the green
back dollar bill), those on the fourth gold or yellow, those on the fifth
light blue, those on the sixth grey, those on the seventh bright red.

The teacher and class together proceed to count the marbles, dropping
them one by one into the bag, and pushing forward a copper colored
bead for each. At the tenth, the nine copper-colored beads are shoved
back, a white bead is pushed forward, and the bag is closed; etc. The
numbers are pronounced as follows:

One.
Two.
Three.
Four,
Five.
Six.
Seven.
Eight.

Nine.

L = - B R P

On the dropping of the next ball, the white bag is tied up and dropped
into the green bag; and the copper-colored beads are all shoved back,
and a white one pushed forward. And so at each ten.

10 Ten 20 Two tens 30 Three tens

11 Ten-one 21 Two tens one 31 Three tens one

12 Ten-two 22 Two tens two 32 Three tens two

13 Ten-three 23 Two tens three 33 Three tens three

14 Ten-four 24 Two tens four 34 Three tens four

15 Ten-five 25 Two tens five 35 Three tens five

16 Ten-six 26 Two tens six 36 Three tens six

17 Ten-seven 27 Two tens seven 37 Three tens seven

18 Ten-eight 28 Two tens eight 38 Three tens eight

19 Ten-nine 29 Two tens nine 39 Three tens nine etc,

When 99 has been counted, as nine tens nine, on the next ball being
dropped, ten tens is called, the white bag after being tied up is put into
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the green bag, which is in turn tied up and put into the yellow bag. Mean-
time, the copper-colored and white beads of the abacus are shoved back
and a green one is pushed forward. The counting proceeds.

100 Ten tens 110 Ten tens ten 120 Ten tens two tens

101 Ten tens one 111 Ten tens ten one 121 Ten tens two tens one
102 Ten tens two 112 Ten tens ten two 122 Ten tens two tens two
103 Ten tens three 113 Ten tens ten three 123 Ten tens two tens three
104 Ten tens four 114 Ten tens ten four 124 Ten tens two tens four
105 Ten tens five 115 Ten tens ten five etc.
106. Ten tens six 116 Ten tens ten six

107 Ten tens seven 117 Ten tens ten seven

108 Ten tens eight 118 Ten tens ten eight

109 Ten tens nine 119 Ten tens ten nine

200 Two ten tens 210 Two ten tens ten 230 Two ten tens two ten
201 Twotentensone 211 Twotentenstenone 221 Twotentenstwotenone

The counting of the marbles is to be practised until the pupils thoroughly
understand it, and are perfectly familiar with the numbers.

Teacher (holding up a glove): Is this a shoe? All: No.

Teacher: No: it is not, because it is not meant to walk in. What is it?
All: A glove.

Teacher: Yes. It is meant to wear on the hands. It is called a glove,
It is a thing meant to wear on the hands, with a place for each finger.
Glove is its name. It is much more convenient to say give me a pair of
gloves, than to say give me a pair of things to wear on my hands with
a place for each finger. (Points to a table.) Is this a chair? All: No.
Teacher: No, because it is not a thing to sit on with a back to it. (Pointing
to a stool.) Is this a chait? All: No. Teacher: No, because it has no
back. I would like to sit down. Harry, will you be so kind as to bring
me a thing to sit down on with a back? Thank you. It would have been
easier for me and for you if I had said, please bring me a chair, would
itnot? Harry: Yes, ma’am. Teacher: It is a thing to sit on with a back;
but its name is chair. Some of the numbers have easy names.
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Two tens is twenty. Ten one is eleven.
Three tens is thirty. Ten two is twelve.
Four tens is forty. Ten three is thirteen.
Five tens is fifty. Ten four is fourteen.
Six tens is sixty. Ten five is fifteen,
Seven tens is seventy. Ten-six is sixteen.

Eight tens is eighty. Ten seven is seventeen.

Nine tens is ninety. Ten eight is eighteen.
Ten nine is nineteen,

Ten tens is a hundred.

Ten ten tens is a thousand.

Let us count by bags of ten.

Ten.
Twenty.
Thirty.
Forty.

Fifty.

Sixty.
Seventy.
Eighty.
Ninety.

A Hundred.

Put the white bags in a green bag.
Let us count by bags of ten tens.

A hundred.
Two hundred.
Three hundred.
Four hundred.
Five hundred.
Six hundred.
Seven hundred.
Eight hundred.
Nine hundred.
Ten hundred.

Put the ten green bags in a yellow bag. There are in all a thousand.
Exercises in naming numbers are now to be practised. The bags being
shown, and at the same time the beads of the abacus, and the Arabic

figures,
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The counting of coffee-beans is now to be practised.

Keep your mouth shut in counting; it is the only way to count fast.

To count right is the first merit.

To count fast is the second.

Of those who make no mistakes, the one who counts fastest will be
decorated till tomorrow.

Keep up this for several days. A pound of green Java coffee beans will
contain 2500, and can easily be counted in a little over half an hour.
The countings should gradually be extended to half a pound. Let an
ounce first be weighed out to each child (having been counted overnight
by the teacher), and thus he will be led to take an interest in the question
of how many. An ounce will count from 155 to 160, or thereabouts.
From an ounce, proceed to two ounces, and then to four ounces, and
finally to eight ounces.

Competitive exercises in counting coffee-beans are now to be practised.
The children should be required to keep their mouths shut while doing
this; and it should be explained that in that way only can they count very
fast. The counting should go up to 2500, which will make a pound of
green Java coffee beans. Of course, strict accuracy is the first requirement.

Mixed with these exercises should be others in counting aloud on the
large abacus. In the latter, where the pupil will stand behind the abacus,
grace and deportment are not to be neglected.

The pupil should now be taught to take the full pack of cards and
after arranging them in regular order, beginning at the back, to hold the
pack back up and deal out the cards into two piles face up, so that all the
odd numbers come successively in the first pile and the even numbers in
the other. When all are dealt out, the first pile is to be taken up first and
the second at the back of it. The order of the cards is now to be learned
Sfluently. Do not go on to the next unil this is thoroughly mastered.

Upon this, will follow exercises in counting coffee beans by twos; also
in counting up to an odd number singly and then proceeding by twos.
Counting by twos aloud at the large abacus should also be practised.

246810 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82
84 86 88 90 92 94 96 98100; 1 3 5 7 9 11 13 15 17 19 21 23
25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 35 57 39 61 63
65 67 69 [... 101]

Counting by twos. The counting by two, threes, etc. is the proper method
of learning rapid addition. It is, in itself, an irksome task; and at the
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same time calls for a severe mental exertion. Yet is it indispensable to
real facility in arithmetic. Indeed, almost the whole art of computation
consists in this. Accordingly, no pains should be spared to make it in-
teresting, and to infuse a spirit of emulation into the exercise. The only
limit to the time that should be spent on these exercises is that the children
must not be disgusted.

The pupil should be taught to take the full pack of cards, and after
arranging them in regular order, beginning from the back of the pack,
to hold them back up and deal them out one by one into two piles, so
that one shall contain all the odd cards and the other 2all the even cards
in numerical order. The order of the numbers in each pack is now to be
learned until they can be said off with the utmost fluency.

246810 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82
84 86 88 90 92 94 96 98 100;

1357911131517 19 21 23 25 27 29 31 33 35 37 39 41

43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81
83 85 87 89 91 93 95 97 99101,
Next let counting by twos be practised on the large abacus, both with
odd and even numbers. Next must follow competitive exercises in count-
ing coffee-beans by twos; also in counting up to an odd number by ones
and going on from that point by twos.

Next counting downward by twos should be practised beginning at 101
and at 100.

How many cards are there in the first pile? How many in the second?
Which pile does 3 come in?

Which pile does 4 come in? 117 227 30?7 35?7 47?7 567 68?7 797

A boy had a marble and his mother gave him two more. How many
had he then? The next day she gave him two more before breakfast;
how many had he then? After breakfast she gave two more: how many
had he then? After school, two more: how many then? Before supper
two more: how many then? At bedtime, two more: how many then?
In the night she came and woke him up and gave him two more; how
many then?

A little girl found two pins on Sunday, and two more on Monday;
how many was that? She found two more on Tuesday; how many was
that? Two more Wednesday; howmany? Two more Thursday; how
many? Two more Friday; how many? Two more Saturday; how many?
Fourteen in one week. She went on the same way for another week.
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How many Sunday? Monday? Tuesday? Wednesday? Thursday? Fri-
day? Saturday?

A boy had 34 apples and gave away 2. How many had he left? He
gave away two more. How many then? Another two; how many lefi?
Ete.

I hold in my hand 99 coffee-beans. I take out 2. How many have I

now? I take out two more. How many now? Etc.
Counting by threes should be taught in the same manner. After the pack
is dealt out let the second pile upon which card 101 comes [be] taken first,
the first pile at the back of that, and the third [one] at the back of that.
(The reason for taking up the piles in a particular order is that thus, for
instance, if the pack is successively dealt into 3 piles, 4 piles, 7 piles, into
O piles; or into 5 piles, 6 piles, [7] piles, and 8 piles; the original order is
restored. The rule is to take the pile with 101 first, and then to pass
each time as many places to the left as there are piles to the right of 101.)
The numbers must be said as fluently as in counting by ones. And so
in all the following cases.

Deal the pack into three piles

3 6 9 12 15 18 21 24 27 30
33 36 39 42 45 48 51 54 57 60
63 66 69 72 75 78 81 84 87 90
93 96 99

3rd Pile

1 4 7 10 13 16 19
22 25 28 31 34 37 40 43 46 49
52 55 58 61 64 67 70 73 76 79
82 85 88 91 94 97 100

1st Pile

2 5 8
11 14 17 20 23 26 29 32 35 38
4] 44 47 50 53 56 59 62 65 68}2nd Pile
71 74 77 80 83 86 89 92 95 98
101

Learn these, so as to say them fluently. (But do not let the child become
disgusted. Rather give him five or six lessons a day, than fatigue him too
much at one.)

Counting by threes on the abacus, beginning with 1, with 2, with [3].

Counting coffee-beans by threes, with decoration for the fastest of those
who make no mistakes.
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Counting downwards by threes 99, 96, 93, ete. 101, 93, 95, ete. 100,
97, 94, 91, etc.
When the cards are dealt into three piles, how many are there in the
first pile? How many in the second? How many in the third? The fol-
lowing questions may be asked, without insisting much upon them. [Ask]
the child [to] look and see.
In which pile is 1? In which pile is 11? In which pile is 21? In which pile
is 317 In which pile is 417 In which pile is 51? 617 717 812 917 1012
In which pile is 1? In which is 31?7 In which is 61?7 In which 91?
In which pile is 11?7 In which 41? In which 717
In which pile is 21? In which 517 In which 817
In which is 27 127 227
327 427 527
627 727 827
927
In which is 27 32?7 627 927
In which is 1?7 31? 617 917
In which is 127 427 727
In which is 11?7 41? 717
In which is 227 527 B2?
In which is 217 517 817
In which is 3?7 137 23?
337 437 537
637 737 837
93?
In which is 37 337 637 937
27 327 627 97
17 317 617 91?7
In which is 13?7 437 737
127 421 127
11? 417 717
In which is 237 53?7 837
227 527 81
21?7 517 312
In which pile is 3? 67 9? 13?7 162 192 23?7 26?7 297
33?7 367 397 437 462 497 537 56?7 597
63?7 667 697 73?7 767 797 837 B6? BO?
93?7 967 997
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In which pile is 2?7 57 8? 12?7 157 187 227 257 287
327 357 387 427 45?7 487 527 557 587
627 657 687 727 757 787 827 857 887
927 95?7 98?
17 47 7?7 117 1427 177 217 247 277
317 347 377 417 447 477 51?7 547 57?
617 647 677 717 74?2 77?7 817 847 877
917 947 97?7 101?

I take up 3 coffee-beans, and lay down 2; how many have I? 1 take up
3 more; how many have I now? I lay down 2; how many? T take up 3;
how many now? I lay down 2; how many now?

I take up 2 coffee-beans, and then two more; how many have I? T lay
down 3; how many have I now? I take up 2; how many? I take up 2
more; how many? I lay down 3; how many?

A boy had 3 red marbles, and 3 yellow ones. How many was that? He
had besides 3 green ones; how many was that? He had besides 3 blue
ones; how many was that? He had besides 3 violet ones; how many was
that? He had besides 3 magenta ones; how many was that? He had
besides three brown ones; how many was that? He had besides three
buff ones; how many was that? He had besides three olive ones; how
many was that? He had besides three slate-colored ones; how many was
that? He had besides three grey ones; how many was that? He had be-
sides three black ones ; how many was that? He had besides three [white]
ones ...

Counting by fours. Deal the cards into 4 piles. [The piles should be taken
up in this order: lIst, 2nd, 3rd, 4th.]

4 8 12 16 20 24 28 32 36 40
44 43 52 56 60 64 68 72 76 80; 4th Pile
84 B8 92 96 100

3 711 15 19
23 27 31 35 39 43 47 51 55 59;3rd Pile
63 67 71 75 79 83 87 91 95 99

2 6 10 14 18 22 26 30 34 38
42 46 50 54 58 62 66 70 74 78;2nd Pile
82 86 90 94 98
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1 5 9 13 17
21 25 29 33 37 41 45 49 53 57
61 65 69 73 77 81 85 89 93 97
101

Counting by fours on the abacus, beginning with 1, 2, 3, 4. Competitive
counting of coffee-beans by fours, Counting downward by fours.

In which pile is 107 207 30?7 407 50?7 607 70? 80?7 207 100?
47 147 247 347 447 547 647 747 847 947
82 18?7 287 387 48? 58?7 682 787 887 987

In which pile is 2? 127 227 327 42? 527 627 727 827 927
67 167 267 36?7 46? 567 667 767 867 967

In which pile is 1? 11? 217 31? 41? 51?7 61? 717 817 917 1012
57 157 257 357 457 557 657 757 857 957
9? 192 297 39?7 497 597 69?7 797 897 997

In which pile is 3? 132 23? 337 43?7 537 63? 737 832 93?
72 177 277 372 477 577 677 177 877 9N

1st Pile

I hold 50 coffee-beans in my hand. T lay down four. How many have
I now? I lay down four others; how many have I now? Etc.

There are 52 weeks in a year. After 4 weeks have passed, how many
are there to come? After 4 weeks later, how many to come? Etc.

Mrs. Notable had 75 cents. She spent 4. How many had she left?
She spent four more; how many had she then? She spent four more;
how many had she then? Etc.

Edgar had 25 pigeons; but 4 were lost. How many remained? Four
more were lost; how many remained? Etc.

Every President of the United States is President for 4 years, but the
same man may be president for two terms of 4 years. The first President
was Inaugurated in 1789. What were the years of the others? The presi-
dents were:

George Washington
George Washington
John Adams
Thomas Jefferson
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Counting by fives. Deal the cards into 5 piles.

5 10
35 60

4 9
54 59

3 8
53 58

2 7
52 57

1 6
51 56
101

(The piles are to be taken up in this order: Ist, 2nd, 3rd, 4th, 5th.)
Counting by fives on the abacus, beginning with 1, 2, 3, 4, 5. Competitive
countings of coffee-beans by fives. Counting downward by fives.

In which pile is 1?7
In which pile is 2?
In which pile is 3?

15
635

14
64

13
63

12
62

11
61

In which pile is 4?
In which pile iz 57
In which pile is 6?
In which pile is 77

In which pile is 97

In which pile is

20
70

19
69

18
68

17
67

16
66

25
5

24
74

23
13

22
72

21
71

30
80

29
79

28
78

27
7

26
76

35
85

34
84

33
83

32
82

31
81

40
90

39
89

38
88

37
87

36
86

45 50
95 100

44 49
94 99
43 48
93

42
92

41
91 96; 1st Pile

5th Pile
4th Pile
2nd Pile

}
-
}

98
47
97
46

117 21?7 317 417 517 61? 717 817 917 101?
127 227 327 427 522 627 727 827 927
137 237 337 437 53? 63?7 737 837 93?

147 247 347 447 547 647 747 847 947
157 257 357 457 557 657 757 8§57 957
167 262 367 46?7 567 667 767 867 962
177 272 377 472 577 677 777 871 977
In which pile is 87 187 287 38?7 487 587 687 787 882 987
197 297 397 497 59?7 697 797 892 99?2

107 207 307 407 507 60?7 707 807 907 1007

Counting by sixes. Deal the cards into 6 piles.

6 12 18 24 30 36 42 48 54 60

66 72 78 84 90 96

25 31

1

7

} 6th Pile

13 19

37 43 49 55 61 67 73 79} 1st Pile
85 91 97

2 8 14 20 26 32 38
44 50 56 62 68 74 80 86 92 93

} 2nd Pile
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3 9 15 21 27 33 39 45 51 57
63 69 75 81 87 93 99

4 10 16
22 28 34 40 46 52 58 64 70 76
82 88 9%4 100

5 11 17 23 29 35
41 47 53 59 65 71 77 83 89 95
101

3rd Pile

4th Pile

5th Pile

63

(The piles are to be taken up in this order: 5th, 4th, 3rd, 2nd, 1st, 6th.)

Counting by sevens. The piles are to be taken up in this order: 3rd, 6th,

2nd, 5th, Ist, 4th, 7th.

14 21 28 35 42 49 56 63 70
1T 18 25 32 39 46 53 60 67
8 15 22 29 36 43 50 57 o4
12 19 26 33 40 47 54 61 68
2 9 16 23 30 37 44 51 58 65
6 13 20 27 34 41 48 55 62 69
3 10 17 24 31 38 45 52 59 66

L e |

77
74
71
735
72
76
73

84
81
78
82
79
83
80

91
88
85
89
86
90
87

98
95
92 99
96
93 100
97
94 101



PEIRCE’'S PRIMARY ARITHMETIC
UPON THE PSYCHOLOGICAL METHOD (part of 179)

My father, Professor Benjamin Peirce, a celebrated mathematician, was
very particular to have me taught arithmetic, by the same method by
which he had very successfully learnt the art, only with improvements
which his experience had suggested. Studies of modern psychology have
enabled me still further to perfect this system; and after assuring myself
by actual trial of its advantages, I here offer it in a practical form to the
teachers of our people.

Miss Sessions was a sweet, dear, jolly old lady, who kept a school for
boys and girls. She used to say the children were her gardens, — each
child a good spacious garden, not little at all, although the things growing
in the garden were little, because it was only spring-time. In every garden,
Miss Sessions was trying to make things grow, — beautiful, gay flowers,
and sweet-smelling things, and vegetables good to eat, and other little
things which seemed very useless, but which would in future years grow
up to great shady trees under which many people could find shelter. Then,
she had to pull up the weeks, nasty bad-smelling, ugly, and poisonous
things, wild grasses, things not so verv bad in themselves but which would
leave no room for the good things which were to make the garden fine
hereafter. Pulling up the weeds always gave the ground pain; but Miss
Sessions used to say, “You must bear this little pain, now, my dear garden,
for were such weeds allowed to grow, they would have to be pulled up at
last with much greater pain, and too late for flowers to take their place.”

Miss Sessions wanted to pet a dress made for herself. So she went off
to the shop, taking with her some of her scholars, Alfred and Beatrice
and Eulalia and George and Ned and Ralph and Louisa and Robert and
Richard and Daisy and Barbara and Cicely and Deborah and Priscilla
and Hugh and Guy and Roger.

They looked at many things and at last Deborah said, “Please, Miss
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Sessions, get this blue silk with a white vine upon it.” “Would you like
to see me wear that?” asked Miss Sessions. “Indeed T should,” said
Deborah. So it was settled that that should be taken. “How much do
you want?” asked the salesman. “Now, what a silly old thing T am. I
don’t know how much I want,” said Miss Sessions. “I must go home and
think it over.” The salesman promised to keep the piece till the next day.
“IIl tell you, how I can find out,” said Miss Sessions, on the way back.

“When I had my black bombazine made, 1 had a piece of wine colored-

muslin, of exactly the same length. Now, there was just enough of the
bombazine to make me my dress and leave over enough for alterations.
But the muslin has never been made up. So I will take that to the shop
and get a piece so large that one will just cover the other, when they are
both spread out.” “That will be a good deal of trouble,” said Roger.
“Yes, s0 it will,” said Miss Sessions; “but what else can I do.” “Why,”
said Roger, “you might take a stick, and hold the end of it against the
corner of the muslin, and stretch the list along the stick, and hold your
finger on the list where the second end of the stick comes, and then put
the first end there and stretch more of the list along the stick, and count
how many times you could do this before you came to the end of the
muslin, and then carry the stick to the shop, and stretch that silk along
the stick the same number of times. Then you would know you had just
as much of that as of the other.”

“Well, T will do that; and I happen to have a very good stick for the
purpose.” So the stick was used in [the] manner proposed; and it was
found that the cloth was 12 times as long as the stick. The next day they
all returned to the shop. “Well,” asked the salesman, “have you found out
how much you wanted?” “Yes,” said Miss Sessions, “T want 12 times the
length of this stick.” “You mean you want 12 yards. But what should
you bring the stick for?” “To show you how long it is.” “Did you think
I hadn’t a yardstick, too? See, mine is just the length of yours. Itis a yard.”
“Of course.” said Eulalie, “Miss Sessions knew that, all along. But it was
only a bit of her fun to pretend she never heard of measuring cloth,! [...]"

1 Peirce’s notes to himself are incorporated in the manuscript and read as follows:
Addition in Primary Arith.

In group-counting the child has already practised addition and knows the table
to perfection. Nothing remains but to accustom him to add in first one number
and then another. together with the word.

Introductory Example, Poor family without food. Each member contributed
something, Put them down — Add them up. Find the sum total,

Describe the process carefully,

Family out walking finds Jittle girl without shoes.
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Miss Sarah Sessions had taken her school of boys and girls out for a
ramble in the woods, and who should they find but a poor little girl with
bare feet, seated on a style and crying softly. “What is the matter, my
dear,” said Eulalie, who first came up to her. “I have no shoes.” “Miss
Sessions,” cried Eulalie, “here is a little girl without shoes: let us go and
buy her a pair.” “But have you the money?” “I have only eleven cents,”
said Eulalie. “I have 7,” said Richard. “I have 2,” said Amy. “I have 9,”
said Robert. “T will give 6,” said Theodore. “And I 5,” said Julia. “And
I 8,” said Emily. “And I 3,” said George. “And I 3,” said Gregory.
“And I 4,” said Hermann. “And I 4,” said Louisa. “And I seven,” said
Helen. “Set down the amounts one under the other, Eulalie,” said the
teacher. So they were neatly written, thus:

Eulalie 11
Richard 7
Amy 2
Robert 9
Theodore ]

1893
Addition in Primary Arithmetic

Sheldon’s Elementary Arithmetic begins with it. He sticks down 141 = 2 right
at the very first! Before introducing the number 4! This is madness!

Wentworth Primary Arithmetic introduces the thing but not the name before
use of all the numbers. He puts off the use of the name very injudiciously.

Greenleaf’s First Lessons does about the same,

Rickoff First Lessons in Arithmetic does the same.

The Frankiin the same,

Ray's New Primary. Avoids this great mistake,

Robinson’s New Primary partly avoids it.

Robinson's Progressive Primary wholly avoids it,

Teach one thing at a time, is what the most of them forget. But slight preparatory
hints of what is coming without special teaching is permissible and recommendable.

Termineclogy of addition
Addifion
Add, cast up, sum
Sum total
To carry

Subtraction

subtract, deduct, rebate
minuend
subtrahend
remainder, remainer
to borrow
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Julia
Emily
George
Gregory
Hermann
Louisa
Helen

T S R P R PO )

“Now who can cast up the amounts and find the sum total?” asked Miss
Sessions. “Do you mean who can add them together, and find out how
many cents there will be when they are all put together?” asked George.
“Yes, that is the same thing.” “I can do it,” said George. “Let me see
how you do it.” “Eleven and seven are 18, and 2 are 20, and 9 are 29,
and 6 are 35, and 5 are 40, and 8 are 43, and 3 are 51, and 3 are 54, and
4 are 58, and 4 are 62, and 7 are 69.” “How much must I add, then, to
make 757 “Six cents,” said George.

“That is right, and the whole addition is right,” said Miss Sessions.
“But you must learn to do addition, — that is to count numbers together,
— in the easiest and quickest way; for every grown person has many sums
to cast up every day, and it is tiresome if not done skillfully, and very
bad to make mistakes. Whoever makes mistakes in arthmetic gets terribly
punished in life.” “How should I add?” asked George. “Point with a
pencil at each number, just as you are about to add it in; and that the
pencil may not hide what comes next, begin at the bottom. Say 7, and
pointing at the 4, say 11. Only do not say this loud, but keep your mouth
shut. Then move the pencil up, so as to point at the upper 4. Do not say
‘And 4,” even to yourself. But look at the 4 and say to yourself, 15; keeping
your lips firmly shut. If you stop to talk, you cannot add rapidly. Move
your pencil up to the 3, and say to yourself 18, Move your pencil up to
the upper 3, and say to yourself 21. Move your pencil up to the 8, and
say to yourself, 29, Move your pencil up to the 5, and say to yourself, 34.
Move your pencil up to the 6 and say to yourself, 40. Move your pencil
up to the 9, and say to yourself 49. Move your pencil up to the 2, and say
to yourself 51. Move your pencil up to the 7, and say to yourself, 58.
Move your pencil up to the 11, and say to yourself 69. Draw a line under
the column of figures and under it write 69. It is the sum total.”

Some boys agreed to put their money together and buy a football. *T will
give 7 cents,” said Alfred; “and I 4,” said Charley; “and I 2,” said Ned;
“and I 9,” said George; “and I 6,” said Ike; “and I 4,” said Max; “and

PEIRCE'S PRIMARY ARITHMETIC (part of 179) 69

I 1,” said Nick; “and I 8,” said Philip; “and I 6,” said Dick; “and I 3,”
said Bob.

“How many cents will there be, altogether?” asked Alfred. *All put
down their money, and we will count it,” said Charley. “But I left mine
at home,” said Ned. “So did I.” said Tke. “And so did I,” said Nick.
“Let us cut out papers,” said Bob, “and pretend they are cents, and every-
body give as many of those as he will give of cents; and then we will count
the papers, and that will show how many cents, there will be.” “It will
be much easier to add the amounts,” said George. “How do you do that?”
said Max. “I will show you,” said George. “You begin by writing the
numbers one under the other so.” Then he wrote:

Alfred 7
Charley 4
Ned 2
George 9
Tke 6
Max 4
Nick 1
Philip 8
Dick 6
Bob 3

“Now,” he continued, “you say 7 and 4 make 11; and 2 makes 13; and
9 makes 22; and 6 makes 28; and 4 makes 32; and 1 makes 33; and 8
makes 41; and 6 makes 47; and 3 makes 50. So there will be 50 cents
in all.”

While George was explaining this, the school-mistress, Miss Sessions,
came up; and when he had done, she said: “Yes, George, that is right.
But did I hear you say you did this addition because it was quicker and
easier than counting pieces of paper?” “Yes,” he answered, “is not that
507" “Yes, indeed. Only, if you add because it is a quick and easy way
of finding out what you want to know, then vou want to do it in the
quickest and easiest way, Now, your way is right; but here is a quicker
and easier way.

“You write the numbers exactly under one another in as straight a
column as you can. Then, you take a pencil and point at the lowest
number, — in this case, 3 — and keeping your lips tight shut, — say
silently to yourself, 3. Then, point to the number next higher, here 6,
look at it, but do not say it to yourself; only say silently to yourself 9,
which comes next after 3 in counting by 6s. Then point to the number
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next higher, — here 8, — look at it, and say silently to yourself 17, which
comes next after 9 in counting by 8s. So you go on:

Pointing at 1, say silently 18.

Pointing at 4, say silently 22.

Pointing at 6, say silently 28.

Pointing at 9, say silently 37.

Pointing at 2, say silently 39,

Pointing at 4, say silently 43.

Pointing at 7, say silently 50.”
“Do you add in this way?” asked George. “No,” said Miss Sessions, “I
have a quicker way still; but the way I tell you is the best way for be-
ginners.” !

“Say, Miss Sessions,” said Alfred, “George has set me a sum that I cannot
do.” “What is it, Alfred?” “There is a hymn,

Jesus shall reign where'er the sun

Does his successive journeys run.
The first verse has 26 words, the second 25, the third 24, the fourth 25,
the fifth 27, and the sixth 22. How many words, are there in all?” “Let
us see,” said Miss Sessions, “We write them down carefully.” She wrote

Ist Verse 26

2nd 25
3rd 24
4th 25
5th 27
6th 22

“Now let us not count the twenties, at first; but only the numbers over
twenty. They make how many?” “What?” asked Alfred. “Why how much
do the 6, 5, 4, 5, 7, 2 make, without the twenties?” “Oh, they make 29.”
“Right. Now set down the 9 and add in all the twenties. The 20 of the 29
and the 20 of the 22, make 40, do they not?” “I suppose 20 and 20 make
40,” said Alfred. “Are you sure they don’t make 377" “Yes, I am sure
they make 40.” “Now the 20 of the 27 makes 60; and the 20 of the 25
makes 80; and the 20 of the 24 makes 100; and the 20 of the 25 makes
120; and the 20 of the 26, makes 140. Now, we had 9 set down. 140 and
9 make 149, But I will show you an easier way. You add up the last col-
umn, the 6, the 5, the 4, the 5, the 7, and the 2. We call this the column
of units, The units are 29. We set that down, making the two very small,
thus:
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1st Verse 26
2nd 25
3rd 24
4th 25
5th 27
6th 22
2
9

We say this is ‘carried.” That is, it is carried to the other column.
Now the other column is the column of tens. Twenty is the tens. Add
these up as if they were units, not leaving out the 2 of the 29."

“Miss Sessions, if you please,” said George, “there are 365 days in the
year. Now January, the first month, has 31 days. At the end of January
how many days remain before the end of the year?” “You must set down
365 and 31 under it, thus:

Whole year 365 days

January 31
Now you must ask, how many must be added to 1 to make 5, that is
what goes before 5 in counting by 1s? What is the answer to that?”
George said, “4.” “Very well. Set that down below, thus:

365
31

—_—

4
Now ask how much must be added to 3 to make 6, that is, what goes before
6 in counting by 3s?” George said, “3.” “Good. Set that down, thus:
365
31
T34
Now nothing is taken away from the hundreds. So they remain 3. So the
answer is
Whole year 365 days
January 31 days
Rest of year " 334 days.

This work is called subtraction, which is taking away. 31 is subtracted
from 365 and leaves 334. We call 365 the minuend, 31 the mbrmlhend,
and 334 the remainder or remainer. You can also say deduct: 31 is de-
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ducted from 365. Also, you can say you rebare 31 from 365. You can
call 334 the remainder, or you can call it the balance. To prove you have
done the substraction right, add

334
31

365
It gives the minuend.” :
George said, “The second month is February, and it has 28 days? How
shall T subtract 28 from 334?”

Miss Sessions replied, “Set down the subtrahend under the minuend.”
George sets it down thus:

334
28

“No,” said Miss Sessions, “that won’t do. You must set down units under
units and tens under tens, thus:

334
28 ”

“But " said George, “I cannot ask how much must be added to 8§ to make
4, because 8 is more than 4.”

“That is true,” replied Miss Sessions, “so you must borrow ten from
the 30. That is you must think of 334, not as 330 with 4 besides, but as
320 with 14 besides. Then, how much must be added to 8§ to make 147
That is, what goes before 14 in counting by 8s?”

George replied, “6.”

“Good, set down the 6 thus:

334
28

—_—

6

Now you have to take 20 from 320 or 2 from 32, or say 2 from 2. How
much is that, George?”

“In counting by 2s, there is no number which goes before 2.”

“That is true, But if you put 2 marbles on the table, you can then take
2 marbles away, and how many are left?”

“None at all.”

“Then put down, 0 which [is] nothing, naught, cipher, or zero.”

“Then I get
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334
28

306

Is that right?”

“Add the remainder to the subtrahend; and see if you get back the
minuend.”
George does the sum

306
28

334

“Yes, I do.”

“Then, it is plainly right. Now, see here. There were in 1890, 62622250
persons in our country and 32067880 were men and boys. How many
women and girls were there?

People 62622250
Men 32067880

Say, 0 from 0 is how many?”

George does not know.

“2 from 2 left none. Put 1 marble on the table and then take 1 away,
and how many are left?”

George says, “None.”

“Put no marbles at all on the table, and take none away, and how
many are there?”

George says, “None. But then,” added he, “that seems silly.”

“It would be silly, if that was the whole of it; but it is not silly, when
it helps you to subtract 32067880 from 62622250.

“No, that is true,” said George.

*“Very well: Put down the 0, thus

62622250
32067880

0

Now, 8 from 5 is how many?”

“I can’t take 8 from 5,” said George.

“That is true. Then, take 8 from 15, borrowing from the 2 to the left.
That leaves how many?”



74 PEIRCE’S PRIMARY ARITHMETIC (part of 179)

“In counting by 8s, before 15 comes 7 ” said George.
“Good; then put down the 7, thus:

62622250
32067880
70

Now, 8§ from 1 leaves how many?”

“I can’t,” said George, “but borrowing 1, 8 from 11 leaves 3, because,
in counting by 8s, 3 comes next before 11.”

“Very good. We set that down

62622250
32067880

370

Now 7 from 1 leaves how many?”
“I can’t,” said George, “but borrowing 1, 7 from 11 leaves 4, because,
in counting by 7s, 4 comes next before 11.”
“Good again. We set that down
62622250
32067880

4370

Now 6 from 1 leaves how many?”

“I can’t,” said George, “but borrowing 1, 6 from 11 leaves 5, because,
in counting by 6s, 5 comes next before 11.”

“Right again. We set that down

62622250
32067880

54370

Now 0 from 5 leaves how many?”

“I don’t know how to count by naughts ” said George; “but if I put
5 marbles on the table and take none away, 5 will remain.”

“Excellent. We set that down

62622250
32067880
554370
Now, 2 from 2 is how many?”
“Naught,” said George.
“Right, we set that down
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62622250
32067880

0354370

Now, 3 from 6 is how many?”
“In counting by 3s, next before 6 comes 3 ” said George.
“Right. We have then the answer complete

People 62622250
Men and boys 32067880

Women and girls 30554 370.

MNow 1 will ask you a question. If the 30554370 women and girls were
each to be married to a man or boy, how many bachelors would be left
over?”

George answered correctly.

“And if all these bachelors were to hire themselves out as servants to
as many of the married couples, how many couples would remain without
bachelor servants?”

“There were in the country that year 43431136 sheep. If they had all
belonged to different people, how many people would remain without
sheep?”

Eulalie said to Miss Sessions, “1 am slow in doing subiraction; because
though I can count by groups forward readily enough, I cannot count
backwards so quickly.” “There is another way of doing subtraction,”
said Miss Sessions, “which a few persons find advantageous. This method
is called subtraction by addition. Suppose, for instance, you want to
subtract a number written entirely with 9s. Subtract from 62622250 the
number 299999, The easiest way is to subtract 1000000 and then add 1:

62622250
999999

61622251
But if the subtrahend is not all nines, you must call every 9 a 0,

every 8 al,
every 7a 2,
every 6 a 3,
every 5 a 4,
every 4 a 3§,
every 3 a6,
every 2 a7,
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every 1 a §,
every 0 a9,

and add them in, Also add 1 and subtract 1 from the place next higher
than the highest place of the subtrahend, Thus, to subtract 32067880
from 62622250 write them down and proceed as follows:

62622250
32067880

Say 0 and 9 (really 0) are 9 and 1 makes 10. Set down 0 and carry 1.
1 and 5 are 6, and 1 (really 8) makes 7; set it down. 2 and 1 (really 8)
are 3: set it down. 2 and 2 (really 7) are 4: set it down. 2 and 3 (really
6) are 5: set it down. 6 and 9 (really 0) are 15: set down 5 and carry 1.
1 and 2 are 3; and 7 (really 2) are 10: set down 0, and carry 1. 1 and 6
are 7; and 6 (really 3) makes 13: set down 3 and carry one. From I,
subtract 1 leaving 0.”

MULTIPLICATION

“George,” asked Miss Sessions, “can you tell me how many points there
are in this block without counting them, if I tell you that there are 7 in
every row and 6 in every column?” and she showed him a paper with
dots upon it, like this.

. . - - " L]

“I can say 6, 12, 18, 24, 30, 36, 42. There are 42,” said George. “But
can you not tell any quicker way?” George thought a minute. “It is a
little quicker to tell 7, 14, 21, 28, 35, 42; because then I only have to
count 6 numbers, instead of 7,” said he. “Yes, but George,” said Miss
Sessions, “you must learn that the 6th number in counting by 7s, or
6 times 7, as we say, is 42, so that you will not have to stop to think.
When you are grown up, it will happen every day that something im-
portant depends on how much 6 times 7 is, and you will be in such a hurry
that you cannot stop to say 7, 14, 21, 28, 35, 42. You have to learn by
heart that 6 times 7 is 42; so that you know it, the moment the question
comes, like a flash.”
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“Of course,” said George, “we have practised so much counting by
7s and other groups that I should know 6 times 7 made either 35 or 42
or 49; but I should have to count to see which it made.”

“Well, now you must learn it by heart. And in learning it by heart this
little cross will be an assistance.” [Fig. 1]

She gave him a little cross like this.? “How do vou use it?” he asked.

“In the first place,” she said, “you have to remember that all multiples
of even numbers are even.”

“What is a multiple?” asked George.

“Why the multiples of 6 are 12, 18, 24, 30, 36, 42, 48, 54, 60, and so
forth. The multiples of 7 are 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91,
98, etc. Do you understand? The multiple of a number is a number of
times that number. Now all multiples of even numbers are even: re-
member that. So 6 times 7 is an even number. Now bring either the 6
or the 7 on the cross to the top, by turning the cross; and look for the
other number (say 6) outside the cross. Then on the cross opposite that
number you find the last figure of the answer. In this case opposite 6
outside the cross, we find 2 and 7 on the cross. Therefore 6 times 7 ends
either with a 2 or a 7. But it is an even number and therefore cannot end
with a 7. So it ends with a 2; and since you have already learned all the
multiples of 7, vou will see it must be 42.”

“That is curious,” said George.

“Here is the multiplication table,” said Miss Sessions, “which you have
got to know just as well as you know the alphabet,” said Miss Sessions.

* This is & cut-out cardboard cross attached at its center to the page with a string
like the calendrical wheels in medieval manuscripts,
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2 3 4 5 6 7 8 9
4 6 8§ 10 12 14 16 18
6 9 12 15 18 21 24 27
8 12 16 20 24 28 32 36
10 15 20 25 30 35 40 45
12 18 24 30 36 42 48 54
14 21 28 35 42 49 56 63
16 24 32 40 48 356 64 72
18 27 36 45 54 63 72 8l

“You begin by learning the multiples of 5; then those of 2; then those of
4; then those of 8. Then those of 9; then those of 3; then those of 6.
Last those of 7. It is a big piece of work; but go at it industriously, and
you will accomplish it, at last.”

“All right: I will try hard,” said George.

“Dear Miss Sessions, do give us something to help us a little in this
terrible task of learning the multiplication table,” said Thisbe.

“Learn in the first place the squares, or numbers down the dexter
diagonal —"

“Oh, please,” said Thisbe, “I beg pardon. What is a dexter diagonal?”

“A diagonal is a line from one corner to another, not next to it. The
dexter diagonal of a square is the line from the upper left hand to lower
right hand corner. The line from the upper right hand to lower left
hand corner is called the sinister diagonal. You can learn first the num-
bers in the dexter diagonal. These are

0 time 0 is 0
1 time 1 is 1
2 times 2 are 4

GO~ O W R b e

k=]

etc. They are called the squares. Thus, 4 is the square of 2, and 9 is
the square of 3. You then learn the products placed next to the diagonal.”

[.F

“Oh,” said Eulalie, “please give us something to help us in this work of
learning the multiplication table. It is so very tiresome.”

¥ Another teaching comment is pertinent here. It states that “There is nothing more
instructive for children in many ways than cards bearing the successive numbers from
1to 100, Each number should be expressed in Arabic figures, below; and above should
be that number of red spots. These dots may be arranged so as to show the factors of
the number, or if it is a prime to show that it is one more or less than a multiple of 6.
For if the arrangement should be remembered, which is not to be desired, it will, at
least, recall a fact of value.”
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“Well, T will tell you something,” said Miss Sessions. “Take two packs
of arithmetic cards, one with red backs, the other with blue backs. Arrange
each pack in order beginning at the back. Lay the red pack on the table
face down. Remove card 101 from the blue pack. Hold the blue pack
in your hand face down. Deal the cards out one by one into three packets
face up. Take up the middle packet, put the first packet at the back of
it and the last packet at the back of that. Take off the back card (which
will be the 3) and lay it down face up as the first card of a new pile; and
in place of it put the top card of the red pack.

“Again deal out the pack into three packets, as before. Take up the
packets as before., Take off the back card (which will be the 9) and lay
it down as the second card of the new pile.

“Do this a hundred times, and you will find you have only red cards
in your hand, while the 100 blue cards will be in the new pile. Now
spread this new pile out in ten rows of ten cards in a row. Here will be
the arrangement.?

*Now, if you want to know how much 6 times 7 make, look for the
places of the 6 and 7. The 6 is in the 30th place for it is the 3rd row 10th
column. The 7 is in the 61st place, 7th row 1st column. Add together 30
and 61. The swm is 91. Therefore, in the 91st place you find 42, the
product of 6 and 7. Suppose you want to find 5 times 2. The 5 is in the
96th place, the 2 in the 29th place. Add 96 and 29. The sum is 125,
Strike off the 100 and in the 25th place vou find 10, the product of 5 and
2.

“If the product of the two numbers taken is more than 100, what you
will find is a number which must be added to 101, 202, 303, or some
multiple of 101 to get the product. Thus, suppose we want the product
of 19 and 41. This must be nearly 800; for that is 20 times 40. Now 19
is in the 84th place, and 41 is in the 5th place. The sum of 84 and 5 is 89.
In the 89th place is 72. But the cross shows the real product ends with 9.
This 72 ends with 2, which taken from 9 leaves 7. So we add 707 and find
779, which is the product of 19 and 41.”

4 Peirce fails to indicate the arrangement in the manuscript.
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C. 8. PEIRCE’'S VULGAR ARITHMETIC
ITS CHIEF FEATURES (178)

It is a two-book arithmetic. The Primary Part is the one upon which
the most labor has been bestowed.

I propose here to explain the leading features, beginning with the
manner in which the operations are performed in both books, after which
I shall explain my aim in the style ete. including the examples.

NUMERATION

A great point is made of the manner of writing the figures etc.

The figures must be very distinct, free from all fanciful forms, and so
open, that, in case of error, a figure can have another written over it
without becoming illegible

1 2 3 4 5 6 7 8 9 0

The figures must be written in clearly marked columns as evenly as
may be.

In the Advanced book, the pupil is required to state his proceeding and
write against each number what it is, and render the whole a perspicuous
statement,

ADDITION

Addition is by very much the most indispensable part of arithmetic. If
one is an accomplished adder, one can & la riguewr go without knowing

' MS. 177 on the other hand is called “The Practice of Vulgar Arithmetic,” and
duplicates much in 178, Materials that are different will be referred to in these foot-
notes.
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even the multiplication table; and at any rate when addition is thoroughly
mastered, it affords a master-key to all the other operations. It is also
by far the most difficult of the operations of arithmetic. For all these
reasons taken together, I bestow upon addition more time and exercise
than upon all the other operations taken together, particularly in the
primary book.

I hold that my way of teaching addition is the only really efficient way.

It consists of teaching the children to count rapidiy by ones, by nines, -

by fives, by twos, by eights, by fours, by sixes, by threes and by sevens
beginning from any number. This is entirely on oral performance. The
psychological image is at first auditory, but the appearance of the figures
is associated with the sound from the first. For the simultaneous activity
of two senses is a great advantage.

Packs of cards are provided, each card bearing a number, and these
run up to 101 inclusive. The pack being arranged in order of increasing
number from back to face is dealt out into piles. In counting by ones,
— that is, 1, 2, 3, 4, etc. and by nines,

1, 10, 19, 28, 37, 46, 55 64, 73, 82, 91, 100
2, 11, 20, 29, 38, 47, 56, 65, 74, B3, 92, 101
3, 12, 21, 30, 39, 48 etc.

the cards are already shown. The dealing begins with dealing into five
packs thus:

1 2 3 4 5

6 7 8 9 10
1 12 13 14 15
16 17 18 19 20
2100 2 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
4 42 43 44 45
4 47 48 49 50
51 52 53 54 355
56 57 58 59 60
61 62 63 64 65
66 67 68 69 70
M 72 73 14 75
76 77 78 79 80
81 82 83 84 85
8 87 8 8 90
91 92 93 94 95
9 97 98 99 100

101
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These and all the other modes of counting must be drilled into them
until these operations become easier and more sure than talking.

There will be also some drill, — not so much, — upon descending
counts. Not much is necessary in order to render it perfectly easy.

This counting is the chief business of the primary arithmetic. The
children are also to be taught games to play with the cards out of school,
these games depending for success in being able quickly to tell what, after
any dealing, is the number of the card in any place of any packet.

The children are also taught to gather up the cards in a particular way
after they have been dealt out. Namely, the rule is (the cards lying face
up with the higher card toward the faces of the packets) to take first
the packet showing 101 at the top, and next, at the back of this packet,
that one which is the ath to the left (the cards having been dealt, turning
the face of each up, from left to right) of the packet last taken, where n
is the number of packets there originally were to the right of the packet
showing 101. Of course, there must always be at least one to the right,
since 101 is a prime number. But if there are not enough packets to the
left, continue the count of the packets round and round, counting the
extreme right hand one as virtually next to the left of the extreme left
hand one.

Another form of the rule of taking up the packets is to count the packets
from left to right and always skip as many packets as there are at first to
the left of the packet showing 101.

For example, after dealing into 8 packets, they will appear as here shown
and the numbers below show the order in which they are to be gathered
up.

97 98 99 100 101 94 95 96

5th Znd Tth 41h 151 Gth 3rd Sih

The extreme right hand one is always taken last.
The object of teaching this method of gathering, which may be omitted
if the children are too dull, is that if, for example, after they have been

dealt into eight packs, they are now dealt right out again, say into three
packs, the cards will fall as follows:2

*  On an earlier draft, Peirce gets only half way through the table and writes *Bah!
They will chatter to me and expect me to answer!”
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Packets I 1L III1.
8 16 24

32 40 48

56 64 72

80 88 06

3=964+8—101 3 11 19
27 35 43

51 59 67

75 83 91

994+-8—101 =6 99 6 14
22 30 38

46 54 62

70 78 86

94+4-8—101 =1 94 1 9
17 25 a3

4] 49 57

65 73 81

974+ 8—101 =4 89 97 4
12 20 28

etc., ete.

Now there will be a game in which the child will want to be able to
tell how the cards fall after two or three dealings. In that way he will
not only insensibly learn the multiplication table (3 % 8 = 24) and many
other things about numbers, but he will also be taught to count by 24s
etc, which is virtually adding two columns at once.

For this sort of thing a smaller pack (say of 41 cards, for the number
should be prime) may be used to advantage.

After this counting with every interval up to ten has been thoroughly
mastered, it will be time to begin the adding up of columns. The ex-
pression “adding up” describes the right way, which is to begin at the
bottom; although the column should always be run down again as a
check.
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Suppose the column is this:

Wh =1 =1 e 00 WD W 00 b O o= e

Holding some sort of pointer, place it on 5. Keep the mouth shut all the
time you are adding, but mentally say “five.” Point at the 7 and mentally
say “twelve.” On no account say “5 and 7 make 12” or anything but just
12. You look at the 7 and say “twelve” and the less you think about it
the better, though you must not think of anything else. One of the great
advantages of addition is the training it affords in keeping the mind from
wandering. Point at the upper 7 and mentally say “nineteen” without a
real sound and so on. When you get to the top of the column and find
(in this case) the sum to be 70, set down the 0 below with a little 7 thus
70, so that if for any reason an error in this addition be subsequently
expected, — each column may be gone over apart from the others. Having
added up, now run down, and in doing so do not use the pointer but take
bird’s-eye views; thus:

I notice that the 4 in the first line and the 6 in the third make 10 and
then 2 and 8 make 20 and a 3 combines with the 7 in the second line to
make 30. Then the 9 and 8 make 47 and the 4 and 7 make 58 and 7 is 65
and 5 is 70, as before.

If your two additions do not agree, you may add the column ten times
and take the mean of your results, just as if you thought a man had
murdered a friend of yours, in case he really had been murdered, but
you weren’t quite sure that anything had happened to him, good sense
would dictate your hanging the supposed murderer just a little, so as to
about half execute him.

There should be plenty of practise in adding long columns, — say of
50 lines. It is not only a most useful art but is excellent exercise, not of
intellect, surely, but of mental control.
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SUBTRACTION

is a trifle less facile than addition, and there should be a certain amount
of exercise in the use of the arithmetical complement. For in long division
it appreciably relieves the fatigue.

MULTIPLICATION?

Of course, the Multiplication Table must be learned. Exhortation must
be resorted to. The imagination must be excited by the most lurid accounts
of the ruin and disasters of all kinds public and private due to mistake in
multiplication.

At the same fime, after thorough drill in counting, to say what 6 times 8
is is merely to say what is the sixth card of the right hand packet after
dealing into eight packets.

Everything should be so presented as to stimulate mathematical imagi-
nation. Hence the multiplication table should be printed as on the oppo-
site page.t

At this point the author of the text-book and the teach[er] have to put
forth their most strenuous endeavors to make the subject interesting. To
allow it to excite disgust is simply a crime against the soul of the pupil.

Anything that he seems to be interested in connected with the multi-
plication-table (and if his faculty of observation has been cultivated there
will certainly be something) should be seized upon and developed.

For example, he may remark that no products in the multiplication
table end in 1 except once each in the odd rows excluding the fifth. There
only, there are terminal 5s; and there alone with the zero row there are
terminal zeros.

Odd terminals occur only once each in the odd rows excluding the 5
rows. In each of these rows every terminal occurs just once.

* In MS. 177 Peirce writes:

“Children should be taught to play games with the pack of 101 cards and these
games should be so devised that success shall be made to depend on being able
to say promptly what card in dealing into any given number of packs will be in
any given place of any given pack.

When this is done, the child will know far more than the muitiplication-table.
It will be able to give an instantaneous answer to the question. How much is
U-F+ W7 whatever digits U, ¥, ¥ may be.

To learn the multiplication-table is tolerably easy when one has learned to count
by every digit. For it is only to be able to say what card is in each place of the
last pack in every dealing.”

¢ 1t so appears in the notebook.
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In the even rows only eéven terminals occur, and excluding the zero row,
five occur in each and are repeated in the same order, so that in every
€ven row

6 times an even digit ends in that digit

6x0=0 6%xX2=12 6x4=24 6x6=36 6xX8=48
7 times an even digit and twice that digit have the same terminal; thus:
2X0=0 2x2=4 4x2=8 6x2=12 Bx2=16
Tx0=0 2xXT=14 4xT=28 6x7=42 8xT=56
8 times an even digit and 3 times that digit have the same terminal ; thus:
I0=0 3Ix2=6 3xXd4=12 3Ix6=18 3Ix8=24
§x0=0 8x2=16 8x4=32 B8x6=48 B8x8=04
9 times an even digit and 4 times that digit have the same terminal; thus:
4x0=0 4x2=8 4xd4==16 4x6=24 4x8=32
9x0=0 9x2=18 9x4=36 9x6=54 Ox8=72
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It is possible that a little instrument on the principle of the wheel on
[this] page might aid to stimulate the pupils to think about the multi-
plication-table and so impress its items on their memories. To use this

A
D>
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wheel bring under the arrow that blue [boldface] number on the wheel
that is equal to the final figure of a multiplier.

Then opposite the final figure of the multiplicand outside the wheel
will be found on the wheel the final figure of the product.®

The objection to inserting this would be that the teachers would not
understand the mathematical principle on which it depends, and might
therefore be exposed to embarrassing questions.

It would be easy to arrange the numbers in a block so that the last
two figures should be given, by a similar measurement,

It is well to complete the learning of the multiplication-table by carrying
it to 12 % 12, and the expert computer will be familiar with the following
products.

Tx13 =091 7 %43 =301
Tx17 =119 17 x 19 = 323
7x19=133 T %47 = 329
7x23 =161 7% =343
7 %29 =203 19? = 361
7 %31 =217 7% 53 =371
1317 =221 13 x 29 = 377
13 %19 =247 17 x 23 = 391
7 x 37 =259 13 x 31 =403
7% 41 =287 7 % 59 = 413
172 = 289 T x 61 =427
13 x 23 =299 19 x 23 = 437
T % 67 = 469
13 3 37 = 481
17 % 29 = 493
Tx 71 = 497

In multiplying in the head there are a variety of devices which should
be taught; such as multiplying by factors of the whole multiplier and of
certain figures of it.

Thus, if the multiplier is 2571, we can multiply by 41 and 60 successively
and add to the product the product by 70.°

Of course to multiply by a power of 5 we divide by the same power of
2 and then multiply by [the same power of ] 10.

¢ This is another version of the little cross in MS. 179 (I,2). The circular piece is a
separate sheet of paper attached to the notebook at its center as indicated in the
figure. The blue numbers on the wheel, reading clockwise,are 1, 6, 7, 2, 9, 4, 3, §;
on the page, under the wheel, the numbers appear in that order and are all blue.

¢ Peirce means 2571a = 41a 4- 60-41a + 70a.
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If multiplier and multiplicand are one odd and the other even, the latter
should be divided by two and the product remultiplied by 2. Both being
odd or both even, their product is the square of their half sum less the

2 Y
square of their half difference. Thus 41 x 19= (M) - (M)

2 2
= (30)* = (11)* = 900 — 121 = 779.

This use of a table of quarter squares will be explained in small print
in the higher arithmetic,? since this is designed to serve as a handbook
as well as a text book.

Cross multiplication, which is indispensable in multiplying in the head,
should also be taught.

Long multiplication ought to be performed without the use of the
multiplication table; and the following method should be thoroughly
practised.

Multiply 87183 and 366917

We begin by forming a table of the first nine multiples of 87183, as
follows:

Set down the multiplier 87183

3 being the last figure, proceed to count by 3s seiting down the last
figure only of each count in a column under the 3 thus:

87183

=] & o= 00 L RO

=

Any number in the column so written is for the most part greater than
the number immediately above it. Where this is not so, put a dot called
a “break” in the column next to the left, thus:

?  Peirce never completed this. It was called advanced arithmetic on page 1.
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87183

“d ke 00 WA B D O

°

Next form the column next to the left. Since the breaks are where the
change is from large to small and since 8 is at the head of the new column,
count by 8s and set down only the last figure until you come to a break
where set down the next higher figure and go on from that counting by
8s. The tenth figure should be the same as the number of breaks which is
the number at the head of the column last formed. This will be a check.
We shall thus get:

87183
66
49
32
15
98
Bl
64
47
30

In the columns so formed the numbers generally diminish as we go down,
Where they do not put “breaks” in the column next to the left, thus:

87183
66

49

32

15
.98
81

64

47

30
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The number of breaks added to the number at the head of the column 87183
last formed should make 9, as we see it does. This is a check. 4366
We now start the next column since 1 is at the head of it. We count by 1549
twos because the breaks are ascending breaks. We set down the last figure 8732
of each counted number till we reach a break where we set down 1 less 5915
and proceed from that counting by twos as before; thus: 3098
87183 0281
166 : 7464
549 4647
732 1830
915 The tenth figure is the same as that at the head of the column last formed,
098 as it should be.
281 The numbers now generally decrease and we therefore insert ascending
464 3 breaks of which there should be 9 —7 = 2.
647
230 87183
The tenths figure should be the same as that at the head of the last column. ﬁgg
Now the numbers written in the three columns mostly increase. Hence 8732
we insert descending breaks in the column next to the left; thus: 5015
87183 3008
366 0281
549 .7464
732 4647
915 1830
.098

Since the breaks are ascending and 8 is at the head of the next column

igi we count by 9s except at the breaks, thus:
647 87183
230 74366
The number of descending breaks equals the number at the head of the i
last column as it should. Because the breaks are descending and 7 is at 48743
the head of the next column, we count from it by sevens, setting down 35915
only the last figure until we reach a break, where we set down the next 23098
higher figure and go on from that, thus: 128
97464
84647
71830

The tenth figure is the same as that at the head of the last column as it
should be.
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Since the numbers generally diminish we insert ascending breaks of
which there should be 9—8 = [,

87183
74366
61549
48732
35915
23098
10281
.97464
84647
71830

Since the break is ascending and 0 is virtually at the head of the column
we count from it by Is except at the break: '

87183
174366
261549
348732
435915
523098
610281
697464
784647
871830

The tenth figure is the same as that at the head of the last column.
We have now formed the multiples and we proceed to number them:

87183
174366
261549
348732
435915
523098
610281
697464
184647
871830

We now use this table instead of a multiplication table to multiply into
366917

= = R N L O
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366917

261549
523098
523098
784647
087183
610281

31988924811

01011331110

Nobody who is trained to perform long multiplication in this way will
ever have the patience to perform it otherwise.® This process will be given
in the little book.

The use of Crelle’s Rechentafeln for multiplication should be explained
in the large arithmetic.

Logarithms will be treated separately later.

DIVISION

Since addition is appreciably less fatiguing and quicker than subtraction,
in performing long division the arithmetical complements of the nine
multiples of the divisor should be used. NxAr.co.M = Ar.co.(NxM).

‘With division higher arithmetic naturally begins, and for the more
advanced pupil it will be proper here to insert a short course on that
subject. But in the arrangement of the book it will be better to place all
theoretical matter together and to go on with Vulgar Arithmetic using
such propositions of higher arithmetic as may be called for without
attempting to prove or explain them. (Such for example is the proposi-
tion that a fraction whose denominator has other factors than 2 and 5 is
expressible as a circulating decimal.)

It will have to be stated that the number of fizures in the circulating
decimal representing a fraction is equal to the totient of the denominator;
that is, to the number of numbers less than that denominator and prime
to it.

Therefore before decimal fractions can be studied it will be necessary
to study the greatest common denominator and that algorithm must be
practised.

8 Peirce himssif uses this multiplication procedure throughout his manuscripts.
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That will lead to the study of remainders after division. The following
rules will be given:

The remainder after division by 2 is the same as that of the last figure
of the dividend.

The remainder after division by 3 is that of the sum of the figures of
the dividend.

The remainder after division by 4 is that of the last figure plus twice the
last but one.

The remainder after division by 5 is that of the last figure.

The remainder after division by 6 is that of the last figure diminished
by twice the sum of the rest of the figures.

The remainder after division by 7 is equal to the sum of the units,
millions, billions, trillions, etc, /ess the thousands, thousand millions,
thousand billions, etc. plus twice the hundreds, hundred millions, ete.
less twice the hundred thousands, hundred thousand millions, ete. plus
thrice the tens, ten millions, ete. less thrice the ten thousands, ten thousand
millions, ete.

Thus the remainder after dividing 3635 by 7 is the same as that after
dividing 54 2-3 -+ 3-6 = 29 and this is the same as that of 94 3-2 = 15
and this is the same as that of 5+ 3-1 = 8. So there is one day more than
a whole number of weeks in a year.

The remainder after division by 8 is the same as that of the units plus
twice the tens plus four times the hundreds.

The remainder after division by 9 is that of the sum of the figures.

The remainder after division by 10 is that of the last figure.

The remainder after division by 11 is that of the units plus hundreds
plus ten thousands plus millions etc. less that of the tens, thousands,
hundred thousands, ten millions etc.

The remainder after division by 12 is that of the wunits, less twice the
tens, plus four times the sum of all the other figures.

Thus 11111 divided by 12 leaves a remainder of 11.

The remainder after division by 13 is that of the units, plus millions,
plus billions, etc. less thousands, thousand millions, etc. plus thrice the
ten thousands, the ten thousand millions minus thrice the tens, the ten
millions ete. plus four times the hundred thousands etc. minus four times
the hundreds etc.

The remainder after division by 17 is the sum of the figures in the Ist
(units) place and every 16th place to the left minus those in the 9th
(hundred millions) place and every 16th place to the left,

plus twice those in the 11th and every l6th place to the left
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minus twice those in the 3rd and every 16th place to the left

plus thrice those in the 12th etc.

minus thrice those in the 4th etc.

plus four times those in the 13th ete.

minus four times those in the 5th etc.

plus five times those in the 16th etc.

mirus five times those in the 8th ete.

plus six times those in the 6th etc.

minus six times those in the 14th etc.

plus seven times those in the 10th ete.

minus seven times those in the 2nd etc.

plus eight times those in the 15th etc.

minus eight times those in the 7th etc.

The remainder after division by 19 is that of the sum of units and every
18th place to the left

minus those in the 10th etc. places

plus twice those in the 18th etc. places

minus twice those in the 9th etc. places

plus 3 times those in the 6th etc. places

minus 3 15th
plus 4 17th
minus 4 8th
plus 5 3rd
ninus 5 12th
plus 6 5th
minus 6 14th
plus 7 13th
niinus 7 4th
plus 8 16th
ninus 8 Tth
plus 9 11th
minus 9 2nd

The remainder after division by 23 is the sum of units and every 22nd
figure to the left minus 12th place ete.

plus 2 times 9th place etc. - 20th

plus 3 times 21st place etc. — 10th

plus 4 17th - 6th
plus 5 16th ~ 5th
plus 6 7th - 18th
plus 7 22nd - 11th
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plus 8 3rd - l4th
plus 9 19th — 8th
plus 10 2nd — 13th
plus 11 4th — 15th
The calculation 1s the same as that of finding the reciprocal thus:
23 1 100
46 2 92 04
69 3 80— 3" place + 8
92 4 69——p03
115 5 110————4" place + 11
138 ¢ 92 0004
161 7 180—— 5" place + 18 = —§
184 8 161 66607
207 9 “190-———6" place 4+ 19 = —4
230 10 184—q00008

6————7" place + 6
[Ans, .043478 ......... k]

In order to get the entire circulating decimal representing any vulgar
fraction

Ist If the last significant figure of the denominator is 5 multiply
numerator and denominator by 2 until this ceases to be the case; but if
the last significant figure of the denominator is even, multiply numerator
and denominator by 5 until this ceases to be the case.

2nd  That done, if the denominator ends in one or more zeros strike
them out thus multiplying by a power of 10, and when the operation is
complete divide by the same power by shifting the decimal point.

[3rd] If in consequence of the suppression of zeros, or for other
reason the fraction is not a proper one, convert it into a mixed quantity
and consider only the proper fraction at first.

4th Form two numbers to be called the “initial number” and the
“current multiplier” as follows:

If the denominator ends in 9, strike this off and increase the
denominator thus truncated by 1 for the “current multiplier.”
The numerator is the “initial number.”

If the denominator ends in 7, strike this off and having mul-
tiplied the truncated residue by 7 add S to the product to make
the curreat multiplier. 7 timzs the numerator is the initial
number,
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If the denominator ends in 3, strike this off and having mul-
tiplied the truncated residue by 3, add one to it for the current
multiplier. The initial number is 3 times the numerator.

If the denominator ends in 1, strike this off and having mul-
tiplied the truncated residue by 9 add one to it for the current
multiplier. The initial number is 9 times the numerator.

5th  Strike off the last figure of the initial number. Multiply this
by the current multiplier and add to the truncated residue to get a new
number to be treated in the same way. Continue this process until the
initial number is reproduced as a number to be treated in the same way.

Then the succession of figures struck off in their reverse order from
last to first are the circulating decimal.

Examples

To find the circulating decimal representing -5 8 is the current multi-
plier, 2 the initial number.
16)2
/6
4 8|
49
72
716
4 8
55
40|
45
40|
44
3 2|
36

4 8|

EI

8|

13
24|
25
4 0]
42
16|
2[0
0] 4
Initial Number = 2
& = 0253164556962
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Find the circulating decimal representing 5.

13]7 17 96 is the current multiplier
7 7 119 the initial number
91 119
5
96
9 1 119
192 2 864
288 3 875
384 4
480 5
576 6 672
672 7 7218
768 8 76 8|
864 9 84[0
960 1]
84
384
392
192]
231
96|
Initial Number = 119

15 = ..2408759

Find 535.
3513
.
105

106
212
318
424
530
636
742
848
954
1060

106 is the current multiplier
15 the initial number

(Y= - T [ = O LU S

115
530
5311
106
159
954
96[9
954
105]0
0l
105
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[repeated from previous page]

100]5
530
63[0
0|
63
318
3204
424
45]6
63 6]
6 8|1
106
17]4
424
aalt
106
13]0
0|
15 = Initial number

10[5
530
5 4|0
0l
5l4
424
4209
954
996
63 6|
735
530
6013
318
3718
848
88J5
530]
61[8
848
90[9
954
1044
424
528
848
90/0
0]
9[0
0l
19

95 4
954
424
519
954|
1005

.0141643035949008498583569 40509915

101
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Find 13t
3511 121 316 is the current multiplier
9| 121 1089 is the initial number
315 1089
316 1 1089
0632 2 2844
0948 3 2952
1264 4 632
1580 5 9217
1896 & 2212|
2212 7 23004
2528 8 1264
2844 9 1494
3160 1264]
141j3
948§

= 1344729 1089 = Initial number

It will be seen that this is exceecdingly rapid and secure. But the entire
circulating decimal is rarely wanted.

INVOLUTION

Of course, the ordinary explanations will be given. Throughout this
account I omit referring to this.

Involution by differences is [to be given].

Thus required the fifth power of 63.%

IDEAS OF NUMBER

Throughout both books number will be treated as essentially ordinal.
Cardinal numbers are nothing but ordinal numbers in a special applica-
tion, to the order of multitudes. It is a very preity application but out-
side pure arithmetic and will therefore be introduced later.

One advantage of considering numbers as ordinal is that after explain-

¥ The page of numerical work is tentative and incomplete.
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ing subtraction and exercising the pupil in it, it becomes perfectly casy
to explain negative numbers.

The signs = < > + — - (for %) and / will be freely used and even
letters will be used to denote numbers. In fact, the pupil will be seduced

into algebra before he knows it.

Until after division nothing whatever will be said about fractional
quantity, and it may be supposed impossible to treat this kind of quantity
properly while preserving the strictly ordinal conception of number; but
this is a mistake.

In the advanced book the ordinal relation will be explained as follows:

Suppose that school-boys were of such a nature that if we compare any
two, say M and N (Matthew and Nicholas, or Maurice and Napoleon,
or whatever their names may be) either N knows everything that M
knows, or else he doesn’t know anything that M does not know.

Or suppose that all liquids were of such a nature that taking any two
whatever, say L and R, either L will dissolve everything that R dissolves
or else L will fail to dissolve everything that R fails to dissolve.

Or suppose solid matter is of such a nature that taking any two masses
whatever, O and P, either O will outweigh everything that P will out-
weigh or else O will fail to outweigh everything that P fails to outweigh.

Or suppose that novels were of such a nature that, taking any two
whatever, A and B, either A is liked by everybody that likes B or else A
is not liked by anybody that does not like B.

In any of these cases we have an ordinal relationship.!?

W MS. 177 has a section on The Rule of False and solving an algebraic equation.
To solve an algebraic numerical equation
If there are several possible solutions all on a par, no general rule can lead to any

one solution rather than another. Therefore the equation had better be put into such
a form that one solution is smaller than any other; and thar solution is sought. For
example, if the equation is x® = 10, that is, if we seek the square root of 10, there are
two equal values, one positive the other negative. Let us, however, seek the positive
value. It is near 3. Let us therefore write

¥x=34+3 03+ =10,0rp* +6y+9=10,3"+6y =1
When this is done and the equation is brought to the form

Ay By 4 Cy* 2 L ete. - My +N =0
divide by -N and so bring it to the form

A B
B ) ek (O
N)"' N:-"‘ + ... ele
or say
1=ay"+ 5=t + ... ete.
Now change this equation

1=ay"+by"=1+ ... etc.
to the following:
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FPmin = @Q¥m+ BVus1 + ... eI
for instance 1 == y* 4 by will be changed t0 Yni2 = Yu+ 0¥mi1s
The m, m+1, m+2 are to be regarded as ordinal numbers, or numbers of places in
a row, and Y, Yes1 eiC. as quantities in those places of which the first » are given
almost any values we like. 1 prefer to make them all zero except the last which 1
make 1. Then use the equation

Ymin = ¥Vm +bylt+l =+ GG
to calculate successively new values. In example take the equation ¥. .2 = ¥u -+ BVats.
First make m=0,y. =0, ¥, = 1.
Then by the equation

y2 = 0461 = 6

ya=1+66=37

Ye=06-+637 =228

¥s =37+6228 = 1405  etc.
Then the successive approximation to y will be

I

and the successive approximations to +/10 will be 3 more than that, Thus:
G+ =04+23+L =104
B+ =9+2B+d%=10—u
G+ED =948+ 85 = 1045, etc.

In this way square roots, cube roots, etc., and many other quantities are easily found.

The Rule of False

There are cases in which this rule won't work, But it always discovers itself that it
won't work; and those cases are rare.

Let us measure two quantities, one known, say », and the other unknown, say x,
along two directions at right angles; say x horizontally from a fixed point toward the
right and » upwards from x. Then the conditions of the problem are such that we can
tell what n would be for each value of x. And what we want to know is what value x
has for the actual value of n.

It is assumed that if we take two false values of x, one too small, the other too
great, all the intermediate values will be such that the different values of n will lie on
a curve... [Fig. 1]. If the values of x are pretty close to the truth there won’t be room
between them for any waves to speak of, and the curve will be pretty nearly a straight
line. The Rule is to assume it is a straight line and so caleulate a value of x which
may be wrong but which will be much nearer the truth; and then we can use this as
one of the values for a new approximation. But the rule won’t work if for example
the curve is like this [in Fig. 2], because that is not a straight line and the result of
the rule will be a value much worse than those criginally assumed. This however we
find out when we proceed to make a new approximation.

1 will first show how to work the ordinary “rule of false” or “Rule of Double Posi-
tion” and then 1 will give a rule of Fivefold Position which defeats the fallacy of the
ordinary rule when there is one.

We assume two values of x, one too large, the other too small, and calculate from
each what some known quantity would be [Fig. 3]. For instance I want /10, 1
assume it to be 3. Then the square would be 9, I assume it to be 4. Then the square
would be 16. The error in one case is —1, in the other +6. Then a difference of 1 in
x makes a difference of 7 in the square. But I only want to change the square by 1
from 9. Therefore I will change that value of x by } and assume as a first approxima-
tion 4/10 = 3} = ? But the square of this is ’ﬁ-} That is, its error is about —.1.
Then a difference of x of § between 3} and 4 has made a difference in the square of
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6.1. But I only want to increase the square by .1 or say g part of that difference and
therefore T only want to change the value 3} by & of  or &, making about 37&. 3%
is nearly 3% or 3.157.

=9

302 =900

(31)* =961

(310)* = 96100

(315)* = 96125 4+ 3100 = 99225

(316)2 = 99226 -+ 630 = 99856

(3160)* = 9985600

(3157)% == 9985609 — & x 3160 = 9966649

But we see that {3.16)* = 9.9856 and is therefore not quite enough.
(317)* = 99857 + 632 = 100489,

Thus (3.16)* is .0144 too little
(3.17) is .0489 too much
.01 makes a difference of .0633

633 1 144 (00227
1266 2 1266
1899 3 174
2532 4 1266
3165 5 -
3798 6 Ll
4431 7
5064 B
5697 9 Then /10 = 3.16227 nearly,
6330

1 will now consider a case in which the rule does not work. I will suppose that I
have the means of ascertaining the value of the tangent of an arc of any given number
of minutes, and [ want the value of the arc whose tangent is 10.

I know tan 5000° == 83

tan 6000" = —5.6713

Then a difference of 1000" seems to make a difference in the tangent of 14.2269 or
about 70.3" for every unit and since I wish to change the tangent by 1.44 units, T get
4900” for a first approximation. But the tangent of 4900° is 6,827, This is very bad.
Still, if 1 persevere I shall do better.

tan 4900" = 6,527

tan 5000" == 8.556
Difference 100° makes 1.729 or 58’ for 1 and since I wish to produce 13, 5084° should
be about right.

tan 5084" = 10.848
and further approximation would bring me right.

LA

Fig. 1
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*J/,
¥a

Fig. 2 Fig.3 : PRACTICAL ARITHMETIC (168 with examples from 167)}

CHAPTER L. INTRODUCTION

Arithmetic is the knowledge of numbers. Practical arithmetic is the knowl-
edge of how to use numbers.

In this practice, two qualities are to be aimed at, — accuracy first, and
then dispatch, The necessity of accuracy in the use of numbers is plain:
the man who only claims ten dollars when a hundred are due him will
soon come to grief, while he [who] claims a hundred when only ten are
due is in greater danger, still. The advantage of being able to make cal-
culations rapidly can only be appreciated by experience. Time must
often be taken by the forelock; opportunities occur which must be seized
promptly or not at all; and upon these the success of life often depends.
But wise decision calls for calculation, and rapid decision calls for rapid
calculation. Many special rules for attaining these ends, — accuracy and
dispatch, — will be found in this book, and a few general maxims may
be given at the outset.

1. Do not make too much exertion; or rather, exert yourself easily
and composedly.

II. Think of what you are about, and keep all wandering thoughts
out of your mind.

III. Never trust to a result being right at the first calculation; but per-
form the computation a second time, and in a second way, if possible.
Or else, retrace the work from the last step to the first, or otherwise
assure yourself that no mistake has been committed; for the best arith-
meticians sometimes commit errors, though it be but rarely.

IV. Try to view every problem from a practical standpoint: imagine
yourself in a situation in which you can immediately see, if not exactly,
at least approximately, what the result will be.

V. Write your work in such a form that everybody can immediately

I MS, 168 is a typewritten copy. MS, 167 is in handscript.
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see what you have done, can sec that the right operation has been per-
formed, and that you have rightly performed it.

CHAPTER TI, NUMERATION

The cardinal numbers, numerals, or count-words, are a series of words
used to count with. They are, one, two, three, four, five, six, seven,
eight, nine, ten, eleven, twelve, etc.

What is counting? The pupil can already count: he has only to notice

what it is that he does when he counts. To count a collection, or lot, of
things is to take the things singly, and to give a count-word to each,
using the count-words in their regular sequence, beginning with one,
For example, we may point to the things one after another calling a
number at each as we point: and we must call off the numbers in their
regular order, one, two, three, etc. During this process, each thing, as
soon as it receives a count-word, is said to be counted, and when all
the things have received count-words, the whole lot is said to be counted.
The last count-word used is the number of things in the collection.

The word number has four different meanings. 1st, a number expresses
the fact that the count of a collection ends with a certain count-word;
as when we say that there is the same number of cents in a dollar as of
years in a century. 2nd, we sometimes speak of a number, meaning a
countword; though it would be more proper to say “numeral.” 3rd, a
series of written figures equivalent to a count-word is called a number.
4th, any collection of things is called a number; as when we say, a school
is composed of a “number” of young persons under a teacher or a “num-
ber” of teachers.

That branch of arithmetic which teaches the art of forming numerals,
or names of numbers is called Numerarion. The first count-words are
given at the beginning of this chapter. To form the higher ones we form
groups of tens. Thus, we count as follows:

One: Eleven: Twenty-one:  Thirty-one: Forty-one:
Two: Twelve: Twenty-two:  Thirty-two: Forty-two:
Three: Thirteen: Twenty-three: Thirty-three:  Forty-three:
Four: Fourteen:  Twenty-four: Thirty-four:  Forty-four:
Five: Fifteen: Twenty-five:  Thirty-five: Forty-five:
Six: Sixteen: Twenty-six:  Thirty-six; Forty-six:
Seven: Seventeen: Twenty-seven: Thirty-seven: Forty-seven:
Eight: Eighteen:  Twenty-eight: Thirty-eight:  Forty-eight:
Nine: Nineteen:  Twenty-nine: Thirty-nine:  Forty-nine:
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Fifty-one:  Sixty-one: Seventy-one: Eighty-one: Ninety-one:
Fifty-two:  Sixty-two: Seventy-two: Eighty-two: Ninety-two:
Fifty-three: Sixty-three: Seventy-three: Eighty-three:

Words Relating to Numeration

ARITHMETIC is a modification of the Latin word arithmetica. Latin
was the language of the ancient Romans; but afterward it became the
learned language of Europe; that is, all educated could write and speak
it, and used it for all learned writings. To the ancient Romans, Greek
was the learned language; since most men of learning were Greeks. The
Latin grithmetica is borrowed from the Greek word arithmetike, which
means “about number” or “what we know about number,” from arithmos
number. An ARITHMETICIAN is a person skilled in arithmetic.

ALGORITHM, called in old times AUGRIM, a pretty word, and now
by some pedants ALGORISM (as if there were not enough isms, without
this), formerly meant practical arithmetic; but now it is used for any
arithmetical process. This word is the corruption of the name of the
Arabian author of a work on arithmetic. The man’s real name was Abu
Ja'far Mohammed ben Musa; but he was called al Khowargzmi, which
means a citizen of Khiva.? When the book was translated into Latin it
was called the book of Algorithm, which was meant for the name of the
author, but was understood as the name of the art it taught.

NUMERAL, from Latin numerale, relating to a number, from numerus,
number, is properly a name of a number. NUMERATION is telling the
names of numbers.

Our grandfathers used to call counting aloud “telling,” and the word
TALE is still used to mean “saying how many.”

Money being the common scale
Of things by measure, weight, and tale. Hudibras.

DECIMAL (Latin, decimale, from decem, ten) means going by tens.
All our counting is “decimal.”

UNIT is simply a “one,” a single thing counted. It seemed awkward
to speak of “ones” in the plural, because someone might say, “if there

*  Peirce identified the famous ninth-century Arab mathematician in this way in the
Century Dictionary under the term algorism. The transliteration of the name is usually
given as Mohammed ibn Musa Al-Khwarizmi and Peirce uses that spelling also in
many manuscripts (see 1,6).
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are more than one, why call them one?” Consequently, the word umit
was taken. ...

Ten is called a dicker, a decad, a decade (especially of days, and of
vears), the refractys, the guarternary number. But the last two are not
cardinal numbers.

A hundred is called a century (especially of vears).

A thousand is called a chiliad.

Ten thousand is called a myriad, and a sum (of nails).

A hundred thousand is called a lac (of rupees, etc.), and a plum (of
pounds sterling).

A thousand million is called a milliard. ;

The first exercise in arithmetic should be to count beans, slips of paper,
etc. (always repeating the count as a check), until the pupil has learned to
count with great rapidity and perfect accuracy.

ADDITIONAL EXERCISE. Each pupil in the class is to be provided
with a cup of beans, a slip of paper, and a pencil. Each counts out about
a thousand beans, without telling how many, sets down the number at
the head of his slip, and folds it down, so as to hide it. When all have made
their counts, each hands his beans to the next on his right, to be counted
again. Having made their counts, they all set down this number, each on
his own paper, and again fold it down. So they go on, till every lot of
beans has been counted from three to five times. Each one then unfolds
his paper. The first begins and gives the number at the head of his paper;
the second one gives his second number, which should be the same as
the first on the first paper, and so they go on. Those who have made no
errors in counting, win the game. Instead of setting down the numbers
themselves, they may go up and tell them privately to the teacher.
Numbers are employed not only in counting, but also in measuring.
Measurement is the precise numerical comparison of things. In order
to show the purpose of measurement and all that is required to make it
fulfill its purpose, I will imagine an instance. A country is invaded by a
hostile army: the officers of justice are killed, the ablest men driven away,
ruffians are without restraint, and everybody knows that his life and
property are in the utmost danger. Now, one of the inhabitants has in
his house a large amount of silver plate, a precious collection of medals,
and other valuables of the sort which can neither be left in the house with
safety nor carried out of the country. He determines to bury the things
in a field and flee. Tt may, however, be years before he returns, even if he
escapes with his life. The burial must be deep, so that the treasure may
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remain concealed. How, then, shall he or his heirs contrive to find it
again? He must make a written description of the spot so precise as to
enable anybody to find and recognize it, and that, although the houses
may be burnt and the forests destroyed by the operations of war; the
streams diverted from their channels and the whole face of the country
changed. But he reflects that though the house be burnt down, its founda-
tion will always remain, and can be identified. He, therefore, draws up
his directions for finding the cache in this way: the searcher is first to
find the north-east corner of the house, and from that he is to proceed
in a certain direction for a certain distance. To determine the direction,
there is the line of the wall of the house; it is only necessary to say how
much the direction to be taken is to deviate to the right or left from that.
This requires the determination of an angle, which he can represent upon
the paper, by drawing two lines with a bend precisely like that between
the wall of the house and the line from the corner to the pit. It only
remains to measure the distance. It so happens that he has no tape-
measure or yard-stick, and the shops are all shut. Nothing is to be had;
but there is the side of the house; that will remain, and cannot change
its length. He, therefore, takes a piece of tape, and makes a mark upon
it near one end; this he causes to be held down against the corner of the
foundation, stretches the tape along the wall, and marks upon it the
point which comes against the other corner.

The first end of the tape being still held against the corner of the house,
he carries the other end out as far as possible in the direction of the pit.
A pole being set up over this, the man at the back end of the tape can
always sight along and see that the forward end is always kept in the line.
Just at the point where the mark at the second end of the tape comes, a
stake is stuck in the ground. The first end of the tape is then brought
forward and the mark upon it brought exactly to the nail. The second
end is carried forward until it is stretched, it is moved to one side or the
other, until it is in the line to the pit, and another stake is put into the
ground as before. They go on in this way, counting the stakes as they go,
until the distance from the last stake to the pole over the center of the
pit is less than the length of the string. To take account of this remaining
distance, he folds the tape up, say into ten equal lengths, called tenths of
it, and counts the number of tenths which cover the distance. If he thinks
this is not precise enough, he folds one of the tenths up into ten equal
lengths, tenths of a tenth, or hundredths; or he might fold one of these
hundredths up into ten equal parts, called thousandths; or one of these
into ten equal parts called each one ten thousandth, etc.
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This instance illustrates the following general principles of measure-
ment.

The principle use of measurement is to make a precise description of
something, to be preserved, so that it may be recognized later.

To measure anything, we must have (a) at the starting point, something
which will remain there and be recognizable until the purpose of the
measurement Is Tulfilled ; like the foundation corner. We must, also, have

(b) something permanent and recognizable which shall serve to show the -

direction of the measurement; like the line of the wall. We must also have
(c) a standard of length which shall not streich nor shrink, and which
shall remain accessible; like the line of the wall. Furthermore, we must
have (d) a bar or tape, which we can carry about, and which shall have
two marks or ends which shall not change their distances during the
process of measurement. We must also be able to divide, and sub-divide
this into equal parts.

To express the measure, or result of measurement, we require words
enabling us to describe the direction. As the words in use are not deci-
mals, i.e. do not proceed by tens, they will be explained in another chapter.
T will only mention here that if we are speaking of a good many measures
from the same point in one direction, say west, so that we have, say, four
Seet, twenty feet, one hundred feet, all west, and if we come to a measure
which is to be taken in the opposite direction, instead of saying, for
example, three feet east, we may say, minus three feet, or three feet re-
versed, or the negative of three feet. To express the measure we require,
secondly, to give the number of units, each equal to the standard. And
thirdly, we require to express the fraction or part of a unit as so many
tenths, hundredths, thousandths, etc., these being equal.

I will now explain these systems of units of measure which are decimal.

MEASURES OF LENGTH. The Metre is the length which is marked
off, by means of two very fine lines, upon a certain bar made of platin-
iridium, a very inalterable metal, and guarded with the greatest care, at
the joint expense of the chief governments of the world in the cellar of
a building called the Pavillion of Breteuil, in Sévres, near Paris, in
France. This bar, like everything else, changes its length according as
it is warmer or cooler; but the mefre is the length of it at the temperature
of melting ice. Officials at Breteuil, by means of the most delicate in-
struments, compare with this “prototype” metre, other similar bars, which
are distributed to the different governments; and these governments send
copies of these, to their officials whose duty it is to see that nobody uses
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false measures. A metre isabout three yards three inches and three eighths;
or more accurately thirty-nine and thirty-seven hundredths inches; or
still more accurately two hundred and fifty-four ten thousandths of a
metre is one inch. Lengths of ten, a hundred, a thousand, and ten
thousand metres, have special names.

A decametre is ten metres.

A hectometre is a hundred metres.

A kilometre is a thousand metres, being 19 feet 2 inches less than £
of a statute mile.

A myriametre is ten thousand metres.

Ten million metres is twenty-five metres less than the shortest distance
along the sea-level from the north pole to the equator. (A. R. Clarke in
Encyclopedia Britannica, vol. vii, p. 607.)

There are also names for one tenth, one hundredth, one thousandth,
and one millionth of a metre.

A decimetre is one tenth of a metre.

A centimetre is one hundredth of a metre.

A millimetre is one thousandth of a metre, and twenty-five and four
tenths millimetres make an inch. '

A micron is a millionth of a metre, a miscroscopic length.

The pupil should be provided with a folding metre measure divided
into centimetres and millimetres; and during his leisure hours he should
practice the following exercises.

1. Measure all kinds of things in the house, trying first to guess their
lengths.

2. Mark a decimetre, a centimetre, a millimetre, from memory; and
practice this until you can be sure your error will be less than one tenth
of the distance.

3. Make a tape line of ten metres, and measure the widths of streets,
the lengths of blocks, or the sides of fields, trying to guess as before.

MEASURES OF MASS. Mass, or as it is ordinarily called weight, is
the quantity of matter. The pupil will learn more clearly what it is in
the book of Natural Philosophy or Physics. Suffice it to say, here, that it
is that which is measured in the operation of weighing, provided the
proper small allowance is made for the circumstance that the air buoys
things up a little. Water, for example, weighs about one eight hundredth
part less in air than it would in empty space. The one thousandth part
of the mass, of a certain platinum weight which is kept in the Pavillion
of Breteuil is called a gramme or gram. Tt is about one twenty-eighth
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part of an ounce averdupois. It is very nearly one centimetre cube of
water, at 39° Fahrenheit at which temperature water is at its heaviest.
The multiples of a gram have names, like those of the multiples of a
metre, as follows:

A decagram is ten grams.

A hectogram is one hundred grams.

A kilogram or kilo is a thousand grams, or about two and two tenths

pounds averdupois.

A myriagram is ten thousand grams.

A metric tont is a million grams, or about a long ton,

The submultiples of a gram also have names like those of the metre
as follows:

A decigram is one tenth of a gram.

A centigram is one hundredth of a gram.

A milligram is one thousandth of a gram. Sixty-four and eight tenths
milligrams are about a grain Troy.

MEASURES OF AREA. The size of a square piece of land measuring
ten metres on each side, being about one fortieth of an acre is called an
are. Its multiples and submultiples are

A myriare, ten thousand ares, being about thirty-nine square miles.

A kilare, a thousand ares.

A heetare, a hundred ares, about two and a half acres,

A decare, ten ares.

A deciare, one tenth of an are.

A centiare, one hundredth of an are, being about ten and three quarters
square feet.

A milliare, one thousandth of an are.

MEASURES OF VOLUME. The bulk of a cube of which every edge
measures one metre, is called a stere. The bulk of one kifo of pure water,
when the Fahrenheit thermometer in it marks about 39°, this being the
temperature at which its bulk is the least, or, as we say at its maximum
density, is called a litre. A thousand litres are for all practical purposes
equal to a sfere. The multiples and submultiples of these measures are
as follows:

A myriastere, ten thousand steres.

A kilostere, a thousand steres.

A hectostere, a hundred steres.

A decastere, ten steres, equal to a myrialitre, ten thousand litres.
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A stere, equal to a kilolitre, a thousand litres.

A decistere, a tenth of a stere, equal to a hectolitre, a hundred litres.
A centistere, a hundredth of a stere, equal to a decalitre, ten litres.
A millistere, a thousandth of a stere, equal to a litre.

A decifitre, a tenth of a litre.

A centilitre, a hundredth of a litre.

A millilitre, a thousandth of a litre, equal to a centimetre cube.

MONEY.? Dollar is a word having three meanings in this country.
There is a gold piece called a dollar coined in the United States mint,
one thousand five hundred and four and two thirds milligrams of fine
gold. There is also a silver piece called a dollar, coined in the United States
mint from twenty-four and six hundredths grams of fine silver. In law,
these two coins are considered to be of equal value, and a dollar is, in
the third place, the name of any money which may legally be paid instead
of one of the coins so called. One hundredth of a dollar, in the last sense,
is a cent; one thousandth is a mill. An eagle is a gold coin having the
value of ten dollars. A dime is a silver coin having the value of a tenth
of a dollar. The same system of money is used in Canada, and Liberia.

The unit of money equal in value to nineteen and three tenths cents
is used in Belgium, France, and Switzerland under the name of a franc,
in Greece under the name of a drachma, in Ttaly under the name of a firg,
in Spain under the name of a pesefa, and in Venezuela under the name
of a Bolivar. The hundredth part of it is called in France, Belgium, and
Switzerland a centime, in Greece a lepta, in Ttaly and Spain a centesimo.

In Germany, a mark is a money of the value of twenty-three and eight
tenths cents. Its hundredth part is called a pfenniz.

In Helland, a florin or guilder is a money of the value of forty and two
tenths of our cents. Its hundredth part is called a cent.

In Portugal, the unit of money is a re. One thousand reis are called
one milreis, one thousand milreis a conto and one thousand eontos a
conto of contos. A milreis has the value of one dollar and eight cents,

In Russia, a rouble worth fifty-eight and two tenths cents ($0.582) is
divided into a hundred copecks.

In Denmark, Norway, and Sweden, the unit is a krone of the value of
twenty-six and eight tenths cents ($0.268) divided in one hundred ore.

In Turkey, the unit is a piastre, of which one hundredth is an aspre,

* No attempt has been made to modernize these conversions. Peirce’s statements
are of historic interest,
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and a hundred make a flirg. The value of the piastre is four and four tenths
cents ($0.044).

In British India, the unit is the rupee, worth thirty-four and six tenths
cents ($0.346). In some places, it is divided into one hundred cents.

CHAPTER III. THE ARABIC NOTATION

The following is an example of a number written in the Arabic notation
453-59

The dot after the 3 is called the decimal point. It is sometimes written
on the line; but we write it above the line after Sir Isaac Newton. When
it comes after all the figures, it is not written; and when a number has
no decimal point, it must be imagined to have one immediately after the
last figure.

A figure written immediately before the decimal point signifies one of
the first nine numbers; namely,

1, one,

2, itwo,

3, three,

4, four,

5, five,

6, six,

7, seven

8, eight, ::

9, nine, - i -
The figure 0 is called the cipher, or zero. It only serves to remove the
other figures from the decimal point, but itself signifies no other number.
The effect of removing any figure one place to the right is to make its
value ten times as great; the effect of every remove to the left is to make
its value only one tenth as great as it was before. Thus,

1 is one, 2 is two, 3 is three;

10 is ten, 20 is twenty, 30 is thirty;
100 is a hundred, 200 is two hundred, 300 is three hundred;
1000 is a thousand, 2000 is two thousand, 300 is three thousand;

¢ In this MS., which Peirce had typed, the decimal point is written on the ling, as
he usually did elsewhere. However, in MS. 167, of which 168 is a typewritten copy,
the dot is placed above the line, and it is so placed throughout MS. 167.
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10000 is ten thousand;
100000 is a hundred thousand;
1000000 is a million;
10000000 1s ten million, etc.

So on the other side of the decimal point,
0.1 is one tenth, 0.2 is two tenths,
0.01 is one hundredth, 0.02 is two hundredths,
0.001 is one thousandth, 0.002 is two thousandths,
0.0001 is one ten-thousandth, 0.0002 is two ten-thousandths,

0.3 is three tenths;
0.03 is three hundredths;
0.003 is three thousandths,
elc.
The different figures in one written number are all intended to be written
together, Thus,
21 is twenty and one or twenty-one,
201 is two hundred and one,
2001 is two thousand and one,
20001 is twenty thousand and one,
200001 is two hundred thousand and one,
2000001 is two million and one,

In order to read a number we count up the places beginning to the left
of the decimal point, thus: — units, tens, hundreds, thousands, tens of
thousands, hundreds of thousands, millions, etc. We then name the first
figure, and then its place, then the second figure and its place. Thus,
453-59 reads

four hundred,

and fif’ -ty,
three units
and five tenths,

nine hundredths.

Many persons, however, would read it

four, five, three, point, five, nine;
and this is perhaps easier to understand.

CHAPTER IV. THE ARABIC NOTATION (continued)

The following apparatus is required for this chapter. An arithmetical
frame made as follows: A frame with a handle, so that it can be held up
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high, has 12 horizontal wires, on each of which nine balls run; the color
of all nine balls on each wire is the same; but the fifth ball is of an
oblate form, so as to bulge out more; and so facilitate counting. The
colors of the balls on the different wires, beginning at the lowest one are
as follows: black: blue: red: green: yellow: white: black: blue: red:
green: yellow: white.

A number of sheets ruled in oblongs, of the right size and shape to put
a number in each (see the sample) and with columns headed, successively;
milliaids: lacs of millions: myriads of millions: thousands of millions:
hundreds of millions: tens of millions: millions: lacs: myriads: thousands:
hundreds: tens: units: tenths: hundredths: thousandths. Blackboards
ruled the same way. Copy-books for each pupil tastefully ruled in the
same oblongs, but without the headings.

The arithmetical frame used with the book is constructed on the same
principle as your counters, each ball represents one of the counters. When
they are not wanted they are pushed to one side of the frame, and when
they are intended to have a meaning, they.are brought to the other side.
The balls have no names upon them, but in place of that each kind runs
on a distinct wire, and these wires are placed in regular order, units: tens:
hundreds: etc. These fixed places of the wires make the frame a far clearer
way of indicating a number than your counters are. (The teacher will
explain the use of the frame with sample.)

Exercise. Express the following numbers, first with your counters, and
then on the frame, The following are the heights of some of the principle
mountains above the level of the sea in metres:

Gowrisankar, Asia . . . . . . . . . . o« . 8840
Dapsang, Asia . . . . - . . . . .. . . . 8821
Kinonin-Jinga, Asia . . . . . . . . . ... 8580
Aconcagua, South America. . . . . . . . . 8834
Illampou, South America. . . . . . . . . . 8560
Chimborazo, South America . . . . . . . . 8253
Kilima-Njaro, Africa . . . . . . . . . . . 5705
Elbrouz, Burope . . . « + v o« 0 2 00 0 e 5847
Demauend, Asia . . . . . . . .« .4 5665
Popocatapetl, North America. . . . . . . . 5410
Wocho, Africa . . . .« « ¢ 4 0 o 4 oo 5060
Arvarat, ASi® . . . . - - - - o« oa s 4w 49012
Klicochew, Asia: + + &« « « % & % o v as 4900
Brown, North America. . . . . . . . « . . 4876
Mont Blanc, Europe. . . . . . . . . . . . 4810
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St. Elias, North America. . . . . . . - . . 4568
Finster-aar-horn, Europe. . . . . . . . . . 4275
Okhir, Oceanica . . . . . « « « o« o o« 4222
Mauna-kea, Oceanica . . . + « « « « + - 4197
Kinabaloo, Oceanica . . - . « « « + + v & 4172
Viso, Burope. < 5 = & G o elese el o 3845
Mulanacen, Burope . . . « ¢ v 0 o0 e oo 3554
Miltsin, Aftica . . + « o 0 0 4 42 e s w s 3475
Pic $Aneto, Burops. . . « .« i o= 0 o 3405

(From the Annuaire des Longitudes, 1888)

The abacus blanks provided for the pupil are ruled in columns part of
which are headed Units, Tens, Hundreds, Thousands, Myriads, Lacs,
Millions, etc. These numbers are called articles, from the Latin articulus,
a joint, because they were anciently counted on the joints of the fingers.

The spaces are called decimal places. There are also columns headed
tenths, hundredths, thousandths. These spaces are also called decimal
places, These columns correspond precisely to the wires of the arith-
metical frame: but in place of using balls, we write in the columns certain
figures, called the Arabic figures. There are ten of these, as follows:

1 + One

2 ++ Two

3 4++ Three

4 +4++ Four

3 Attt + Five

6 ++++ + + Six

T £44+ + ++ Seven

8 +4t+ + ++t Eight

Q9 fdt + At Nine

0 Nothing

The first nine numbers are called digits, from the Latin digitus a finger,
because they were anciently counted on the fingers; and the figures for
these numbers have the same name. The tenth figure, which is only used
to fill up a space, when there is no digit to be written in it, is called the
cipher or zero. It is also called naught. These figures are to be written
in the columns of the Abacus-blank precisely as the balls are used in the
arithmetical frame, except that we must carefully observe that something
has to be written in every column; and if nothing else belongs in it, a
zero must be written. The following example shows several numbers
written in words, and in figures on the abacus-blank.®

¥ No figure was given by Peirce.
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The numbers will be equally intelligible written without any abacus-
blank. Only then we must take pains in writing several of them, to place
them accurately in vertical columns, the units under units, the tens under
tens, etc. The fo'lowing are examples.

the number of feetinavyardis . . . . . . . 3
the number of inchesin a footis . . . . . . 12
the number of links in a chainis . . . . . . 100
the number of feet in a miledis . . . . . . . 5280

EXAMPLES [From Ms. 167]

Read the following:
Mercury revolves round the sun in  8§7.9693 days.

Venus revolves in  224.7008 days.
The Earth in  365.2564 days.
Mars in  686.9797 days.
Jupiter in 4332.5848 days.
Saturn in 10759.2198 days.
Uranus in 30686.8208 days.
Neptune in 60126.7200 days.

One grain Troy is equal to 0.06479895 grammes,

The length of the year is 365 days 5 hours 48 minutes 45.69 seconds.

The equatorial diameter of the earth is 20926202 feet.

The polar diameter is 20854895 feet.

The Absolute cold is —273.1 degrees Centigrade. (The line before the
number is read minus, and signifies that it is so many degrees below zero
instead of above.)

According to the census of 1880, the population of the United States
was 50155783, of which 25518820 were male, 43475840 were native,
43402970 were white, and 36761607 were ten vears old and over. Those
engaged in agriculture were 76704393 ; those engaged in professional and
personal services were 4074238; those engaged in trade and transporta-
tion were 1810256; and those engaged in manufactures and mechanical
and mining industries were 3837112,

The circumference of a circle is
3.141592 653589 793238 462643 383279 502884 197169 399375 105820
974944 592307 816406 286208 998628 034825 342117 067982 148086
513282 306647 ...
times its diameter. This may be read: three and one hundred and forty
one thousand five hundred and ninety-two millionths six hundred and
fifty three thousand five hundred and eighty-nine billionths etc.

FACTOTAL AUGRIM (169)

INTRODUCTION

“Augrim” is a charming old English name for a very familiar thing for
which no other word in our language is exclusively appropriated, namely,
the art of using the so-called “Arabic” figures. The cause of the disuse
of the word “augrim” seems to have been that the learned Robert Recorde,
the author of the first treatise on the subject in the English language,
declared therein that “augrim™ was a “corrupt™ word (as, in fact, all words
are), and that it must be called “algorism.” Maturally, rather than use
such a word as that (itself, by the way, a “corruption”of Al-Kwarizmi),
people preferred to call the art *rithm’tic, and have done with it, although
the word arithmetic is needed in i1s proper sense of the mathematics of
numbers. It is true that the name “Vulgar Arithmetic” designates augrim
unmistakably; but the word “vulgar” has itself come, with the unlearned,
to imply an objectionable fashion, and what is worse, the name is far
too long, with its six syllables, to serve as the name of so familiar an art.
“Practical arithmetic”™ is still longer. “Ciphering” is a good word for the
practice of the art, but not for the art itself, Algorithm, a more agreeable
and less pedantic form of “algorism,” is in common use among mathe-
maticians to denote a form of working a process of augrim on paper,
especially when the form is peculiar. It will be so used in this book.

A book, like a person, in addition to its family name, needs an ad-
jectival name to distinguish the individuals from others of the same family.
1 christen this book Factotal Augrim, because I mean it to teach an
augrim which will serve as a facrotum, performing on demand and with-
out giving trouble every office for which the Arabic figures can, with
any advantage be employed; as, for example, in so numbering objects
not serially arranged, such as the faces, summits, and edges of polyhedra,
as to aid one in making out their relations.

This textbook has three Divisions. The first called Elementary Augrim
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deals with those elementary operations of which all other arithmetical
and algorithmic operations are compounded. The second called Com-
posite Augrim treats of operations compounded of those treated in the
first division. The third, called Applied Augrim, shows how to select
the most convenient methods with view to avoiding needless labour, with
a view to the lucidity of the record, etc.

The First Division, on Elementary Augrim, has three Parts, devoted
respectively to Integers, or whole numbers, Fractions and the like, and
Surds.

The First Part of the First Division has three Books, treating respec-
tively of Unlimited Numeration, Cyclical Numeration, and Singular Nu-
meration, where the march of the numbers branches at certain places,
or halts.

The First Book has three Chapters, the first concerning the nature of
integers, the second concerning the systems of counting, and the third
concerning the elementary arithmetical operations.

FIRST DIVISION. ELEMENTARY AUGRIM.
PART ONE. OF INTEGERS.

BOOK I. UNLIMITED NUMBER.

CHAPTER THE FIRST. WHAT IS NUMBER?

All our thinking is performed upon signs of some kind or other, either
imagined or actually perceived. The best thinking, especially on mathe-
matical subjects, is done by experimenting in the imagination upon a
diagram or other scheme,* and it facilitates the thought to have it before
one’s eyes, But the only point I just now wish to make is that a thought
being always a sign, if one wishes to consider such a question as what the
concept of number is, external signs answer every purpose, and there is
no need at all of considering what passes in one’s mind, which is a question
that nobody is fit to discuss who has not been through a long, arduous
and absorbing course of reading, experimentation, and meditation about
the difficult science of psychology, and not even then, unless he happens

1 There is no note in the manuscript although Peirce indicates that a note is given.
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to have a special aptitude for the subject. Not only is nothing gained
by trying to make out what passes in the mind, but this irrelevant question
imposes an onerous handicap upon the logical inquirer, as is shown by
the fact that psychologists usually quite miss the point when they under-
take to discuss logical questions, such as this. The reason is the simplest
in the world: when you want to consider anything, you had best turn your
thoughts to that, and not to something quite different; especially if that
quite different thing be connected with your problem in inessential ways.
I mean for example that when you want to know what number is, you
should not allow your energy to be wasted and your thoughts diverted
by the entrancing interest of all the anthropologists have to tell you about
how different men think of number, nor by what the psychologists have
to tell about how all men alike think of it. For what should engage your
attention is just the questions what number is, what it does, how it can
influence a rational being, etc. T even dread the effect upon your thought
of the little squint at the mind that this paragraph may have invited; and
in case you do not quite understand what I have been saying, pray desist
from attempting to do so but go on at once to what I am about to say
now.

Every language that is adapted to the purposes of civilized people needs,
and actually has, more than one series of words called numerals, and that
which the different numerals of one series do or might distinguish is called
this or that kind of number. There are three kinds of number which it is
specially important clearly to understand, and which we shall call the
three primary series of numbers.

Before explaining the first of these, I shall have to prepare your minds
by calling attention to certain ways of speaking and thinking. The word
“population,” being a common noun in the singular number, if it denotes
anything that really exists, denotes some single object of the kind which
it describes. Such an object is one whose being consists in there being,
in the place and at the time to which the population belongs, such in-
habitants as there happen there and then to be, and to be without others.
For example, the population of Robinson Crusoe’s island after Friday
came, was just what it was by virtue of the three facts that Robinson lived
there, that Friday lived there, and that nobody else lived there. If any
one of those three facts had been otherwise, the island whould have had
another population. This kind of population would be described in a
census as “a population of 2.” Before Friday came, the population was
just what it was by virtue of the two facts, that Robinson Crusoe lived
there, and that nobody else lived there. A census would describe it as
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“a population of 1.” Before Robinson’s own arrival a census would have
set down the island as having “a population of 0.” To be sure, we should
ordinarily say that an uninhabited [island] has no population whatever.
But that is because we ordinarily prefer to take the word “population”
in a slightly different sense from that which is most convenient for the
purposes of augrinm. In augrim we mean by the “population,” the answer
to the question, “What inhabitants, and no others, had the given place

at the given time?” The answer for an uninhabited island is “none.”

“Population” is a so-called collective noun, that is, it names a single object
as considered to be at once single and to have a being consisting in the
being of objects which might be denoted by a noun in the plural. Almost
any object does consist of such parts; but a noun in the plural calls atten-
tion to this and neglects the fact that the object is, nevertheless, single;
while the collective noun draws attention at once to the singleness and
the plurality.

An “object” means that which one speaks or thinks of. Therefore, if
I say, or even think, that a star, a caterpillar, and a blot of ink can be
seen from where I sit, the star, the caterpillar, and the blot of ink forth-
with make up a single object. Every noun in the plural is the name of a
single object; but we call the object, after the noun, a plral when it is
not our purpose to draw attention to its being an object. If we do intend
to draw attention to that circumstance and to its plurality, as well, we
call the object a collection.® The difference between a plural and a collec-
tion is very trifling.

(*In these days, when young men have for half a century gone to Ger-
many to acquire every sort of knowledge, excepting that of their mother
tongue, which they seem disposed to “reform,” without much understand-
ing of it, I find there are many people, well-educated in other matters,
who seem to imagine that it is not strictly accurate to speak of a “collec-
tion™ of objects, unless they have, in some way, really been brought to-
gether. If it were of the propriety of the French language that they were
speaking, influenced as that has been by ignorant grammarians and
rhetoricians, I think they would be right. But in respect to English, which
has been influenced in regard to logical words far more by the Latin,
most by scholastic Latin, but also by the ancient language, very much
more than by the French or by any etymological considerations, they
are certainly wrong. The very earliest known instance of the occurrence
of the word as a known English word (for I leave out of account a case
in which Trevisa, about 1390, translates “festa collectionis™ by “feast of
the collection,” and then, because this word “collection” was not then
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English, and the verb “coil,” which has since taken the form “cull,” and
certainly implies a real bringing together, though usually only on paper,
thinks himself obliged to add the English equivalent “gathering™) is in
the phrase “collection and discourse of reason.” Nor has there been any
period since the date of that passage, 1529, when “collection,” in the
severest formality of English writing, implied any physical culling. It
could not be so; because English has followed much the scholastic usage,
which was decidedly against that limitation. Those who were inclined to
rebel against the dominion of the scholastics would go back to Cicero,
or perhaps even to Plautus. But in every age of Latin speech it was the
same; in the majority of instances “collectio™ refers to a merely mental
collation. If we go a step further, and inquire into the original meaning of
the verb lego, A&y, we find, indeed, that the comparative philologists give
“gather,” as its original meaning. But that idea is simply an inheritance
from the great scholars who founded the science of comparative linguis-
tics, and who having passed their lives in such villages and little towns
of Germany, as harboured universities, knew nothing at all about primi-
tive man except that they supposed he differed from themselves as the
German artisans or peasants did, only still more so. By that comparison,
they were led to imagine that every root must have originally signified
some physical action. But since those great men have passed away, a
genuine science of anthropology has arisen, especially under the tutelage
of that remarkably genuine man, the late Major Powell. Young Americans
have gone and become so thoroughly naturalized among primitive peoples,
that the latter enthusiastically endorsed them as their spokesmen, and even
wished to acknowledge them for their chiefs. We must suppose that such
men understand primitive man. If they do not, who does? Now these
men tell us, quite as unanimously as unhesitatingly, that there is no other
kind of man who is so perpetually thinking of himself and his feelings
as is the primitive man. Admitting that, then, there is one sort of expe-
rience which must have made itself peculiarly prominent to the man who,
when speech was something new, was trying to describe his experiences
through this novel medium. That experience must have been of the effort
required to bring together, in his intended utterance, the different in-
telligible sounds which would render his meaning plain. Surely, if that
man was in the least like the presumably far less “subjective,” or emo-
tional, Amerindians with whom the young, and first really scientific,
anthropologists have become acquainted, he must have had some lin-
guistic root that originally expressed the action of his mind in choosing
its medium of expression. Now what root can that have been but the
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leg, log to which the facts on the whole tend to assign this meaning,
nothing opposing this suggestion but modern notions imbibed, in some
way, by men of the most ignorant class that exist, the students?

At any rate, there is nothing in etymology, any more than in the usage
of speech, to support the idea that before a plural can strictly be called
in English a “collection,” its members must have been actually and really
brought together. Every class of facts points, on the contrary, the other
way.) ;

T proceed now to state the requisite properties of any series of numerals
which is to be adapted to counting every possible collection. In this state-
ment, I avoid using any such expression as that one numeral comes after,
or later, than another, for two reasons; first, that should anybody ask me
precisely what I mean by “after™ or “later” in the series, I should be
obliged to give substantially the same statement which I prefer to give at
once; but secondly also, -—— and this is the more important reason, —
1 wish to place before the attention of the student every feature of the
structure of the series of numerals, so as to enable him to see just how
it comes about that it possesses any property that it does possess.

1 shall allow myself, however, in this statement, the use of one abridged
expression, because it will render the statement decidedly clearer and
easier to comprehend. Namely, I shall speak of one numeral, call it N,
“supposing” another, which we may call M, which will be an abbreviated
form of words employed in place of saying that “the use of N, in counting,
supposes the use of M ;" that is to say, there could not possibly be & count
in which N should be used but M not be used, for the reason that N comes
later in the series than M, and therefore, in counting, is not used until
after M has been used. But the best explanation of my phrase “N sup-
poses M” is that it means, “take whatever possible count you may, and
if N is used in it, so is M.”

The relationship between the different numerals of one series, in respect
to the operation of counting, from which their whole significance is
derived, is as follows:

1st, Given any two numerals of one series, there might be a count in
which one of them would be used, and the other not.

2nd, Among any numerals of one class or group, there will always be
one which is used in every count in which any of them are used.

3rd. Given any intelligible description of a numeral, which description
we may call D, it will be of one or other of three kinds, to wit: First, D
may be such that there is no numeral to which it applies. Second, D may
be such that given any numeral, N, whatever this N may be, there will
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be some numeral, I, to which the description D applies, such that in some
possible count N would be used, but I would not be used. (Of course,
if a different numeral, say N’, be taken in place of N, then it may be
necessary to find a different numeral, I', to take the place of I. Suppose,
for example, the description, D, were that the numeral should end with
four, as twenty-four, thirty-four, etc. If then one hundred were taken
as N, we might take one hundred and forty-four for I, but if one hundred
and fifty were taken for N’ we should have to take some number beyond
that, say one hundred and fifty-four, or one million and fifty-four for I'.)

Thirdly, if D has neither of the two properties already described, then
there will be some numeral, U, to which the description D applies which
is used only in counts in which every numeral of the description D is
used, and there must, moreover, be some numeral, V, to which the de-
scription D does not apply which will be used in some possible counts
in which U is used and not in others.

The above three statements taken together signify, either explicitly or
implicitly, every fact which is true of every complete series of numerals,
without regard to anything else. Those things are signified explicitly
which are stated in so many words. Those things are signified implicitly
which, though not stated explicitly, can be seen to be true of any state
of things of which what is explicitly stated is true. 1 will now restate these
important propositions in less simple but more familiar and compendious
Janguage. For this purpose, I will say that one numeral, call it P, comes
earlier in any count than another, say Q, if, and only if, P is used although
Q is not used. Applying the second of the above statements to that class or
group of numerals that consists in the pair, P and Q, we learn that there
is one of the two which is used in every count in which either is used.
Since, then, P is used in some count and Q not, it follows that P must be
used in every count in which Q is used, although Q is not used in every
one in which P is used. We thus see that that one of two numerals which
comes earlier than the other in any count comes earlier in every count,
that is, if only one is used, it is always that one.

Our three propositions, then, may be expressed as follows: 1st, Of
any two numerals one is earlier than the other. 2nd, Of any plural of
numerals some one is the earliest. 3rd, If a numeral to which a given
description would apply be called a d, then one of three things is the case.
Namely either

1st, There is no d; or :

2nd, Every numeral comes earlier than some d; or

3rd, There is a d than which all other ds come earlier, and this latest d
is earlier than some numeral that is not a d.
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FIRST DIVISION. ELEMENTARY AUGRIM.
PART ONE. OF INTEGERS.

BOOK II. CYCLICAL NUMBERS.

CHAPTER THE FIRST. WHAT IS CYCLICAL NUMERATION?

Any Wednesday is the fourth day of its week; that is, it is the fourth day
after the last day of the previous week; or, there have been four days as
early in its own weck as Wednesday. .

Suppose we should wish to know on what day of the week will fall a
day that is 5 days later than a Wednesday, How shall we proceed to do
this sum? We have seen that in any row the Nth place after the Mth
place is the (M -+ N)th place. Therefore, the 5th day after the 4th day
must be the (4 + 5)th day, or the 9th day. But there are only 7 days in
a week; and the 8th day, or next day after the 7th day, is the first day,
Sunday. We count round and round, as the figure shows. The 8th day
is the same as the lst day, if we do not care what week it may be in,
but only want to know the day of the week; and 9th day will be the 2nd
day. Therefore, the 5th day after the 4th day will be the 9th day, which
is the 2nd day, or Monday.

Here is another question: If the 1st day of January falls on Thursday,
on what day does the Ist day of February fall? Now there are 31 days
of January; so that the first of February is 31 days later than the first
of January. Consequently, since the first of January is Thursday, the 5th
day of the week, the first of February will be the (54 31)th, or the 36th
day. Subtract from 36 the largest multiple of 7 that is not greater than
36. That will be 35; for 7 5 = 35. Then subtracting 35 from 36, the
remainder is 1: and therefore, the first of February will be the 1st day,
or Sunday. By the phrase “cyclical numeration™ is meant counting round
and round. The number of places in a round, or “period,” is called the
“modulus” (i.e. the measurelet). Thus, in counting days of the week,
regardless of the difference of one week and another, the “modulus™ is 7.
Two numbers which fall in the same place and which are, therefore, the
same, so far as the cyclical numeration considers them, are said to be not
equal, exactly, but “congruent,” each to the other, “for that modulus.”
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The modulus, for example, is congruent to 0 for that modulus. 9 is
congruent to 16 for modulus 7. We write this thus:
= 16 (mod. 7),
or, in general,
(@am+c) =(hm+c) (mod. m)

The result of subtracting from any positive number that multiple of the
modulus that comes nearest to, without being greater than, that number
is called the residue of that number for that modulus. (Germans call it
the rest.) Thus, the residue of 20 for the modulus 7 is 6, while the residue
of 21 is 0. The residue has a meaning only when we pass from one system
of numeration to another. As long as we are counting with one modulus,
all congruent numbers are the same. Monday is Monday, and Tuesday
is Tuesday, and nothing else, so long as we have not to do with the
distinction between one week and [another].
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FAMILIAR LETTERS
ABOUT
THE ART OF REASONING (186)

Stagira, May 15, 1890,

My dear Barbara:

The University of Cracow once conferred upon a very good fellow a
degree for having tanght the philosophical faculty to play cards. I cannot
tell you in what year this happened, — perhaps it was 1499. The graduate
was Thomas Murmer, of whose writings Lessing said that they illustrated
all the qualities of the German language; and so they do if those qualities
are energy, rudeness, indecency, and a wealth of words suited to unbridled
satire and unmannered invective. The diploma of the university is given
in his book called Chartiludium, one of the numerous illustrations to
which is copied to form the title page of the second book of a renowned
encyclopacdia, the Margarita Philosophica. (Published at Heidelberg in
1496, at Freiberg in 1503, in Strassburg by Griininger in 1504, in Strass-
burg by Schott in 1504, in Basle in 1508, etc.) Murmer’s pack contained
51 cards. There were seven unequal suits; 3 hearts, 4 clubs (or acorns),
8 diamonds (or bells), 8 crowns, 7 scorpions, 8 fish, 6 crabs. The remain-
ing seven cards were jokers, or unattached to suits; for such cards formed
a feature of all old packs. The object of Murmer’s cards was to teach the
art of regsoning, and a very successful pedagogical instrument they no
doubt proved.

If you will provide yourself, my dear Barbara, with a complete pack
of cards with a joker, 53 in all, I will make a little lesson in mathematics
go down like castor-oil in milk. Take, if you will be so kind, the 1, 2, 3,
4,5, 6,7, 8,9, 10 of spades, and arrange these ten cards in their proper
order. I mean by this that the ace, or 1, is to be at the back of the pack,
the 2 next, and so on, the ten alone showing its face. I call this the “proper
order,” because I propose always to begin the count of cards in a pack
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at the back, so that, in the pack of ten cards you have just been so
obliging as to arrange, every card is in its proper place, that is the number
it bears on its face is equal to the number of its place from the back of
the pack. The face-value of the 2nd card is 2, that of the 3rd card, 3, and
50 On.

MNow let us add 3 to the face value of each card in the pack. How shall
we do that without a printing-press? Why, by simply taking three cards
from the back of the pack of ten and carrying them to the face. The
face-value of card number 1 is now 341, or 4; that of card 2 is 5, and
so on up to card 7 whichis 10. Card 8 is 1; but 1 and 11 are the same
for us. Since we have only ten cards to distinguish, ten different num-
bers are enough. We, therefore, treat 1, 11, 21, 31, as equal, because we
count round and round the ten, thus:

We say 13 and 23 are equal, meaning their remainders after division
by ten are equal. This sort of equality of remainders after division is
called congruence by mathematicians and they write it with three lines,
thus

13 = 23 (mod, 10)

The number 10 is said to be the modulus, that is, the divisor, or the
smallest number congruent to zero, or the number of numbers in the
cycle.
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Instead of ten cards you may take the whole suit of 13, and then,
imagining a system of numeration in which the base is thirteen and in
which we count

1 23456 78 9 10 Jack Queen King

we have a similar result. Fourteen, or king-ace is congruent with 1 fif-
teen, or king-twa, with 2, etc.

It makes no difference how many cards there are in a pack. To cut it,
when arranged in its proper order, and transpose the two parts, is to add
a constant amount to the face-value of every card. So much for addition,

Now how shall we multiply? Suppose we have the pack of ten in its
proper order, and wish to multiply the face value of the cards by 3. We
deal out the cards one by one from first to last, into 3 piles laying them
face up upon the table. We first take up the pile the ten, or zero, falls
upon, then the next pile, last the third, putting each pile after the first at
the back of that last taken. We now find in place 1 card 3, or 3 times 1;

in place 2 card 6, or 3 times 2;

in place 3 card 9, or 3 times 3;

in place 4 card 2, congruent to 3 times 4;
in place 5 card 5, congruent to 3 times 5;
in place 6 card 8, congruent to 3 times 6;
in place 7 card 1, congruent to 3 times 7;
in place 8 card 4, congruent to 3 times §;
in place 9 card 7, congruent to 3 times 9;
in place 10 card 0, congruent to 3 times 10,

Take this pack and multiply again by 3. Multiplying by 3 twice is multi-
plying by 9. But9 = —1. Accordingly we shall now find

In place 1 card —1 or 9,
In place 2 card —2 or 8,
In place 3 card —3 or 7,
etc.
Multiply again by 3, and since 3 x9 =7, we shall find

inplace lcard 7x1 =7,

in place 2 card 7x 2 =4,
inplace 3card 723 = |,
in place 4 card 7 x4 = §,
in place Scard 7x 5 = 5,
inplace 6card TX 6 = 2,

etc.
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Take a pack of 11 cards. We shall now have

11 0

12 1

23 1
and, in short, to find what any card will be, having performed the neces-
sary arithmetical operation, we subtract the number in the tens place
from the number in the units place, and repay anything we borrow in the
addition. Thus, suppose we deal into 5 piles and take up the piles from
left to right putting each one at the back of the pile that was at the left
of it. We shall now have

1101

in place 1, since 5 % 1 == 5, card 5;

in place 2, since 5 x 2 = 10, card 10;

in place 3, since 5% 3 = 15 and 1 from 5 leaves 4, card 4;

in place 4, since 5 X 4 = 20 and 2 from 10 leaves 8, and repaying
1 borrowed we have 9, card 9;

in place 5, since 5 X 5 = 25 and 2 from 5 leaves 3, card 3;

in place 6, since 5 x 6 = 30 and 3 from 10 leaves 7, and repaying
1, we get 8, card 8;

in place 7, since 5 X 7 == 35 and 3 from 5 leaves 2, card 23

in place 8, since 5 % 8 =40 and 4 from 10 leaves 6, and repaying
1 we get 7, card 7;

in place 9, since 5% 9 == 45 and 4 from 5 leaves 1, card 1;

in place 10, since 5 x 10 = 50 and 5 from 10 leaves 5, and repaying
I we get 6, card 6;

in place 11, since 5% 11 = 55 and 5 from 15 leaves 10, and re-
paying 1 we get 11, card 11 ( = 0).

Suppose we now deal again into 9 piles, Now, the last card falls on
the 2nd pile. How are we to take up the piles? Answer: After the cards
are exhausted, go on dealing in rotation upon the piles to the right of
the last single card dealt no longer single cards but whole piles always
taking the extreme left hand one. Thus, in the present case, after the
piles are all dealt cut, put the left hand pile upon the pile to the right
of the Jack, the last single card dealt; that is, put the pile headed by the
6 on that headed by the 4. Then, on the pile one further to the right,
that headed by the 9, put the extreme left one headed by the Jack. Next,
on the one headed by the 3 put the one headed by the 6, and so on until
the piles are reduced to one. You will then find the proper order restored.
Why? Because you have multiplied by 5 and by 9, that is, by 45, and
4 from 5 leaves 1, so that you have multiplied the cards in their proper
order by 1, which leaves them in their proper order.
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I now beg you, my dear Barbara, to take the full pack of 53 cards, and
arrange them in their proper order, first the spades, second the diamonds,
third the clubs, and fourth the hearts, each suit in its proper order,

1 2 3 4 5 6 7 8 9 X J Q K

with the Joker at the face. Deal them out into twelve piles and take up
the piles according to the rule. Namely, denoting the Joker by O,
place the pile headed by the X on the pile headed by the 3;
then place the pile headed by the J on the pile headed by the 4;
then place the pile headed by the Q on the pile headed by the 5;

K 6;
O %
X 8;
J 9;
Q X;
K I;
o Q;

then place the pile headed by the O on the pile headed by the K.

Next deal the cards out again into 31 piles, and take up the piles ac-
cording to the rule. Namely,

first, place the pile headed by the K4 on the pile headed by the J & ;
then, place the pile headed by the Q4 on the pile headed by the X ¢ ;
then, place the pile headed by the J &b on the pile headed by the 9 &b;

Xy 89,
B 66,
74 54;
6 & 4dp;
59 39,
3 1 &;
2¢ Ké;
1dp Qé:
Kép I &;
Qv X9,
Xé 8 ;
9¢ 7¢;
LR 6dp;
T 59,
5é 3;
4 ¢ 24;
3dp 1 db;
29 Kép;
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then, place the pile headed by the O on the pile headed by the Q¥

44 Xép;
3dp 9 ¢;
29 8 dp,;
0 79;
44 5é;
3 44;
29 3dp;.

then, place the pile headed by the O on the pile headed by the 2 9.

This restores the original order because 12 ¢ 31 = 372, and 53 into 372
goes 7 times and 1 over; so that

12 x 31 =1 (mod 53);

that is, the two dealings are equivalent to multiplying by 1; that is, they
leave the cards in their original order.

You, Barbara, come from an ancient and a proud family. Conscious
of being raised above the necessity of using ideas, you scorn them in your
own exalted circle, while excusing them in common heads. Your cousins
Baroco and Bocardo were always looked upon askance in the family,
because they were suspected of harboring ideas, — a quite baseless sus-
picion, I am sure. But do you know that the unremitting study of years
has tempted me to favor a belief subversive of your kindred’s supremacy,
and of those principles of logic that are accepted upon all hands, I mean
a belief that one secret of the art of reasoning is to think? In this matter
of card-multiplication, instead of conceiving the dealing out into piles as
one operation and the gathering in as another, T would prefer a general
formula which shall describe both processes as one. At the outset, the
cards being in no matter what order, we may conceive them as spread
out into a row of 53 piles of one card each. If the cards are in their proper
order, the last card is the Joker. In any case, you will permit me to call
any pile that it may head the Ultima. The dealing out of the cards may
be conceived to begin by our taking piles (single cards, at first) from the
beginning of the row and putting them down in successive places follow-
ing the ultima, until we reach the pile which we propose to make the final
one, and which is destined to receive all the cards. When in this proceed-
ing, we have reached the final pile, let us say that we have completed the
first “round.” Thereupon we go back to the pile after the ultima as the
next one upon which we will deposit a pile. We may complete a number
of rounds each ending with placing a pile (a single card) on the final pile.
We make as many as [the] number of cards in the pack will permit, and
we will call these the rounds of the “first set.” Tt will be found useful,
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by the way, to note their number. Having completed them, we go on just
as if we were beginning another; but when we have moved the ultima,
let us say that we have completed the first round of the second set. Every
round of the first set ends by placing a pile on the final pile. Let us call
such a round “a round of the odd kind.” Every round of the second set
ends by moving the ultima. Let us call such a round a round of the even
kind. We make as many rounds of this kind as the whole number of
places after the ultima enables us to complete. We call these the rounds
of the second set. We then return to making rounds of the odd kind and
make as many as the number of piles before the ultima enables us to make.
So we go alternating sets of rounds of the odd and the even kind, until
finally the ultima is placed upon the final pile; and then the multiplication
process is finished.

I will now explain to you the object of counting the rounds. But first
let me remark that the last round, which consists in placing the ultima
upon the final pile, should always be considered as a round of the odd
kind. When vou dealt into twelve piles and gathered them up, with the
first 48 cards you performed 4 rounds of 12 cards each, and had 5 cards
left over. These five you dealt out, making the first round of the second
set; and then you transferred these five piles over to the tops of the second
five, making another round of the second set. Then from these five piles
you dealt to the other two piles twice, making two rounds of the third
set. MNext the ultima was placed upon the next pile, making a round of
the fourth set. Finally the ultima was placed on the last pile which, being
a round of an odd set, belonged to the fifth set. So the numbers of rounds
were

4 2 2 Iy L

From this row of numbers, which we will call the Ms, we make a second
row, which we will call the Ns. The first two Ns are 0, 1, the rest are
formed by multiplying the last by the first M not already used and adding
to the product the last N but one. Then the Ns are

0: 1, 4 9. 2% 3l. 53

The last N is 53. It will always be the number of cards in the pack.
Reversing the order of the Ms

Ll 2 2 4
will make no difference in the last W. Thus, the Ns will be
0 I 2 5 1258

Leave off the first M, and the last N will be the number of piles. Thus
from '
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we get
0, 1, 2, 5 7, 12
Leaving off the last, will give the number of piles into which you must
deal to restore the order. Thus from
4, 2, 2,1
we get
6, 1, 4, 9, 22, 3L
1f you deal 53 cards into 37 piles, the numbers of rounds will be
1, 2. 3 4. 1
If you deal into 34 piles the numbers will be
1. 1, I, 3 1, 2 L
If you deal into 33 piles, the numbers will be
L 4y 4y L Ay 5 s
If you deal into 32 piles, the numbers will be
1, 1, 1, 1, 10, 1,
If you deal into 30 piles, the number will be
1, 1, 3 3, 2

You perceive that the object of counting the rounds is [to] find out how
many piles you must deal into to restore the proper order, and conse-
quently by multiplication how many piles you must deal into to make
any given card the first.

Going back to 10 cards, if we were to deal them into 5 piles or 2 piles,
the piles could not be taken up so as to conform to the rule. The reason
is that 5 and 2 exactly divide 10; so that the last card falls on the last pile,

and there is no pile to the right of the last card upon which to pile the

others. To avoid that inconvenience, we had best deal only with packs
having a prime number of cards, or one less than a prime number; for,
in the last case, we can imagine an additional last card which remains in
the zero place, as long as there is only multiplication, no addition; that
is as long as the pack is not cut.

If we deal a pack of 10 cards into 3 piles twice or into 7 piles twice,
we multiply by —1; for 3 x3=9and 7% 7 =9, and 9 is one less than
0 or 10. Suppose, then, starting with ten cards in their proper order we
deal them into 3 piles (or 7 piles) and taking them up according to the
rule next lay them down, backs up in a circle, thus:
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Then, my dear Barbara, you can say to your little friend Celarent, who
is so fond of denying everything, “Celarent, what number do you want
to find?" Suppose she says 6. Then, you count six places from the 0,
say in the righthanded direction. You turn up the 6th card, which is the
8: and you say: “If the 8 is in the 6th place clockwise, then the 6 is in
the 8th place counterclockwise.” Thereupon, you count 8 places from
the zero to the left and turn up the 8th card, and lo, it is the 6. Or you
might have counted, at first, 6 places to the left and turning up the 6th
card, have found the 2. Then you would say “If the 2 is in the 6th place
counterclockwise, then the 6 is in the 2nd place clockwise.” And counting
two places from the 0 to the right, you would again find the 6. The same
would hold good if Celarent were to call for any other number.

If you want to do this little trick with 13 cards, you must deal them
into 5 or 8 piles. You might begin by asking Celarent how many piles
she would like the cards dealt into. If she says 2 (or 11), deal them as
she commands, and having done so, ask her whether she would now like
them dealt into 4 or 9 piles. If she makes you first deal them into 3 or
10 piles, give her her choice afterward between 6 and 7 piles. If she makes
you first deal into 4 or 9 piles, give her then a choice between 2 and 11.
If she makes you first deal into 6 or 7 piles, give her her choice afterwards
between 3 and 10 piles. If she makes you deal them into 5 or 8 piles, lay
them down in a circle at once, In doing so let all be face down except
the King, which you place face up. The order will be [as in the figure].
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1 Q
9 4

You ask, “What spade would you like to find?” If she says, “The Knave,”
reply, “Then we count to the Knave place.” You count and turn up the
3. Then you say, “If the 3 is in the place of the Jack counting clockwise,
then the Jack is in the place of the 3 counting counterclockwise.” You
can then count round to this place clockwise, and find it is the 10th. So
you continue: “And if the Jack is in the place of the ten counting clock-
wise, then the ten is in the place of the Jack counting counterclockwise.”
You count, turn up and find it so. Then you count up to this card clock-
wise, and go on, “And if the ten is in the place of the 2 counting clock-
wise, then the 2 is in the place of the 10, counting counterclockwise.”

The same thing can be done with a full pack of 52 or 53 cards.

‘We have thus far considered addition and multiplication separately.
Now let us study them combined. Take a pack of 11 eards in their proper
order. Cut it so as to carry three cards from back to face of the pack.
That adds 3 to the face-value of the card in any given place. Now deal
them into five piles and gather up the piles according to rule. This by
itself would multiply the face value of the card in any given place by 5.
But acting after the other operation, if x be the place and y the face-value
(or original place) we have

y=35x+3
On the other hand, starting again with the cards in their proper order,

if we first deal into 5 piles and then carry 3 cards from back to face, we
have

y=5(x+3).
In short, the order in which the operations are to be taken in the calcula-

tion of the face-values is just the reverse of that of their actual perform-
ance. The reason is too obvious to require explanation,
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It is easy to see that before dealing the cards out in the little trick I
proposed your showing Celarent you can perfec'ly well allow her to cut
the pack first, provided that after the dealing, or at any time, you recut
s0 as to bring the zero card to the face of the pack. This will annul the
effect of the cutting.

I want to call your attention, Barbara, to the fact that there is another
way of effecting multiplication besides dealing out into piles and gathering
in. Suppose for instance you hold in your hand the first eleven spades
in their proper order while the first eleven diamonds in their proper order
are lying in a pack face down upon the table. We will now effect upon
the spades the operation

5243
and simultaneously upon the diamonds the inverse operation

(y—-3)
For this purpose begin by bringing three spades from the back to the face
of the pack. Then bring 5 spades from back to face, lay the face card
down on the table face up and in its place put the top diamond. Bring
5 more spades from back of pack to its face, lay the face card down face
up upon the other card lying on the table face up, and replace it by the
top card in the pile of diamonds. Repeat this process until it can be re-
peated no more owing to the exhaustion of the pile of diamonds. You
will now hold all the diamonds in your hand. Carry three cards from the
face of the pile to the back, and the whole double operation will be com- .
plete,

You can now say, “If the 7 of diamonds is the 5th card in the pack
of diamonds, then the 5 of spades is the 7th card in the pack of spades,”
and, in short, each pack serves as an index to the other.

From the point of view of this proceeding, multiplication appears as
a continually repeated addition. Now let us ask what will result from
continually repeating multiplication. As before lay the 11 diamonds in
their proper order face down on the table, and take the 11 spades in their
proper order in your hand. Deal the spades into two piles and gather
them up. Put the back card, the 2, down on the table and replace it by
the top diamond. Again deal the cards in your hand into 2 piles and gather
them up, and put the back card (the 4) upon the one lying face up, and
replace it by the top diamond. Proceed in this way until you have laid
down all your spades except the Knave which you never can get rid of
in this way. You will now find that the spades run in geometrical pro-
gression, each the double of the preceding

2 4 8 5(=16) 10 9(=20) (=18 3(=14) 6 1(=12).
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In fact, if, as before, x be the place, y the face value
y=2

Then, in the other pack we ought to have
x=logy/log2.

In fact, for these the face value is increased by one when the place is
doubled. For the order is

o 1 8 2 4 9 7 3 6 5
Double 2 the number of the place of 1 and you get 4 the place of 2

4 2 8 3
8 3 16=35 4
3 4 10 5
10 5 20=9 6
¥ 6 18=7 7
7 7 14=3 8
3 8 6 9
6 9 12=1 10

Double 1 the number of the place of 10 and you get 2 the place of 1.

You may now do this surprising trick. Ask Celarent to cut the pack
of diamonds (with the Knave of spades but without the Knave of dia-
monds). Then, ask how many piles she would like to have the diamonds
dealt into. Suppose, to fix our ideas, she says 5. You obey and gather up
the cards according to rule. You then cut so as to bring the Knave of
spades to the face; and in doing so you notice the face value of the card
is carried to the back. In the case supposed it will be 4. Then carry as
many cards (i.e. in this case, 4) from the face to the back of the pile of
spades. Then ask Celarent what diamond she would like to find. Suppose
she says the 3. Count to the 3rd card in the pack of spades. It will be
the 6. Then say, “If the 6 of spades is the 3rd card, then the 3 of diamonds
is the 6th card,” and so it will be found to be.!

I have not given any reason for anything, my Barbara, in this letter.
In your family you are very high in reasons and in principles. But if
you think I have said anything not true, it will be a nice exercise in the
art of reasoning to make sure whether it is true or not.

1 Peirce’s interest and skill in games of chance — chess, backgammon, and card
games — is reflected in the many card tricks in the manuscripts. One recalls his reviews
for The Nation of Rouge et Noir’s The Gambling World and of John Ashton's The
History of Gambling in England.

SECUNDALS



A. SECUNDAL NUMERICAL NOTATION (61)

By Secundals, or a Secundal Numerical Notation, I mean a system of
written signs (originated by Leibniz) by which any rational number can
be denoted to the exclusion of all others, the distingnishing characteristics
of any such system being these four.

1st, The number denoted is represented as a sum of different powers
of 2 (although this sum may degenerate into a single power of 2). To
avoid confusing repetitions of the phrase “power of two™ it will be con-
venient to substitute the expression “2-power.,”

2nd, This sum is represented, not by exhibiting signs of the different
summand 2-powers, each marked with an indication of its exponent, but
by exhibiting all the 2-powers within certain limits, and marking each as
present in or absent from the sum. Consequently, the representation of
any number will contain an individual character to refer to each 2-power
within limits; and only two incomplex numerical legisigns, or sign-types,
will be needed, the one to signify the presence in, the other the absence
from, the sum of that 2-power to which the individual character embody-
ing the one or other sign-type refers.

3rd, It is essential to the system that the different 2-powers to which
the different individual characters that compose the sign denoting any
number refer are not marked by conventional symbols, but are shown
by the exhibition of their succession, which is an icon of the succession
of the different 2-powers. For this purpose, all these individual characters
are arranged in a row (although this may degenerate to a single character)
in which every character (with the exception of at least one, and at most
two limiting characters) has two others reciprocally next to it. It is, there-
fore, further necessary that there should be some legisign, or generally
employed type of sign, which is applied to show which of the two limiting
characters represents the highest and which the lowest of the 2-powers
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referred to. The former is considered as the first character of the row,
the latter the last. Moreover, another legisign must be adopted whose
application shall show which of the characters, conveniently designable
as the origin of the row, shall refer to the zero 2-power, or unity. Then
the exponent of the two-power to which any other character refers is

greater
less

} by one than the exponent of the 2-power to which the character
earlier

4th, Because we cannot write an endless series of characters, it will be
necessary to have a legisign by means of which any regular endless series
of characters that can represent the last and endless part of an endless
sum of different powers of two, so long as that sum is a rational number.
For this it suffices that there be a type of mark of which a replica can be
attached to any series of characters forming the last part of a row and
signifying that this series is to be conceived as followed in every case, in
the number represented, by a repetition of itself. This type of mark may
be called the repetifex, and the series of numbers the repetite or repetend,
according as it has the repetifex attached to it or onlyisto haveit attached,

I will now describe the particular form of secundals which I propose
here to employ. The two numerical legisigns shall be a or A importing
the presence and o or O importing the absence from the sum of 2-powers
of that 2-power to which each individual replica of one or other of these
types refers. The row of characters shall be horizontal beginning at the
left and ending at the right; and the origin, or character that shows the
presence or absence of 2° in the sum of 2-powers shall be marked by the
use of the tall forms, A and O, of the two legisigns in that place, while
in all other places the short forms, a and o, shall be used.* The repetifex
shall consist of a heavy horizontal line drawn over all the characters of
the repetend and over no others. Moreover, a repetend is apt to be ex-
cessively long, containing in the representation of a fraction with a prime
denominator usually but one character less than the number of that

ext {mﬁr } than it in the row refers.

1 Peirce’s disapproval of the use of a dot to separate the successive p-osit_ive powers
of the base (including the zero power) from the successive negative powers is apparent
throughout his secundal writings.

In MS. 61, A or O are used to designate units’ place; otherwise « or o.

In MSS. 687 and 1, & or & arc used to designate units’ place; otherwise @ or o.

In MS. 54, 1 or @ are used to designate units’ place; otherwise 1 or .

In MS. 57, 4 or 4 are used to designate units’ place; otherwise 1 or 0.

Also see footnote 1 to MS. 213 (1,9,d).
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denominator. But in such case the last half of the repetend is just like
the first half except that, o or o, everywhere replace each other. Thus
one nineteenth is

A
roon A

= 0000002020 EEAO0KO

Accordingly, instead of writing the whole, it will suffice to write the first
half with a wavy line over it, called the semirepetifex.

A
zoootA

It must never be forgotten that OF = Ad
1t is evident that in place of any repetite may be substituted any desired
number of repetitions of it. Thus, one seventh is

A

Tk Oooa = Ooowoox = Qooxooxo0on = etc.

It is also evident that any repetite may be extended one place (and
therefore any number of places) further to the right by repeating its
first character after its last and shoving forward the repetifex. Thus

A

2 _ = Ooox = Ooozo = Oocozoo = elc.
oo A

B
= Qooooaxouo

By the application of these two principles, any two (and therefore any
number) of signs of numbers may be made to end at the same place of
secundals in repetites of equal length.

RULE FOR ADDITION

1st, Make all the summands end at the same place in repetites of equal
length.

2nd, Write the summands, so treated, under one another so that the
different characters which refer to the same 2-power shall be in one
vertical column, In this rule, we will suppose, for the sake of clearness,
that the repetites are added separately from the rest of the numbers.
Accordingly, the repetities are first to be all removed.

3rd, Begin at the last column that contains more than one « (or more
than one A, for, in this 3rd step, o and A are not distinguished from each
other). Draw a line at once joining and cancelling two ¢s in this column
and continue it to the left cancelling with it one ¢ in each column until
a column is reached which contains no o, where an o is to be inserted.

4th, Repeat the third step until there remains no column containing
more than one a.
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5th, Add the repetites in the same manner except that when a cancelling
line is continued beyond the repetites, and « is to be inserted in the column
to the left of the repetites, and another a is to be inserted in the last
column of the repetites. The as so inserted to the left of the repetites
have to be added to the other numbers according to the rule. In practice,
this 5th step will be performed in combination with the third and fourth.

6th, Write for the result an « below each column containing an o and
4 o in each of the other columns.

Examples in Addition.

(For the sake of clearness the cancelling lines are drawn in colors.)®

A Add:Oocoaa

OQocgooada

Cooooooon
Ooocoooo0o

Express these as follows:

Doooouuuoooo@

Ooouu'ooooFL)aoou

1

1 o

Sumo ¢ 0 0 @ O © SumO 0 coCOOUCoOOOOO

2 Peirce uses differently colored inks to cancel each row. In this edition, solid, dotted,
and dashed lines have been used.
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RULE FOR SUBTRACTION

Ist, Express the minuend and subtrahend so that they end with repetites
beginning and ending in the same two secundal places, i.e. with characters
referring to the same 2-powers.

2nd, Write the subtrahend under the minuend, each character directly
under a character referring to the same 2-power, prefixing os to the
subtrahend to give it the same extent as the minuend.

3rd, Beginning at the extreme right hand examine successively each
vertical couple of characters. From the left hand of the first o under an
o draw a line under the subtrahend as far as the left hand of the first o
under an o which is toward the left from the point where the line began,

and there let the line stop. Continue toward the left until another z is

met with where commence repeating the whole operation including this
repetition. The operation stops when the whole pair of rows has been
gone thmughé

4th, If an o from which a line is to be drawn according to clause 3rd
occurs within the repetite and there is no g' within the repetite to the left

of it, the line must not only be continued beyond the repetite but another
branch of it must start at the extreme right of the repetites, and be con-

i a " y
tinued to the left of a o or, if there be none such before the line has run

through the whole repetite it must remain under the whole; for a line
once drawn according to the rule should never be erased or rendered
ineffective.

[5th] The remainder is now to be written by writing below the sub-

. ‘ M . o
trahend, in every column through which no line is drawn, 0 under s and
o a4 .0 . ; T
under uand o under 5 and 53 but in columns through which a line isdrawn,

a o o . .
o under E and o and o under o and o the repetite having the same extent

as before.
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Examples in subtraction

For clearness the subsidiary line is drawn brown

Minuend 100000000000 AEUUO00UUN000000R0N0aA
Subtrahend ooooocuotGodrooo0o0OCOaaoaoacooal

Remainder 00AUO00UEI0000U0OUIACIAO0NEORULTEO0A

Minuend Oooaococo Minuend Aoocee Minuend Auoo.
Subtrahend Qooooaoa Subtrahend Emomu Subtrahend Quao

Remainder Owoocoao Remainder Oaaooo Remainder Ouoa

MULTIPLICATION

Long multiplication, the only kind there is, is very simple when there
are not two repetites to be multiplied. In that case, if the result is not
too complicated to permit of its being written down, the readiest way is
to repeat the repetites sufficiently to observe the regularity of sequence
in the product. There are, however, special cases when the product can
be readily written directly, and other cases that are facilitated by the
operation of division. In short, the repetites have in general to be treated
just as circulating decimals are.

DIVISION

Of course, long division is perfectly simple.

Besides that operation, there is another leading to processes by which
any multiplication or division may be performed (when I say “may be,”
I mean supposing human life to last long enough, but then, of course,
this whole business of secundals flutters upon the butterfly wings of the
“theoretically”). The immediate object of this rule is to divide one number
expressible as a finite sum of different powers of two by another such
number.

1st, Multiply the dividend by such a two-power, 2¢, that the product
shall be an odd whole number; and multiply the divisor by such a 2-
power, 2', that the product shall be an odd whole number.

2nd, Strike off the last o from the divisor and add it to what remains,
treated as a whole number. (In other words, you add one to the divisor
and divide by 2.) Call the result the applicand.
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ard, Call the dividend the operand. Strike off its last character and
to what remains, treated as a whole number you add the product of that
last figure that has been struck off into the applicand. (In other words,
you subtract from the operand whatever power of 2 not having a negative
exponent is necessary [that] will leave it divisible by 2, and then divide the
remainder by the highest power of 2 that will divide it, and to the quotient
add the applicand.) The result is to be treated as a new applicand in the
same way.

4th, This process is to be repeated until you reach the first applicand
that is equal to a previous applicand. You strike nothing off this. You
now bring all the characters that have been struck off from the applicands
vertically down into a horizontal row. (That is you write them in a row
in the reverse order of their being struck off.)

5th, Then if the dividend was less than the divisor, you place the repe-
tifex over this series and prefix 0, which makes the quotient.

But if the dividend was greater than the divisor beneath this row you
are to write another consisting of all the characters struck off down to
the operand that has reappeared, inclusively, and repeat this indefinitely
to the left and from this the row above considered as a whole number
having been subtracted, the remainder is the quotient required.

This operation is much simpler in practice than in description.
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Examples [From the previous page] the last [is] repeated with more room and quite
Divide A by 6.00A. AL futly i
cao e
aoalA oo o —
B Ll e
aao = Applicand aajo .
L uedhid oo
Proof by long Division o0 ojd i
w o Divide atoA by aooA o aju
i KogmoanngNs gone The applicand, as before, is aa O aao
voea— | |]] | 000 e
ooaod i a o ofo — .y
... i - oo ¢odlo
gooan N uolo Sash i
st | e X
oo | 1] alo il rwe
gose— | ; . e
oo | @ = Same as 1* operand, i o
oo | i.e. the Dividend st E'c_o|
"« Same as dividend Qooocoancoa = Quotient = .
; 0 @ o = Dividend
Divide o O by voaA IA 0 oo
P £949 oo Quotient = 000Z0CACOUO
Applicand as before aao ala o e
aao o =0 doaoa
aale gt
a o of f
oo
oo olo 4o
oo
P ineaelier 0|
14 OITI (8] —CIE—O
o o| g
Quotient = O ocococovodo uo::c— alo
o
o z o . T
— .. cao
9. = Dividanl ‘@ o = Sameas 3™ | Operand
gooouodauolod
@O00UOUHED| LO0OUOUAEONO00UORUNLD
Avouoo




154
Divide 0O by cA

ajA
A
ao = applicand

Divide coA by cA
Applicand ao

Divide 000 by cA
Applicand as before o O

SECUNDALS

o
O

a

0

ao

—

ao = same as Dividend

Quotient = Oao = 0Q

oo = | Same as 3" operand
oojoa
ooleoao
Quotient = | Aao

0

aoo
0

o

|$‘-'
clo o

]O a

L
L1 4]

ao = |Same as 3™ operand

aoloO
agolaQaooo

Quotient = oOcoao

' SECUNDAL NUMERICAL NOTATION (61)
Divide caA by aA

o alA

ao

|

T‘

M

Q
=]

o

glo »
Slo

oo

a0 = [Same as 4" operand

toloaA
a0l aononon

Quotient = a0oaoa

Divide A by cooA

A
oo A aod
a wola
Applicand oo wou
0o
aoa
coo00

Quotient Qooooaa

= 0000
Divide A by aoA
A
aa
aolA oo
e
Applicand = a0 400

Quotient Oooon
= 000
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Divide A by aoA

aalA A
A woo|
Applicand ¢oo ¢oo

Quotient = Oooa

Required to multiply Oou by Oooua

5B YRS
2¢—1 @A
far 1 A
T WYy Y
A y A A
A  ogA  codoA
A
aoA aoaolA 0o
aoxa | Applicand cota aodalo
GOUOA aoaa
L0000
Product} —
2 = Qooooaua
required

The same by long multiplication [see bottom of page 157].

To extract the ™ root of a number A, let x" = A

Let a be an approximate value of x and put x = a+ y
= 1

Thcn(y+a)"=y"+my’ 1 ”:rz )2

and whatever be the value of m

Yy ?24+etc+ad =A

y"’+ray““‘+ll+wazy—tm+21+etc+ar-1 y-{m+,._;)

2
A—-a’
Instead of this use the equations
(J' -1) 2

U F P8 Ui | + =5 B U+ OO+ TA" Uiy

A—a
Assume any values arbitrarily for ug, uy, s, === ,_,
and by this equation calculate u,, 4,44, 4,44 + etc.

Then if n is large y =

nearly.
Hpiq

=1u

mEr

L2
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Examples
Find /3 assume a = 2
Then (2—y)* =3
orl =4y —yz
Assume 1 = du,q — U,
Ug =0
U, =A
U, = o0
u; = oooA
u, = woaocoQ
Us; = 0000000A
g = odouooooanoO
Uy = oocooaoncoaA
poooooaao O 1000000000 aA
"IU“A — 400000 0aRaaA QoCOoCouaee Bty
A

The square of this is uA +

[From middle of page 156.]
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So you not only lament the decimal numeration, but really think the
abolition of it a rational object of endeavour? Then, you have your choice
between taking 6 as a base,® which is the best for counting on the fingers,
and which makes division by 3 easy (which is desirable if, for example,
in weighing, the weights are to be put either in the one pan or in the
other) and which also facilitates division and other operations owing to
the fact that every prime number, except 2 or 3, would end either in 1
or 5 (seven becoming 11, eleven 15, thirteen 21, seventeen 25, nineteen
31, twenty-three 35, twenty-nine 45, thirty-one 51, thirty-seven 101, forty-
one 105, forty-three 111, forty-seven 115, fifty-three 123, etc.) thus greatly
facilitating the finding of remainders after division, or of adopting 2 as
the base of numeration, giving the secundal system, which is far the most
elegant of all. I will give a few explanations about this. It might be
supposed that the names of numbers must be very long in this system.
Just to show that this is not so, I suggest the following method of naming
(which no doubt could be much improved if the system should ever be
seriously considered).? The first letters of the name shall show how many
secundal places of figures there are to the left of the units’ place; a (Con-
tinental Pronunciation, always) for one, as for twe, s for three, sa for
four, sat for five, st for six, ast for seven, at for eight, ¢ for nine, ta for
ten, fas for eleven, ts for twelve, fsa for thirteen, tsgn for fourteen, naj
for fifty-three, the principle being thatais 1, sis 3, tis 9, nis 27, j is 81,
and that a smaller number following a greater one adds to it but preceding
the greater diminishes it, and smaller numbers are always to be com-
bined before greater ones, and two smaller numbers cannot be separated

1 In MS. 67 Peirce gives an extended theoretical explanation of sextal numeration.
I MBS, 1250 (p. 13-16) displays two additional schemes for naming the number. In
that manuscript Peirce uses the more popular 1,0 notation for number representation,
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by a larger one. The remainder of the letters describe the figures in the
descending order of the places, y or i meaning 1 unit, / or ¢ 3 successive
units (i or ye two successive units, /i, or ey four successive units), &k 9
successive units (/ik five, ek six, yek seven, ik eight), ng 27 successive
units (ki ten, kil eleven, ke twelve, kli or key thirteen, ete. kang 18, the
a being inserted for euphony, etc.), w or & a zero, r or ¢ 3 successive zeros,
p 9 successive zeros, m 27 successive zeros. Zeros after all the units need
not be noticed.
I give some examples:

Arabic Notation Secundal Notation Proposed Names
0 o u
1 ; i
2 .0 ay
3 ayé or ail
4 .00 asi
3 o asiwi
6 w0 asil
7 s asé
8 .000 5i
9 .00. siwoy or syuri
10 .0.0 siwi
11 o] tiwil
12 ..00 sil
13 o silwi
14 o sé
15 sli
16 L0000 say
17 .000. sayoy
18 .00.0 sayurl
19 .00.. sayuril
24 ..000 sayl
25 00 saylwoy or sayluri
28 00 sal
29 0 salwi
30 S sali
81w salik
32 .00D00 sall
33 .0000 satyowi
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Arabic Notation Secundal Notation Proposed Names
47 3 D satyuli
48 ..0000 saté
49 . .000, sateri
62 S0 satlik
B e satek
64 000000 sty
65 .00000. stirupi
1008 ..00.00 stilurl
365 .0,.0..0, astiwilwiluy
1o 0.000 teykuy
1904 .+:0...0000 talul
10000 .00, . ,000.0000 tsayureri
100000 ..000..0.0.00000 tsniloyluyuy
1000000 ....0.0000.00.000000 atneywiruywoy

1234567890 .00.00..00.0..0000000.0. .0.00.0 nsyury urilury wilurpiur
uyuri nsyury urilury wilur piwilu yuri

This (though doubtless susceptible of improvement) is hardly worse than
our present name “one thousand two hundred and thirty-four million
five hundred and sixty-seven thousand eight hundred and ninety.”

The arithmetical operations with the secundal notation leave hardly
any room for errors, The rule for addition is as follows: The numbers
having been written under one another with the different powers of .o
(2) in clearly distinct columns, beginning in the right-hand-most of those
columns which contain more than one . (a unit or y) each draw a line
enclosing the two uppermost .s in that column in loops and continue
the line to the left looping the uppermost y (or ., or unit) in each column
until you come to a column containing no y, where end the line with a
new y; and the looped ys are to be considered as no longer ys. Repeat
this process until there remains no column containing more than one y.
Then draw a horizontal line under all the numbers and beneath it, enter
a y in each column that contains a y above the line, and enter a u (or o,
or zero) in each column that contains no y; and the number so written
is the sum required.

I give an example. T will mark the lines I successively draw in red,
brown, green, blue, and pencil.

3 MS. 1 begins here.
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2137 {;} 0. 0 0 O

5202 @e Bs w o

8251 0

3660

55
4377

1691
10660
6116
8144 : @
1000 g @8
51293 @ ® 0O 0O & 0 0 0 O @ O ¢ ¢ 8 O @
4343

There may, perhaps, be more expeditious ways of adding; but in this
way a mistake will not often occur and is sure to be detected by glancing
over the work.

Subtraction can be performed in two ways, at least. The first rule 1
shall give is for simultaneously adding some numbers while subtracting
any number of others. The rule is as follows:

Write all the addends and subtrahends under one another in a distinet
colonnade, as in addition. Extend each of the subtrahends to the left,
by prefixing us (os, or zeros) so that it shall begin at least as far to the
left as the sum of the addends would begin or as any other subtrahend
(after extension) begins. By shading, or otherwise, mark the subtrahends
unmistakably. Treat every # (or zero) in a subtrahend as a y (or ., or
unit) and every y as a u. So treating them add all the addends and sub-
trahends. To the sum add the number of subtrahends, and strike off
from the extreme left of the sum this same succession of figures. The
result is the required number.

In the following example, the three subtrahends are shaded:
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S s

2137 p lpl o 0 o o @ o { \g; o o Lo;
|" ‘\

5202 FORRCY

¥ 0

w/ éJJ//I//f/ﬂW / 4:‘/ # ‘H
n fo 15 ‘g / ;jl '~ F(j" v
f.’fm// a/3 s "f/ “'., ’:lf"IJ/;:f ,#1%‘ " :

3251
3660

— 93
4377
1691 :

- 1 ‘ﬁ};,'/,,,.’ :'%f:,f,,f °‘::°;;:!?" GG ,:@/,’5
6116 ‘ef__@;o DRORO] ;_a;':t )|
8144 &Y T Lo o

—— T e e e
___________ o’ _4_
e et @L,
S0000 ¢ ®8 0 0O 0 O ¢ ® O @ O @ O 0O O O

Since this process is by no means exempt from liability to mistakes
{reversals of what is before one’s eyes, especially when multiple, being
the point where mistakes in computation are most to be feared), I give
an easier rule for simple subtraction, as follows: .

Write the subtrahend columnarly under the minuend and draw a hori-
zontal line under them. Start at the right-hand-most case of a y under a
u, drawing a line which in that column shall be below the horizontal
line and thence being continued toward the left shall be above the hori-
zontal line as long as there is a y in each column which itshallloop(looping
preferably a y in the subtrahend) but passing below the horizontal line in
every column that contains no y above it. And as soon as this line has
looped a y in the minuend it shall there stop and go no further. Then
pass to the right to the next case of a y below a ¢ and proceed as before;
and repeat the process as often as possible. Then, below the horizontal
line put a y wherever a drawn line is below the horizontal line and wher-
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ever there is an unlooped y in the minuend without an unlooped y below
it. In other columns put #s and the number so written below the hori-
zontal line is the remainder desired.

)0 ¢ ® O O 0 O C @ OC @ O0O0O® 8 ¢

G) 0 0 O &
oMl 0o 8 0 OoN@®E @GEI® 0 0 0o @MGBIE G e 0 & @

| — . -
¢ ¢ @ 0O ® @ 0 O @ @ # ¢ O ¢ O @ & 0 O

It would certainly be a comfort to children to have that awful multi-
plication table reduced to E] , or “once one is one.” A good rule of

multiplication shall be given. I may here mention that il any number
contains a secundal fraction (the analogue of a decimal) instead of a point,
the units’ place ought to be marked by a little curve like that over a short
vowel upside down. This is a reform that ought to be introduced into
our present notation for numbers, so that {5 should be 01, etc., and the
product of two numbers having r and r' figures to the right and / and I
figures to the left of the units® place should (barring what there may be
to carry) have r-+r' figures to the right and J+1" figures to the left of
the units’ place, 4 X 5 being 0 with 2 to carry, ete.

The rule of multiplication is as follows:

Of two numbers to be multiplied, it will generally be convenient to
call that the multiplicand which has the fewer ys in its expression. Write
the multiplier with a # prefixed under the multiplicand column-wise with
a horizontal line below them. Copy the multiplicand repeatedly, so that
in one copy its units’ place shall be under each y (or .) of the multiplier
that has not a y (or .) immediately to the right of it, but has more than
one y in immediate succession to the left of it in the multiplier. These are
to be marked by shading or otherwise as subtractive; and the subtractive
numbers should be extended by zeros so as to begin and end in the same
columns. Further, copy the multiplicand so as to give one copy having
the units® place under each y of the multiplier that has no y to the right
and not mere than one y to the left, and under each y that has one y to
the right and none to the left, and under each u that has more than two
ys to the right. All these copies are to be treated as additive. These
copies are then to be combined by the first rule of subtraction with
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addition, and the result is the product required. N.B. I have in this procedure departed from the rule by allowing the
Example No. 1. second copy to begin and end four places to the right of the first. More
regularly, I should have had the following
(1904) e 90®ee 0000 AR
(365.25) 0Oe 0@ ¢ 0e © 086 0 0@@@@@@@@" e

#0l0e0e0000e0e000000 e u.r"i”}ﬁ
e e is ~
“-g%e O

%

0O® 0808008 89® 00e000CEEO0ODO0O0O0

Long division is so obvious a proceeding that the rule need not be

© 0 0% 0O0e e ® 008 0O0CO0CS6 &00 given. I will however give an example. To express a second as a decimal

(695436) of an hour. First, divide one by sixty, or . ...08.
Example No. 2. iieias
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The quotient to be again divided by ....00 is
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If the whole of the circulating secundal is desired, the best way is to
begin by finding the reciprocal. The rule (the number being odd, of
course) is as follows:

1st. Write the number whose reciprocal is required. Strike off its
final . and consider what is left as the expression of a number. Add to
it the . struck off; and call the result “the regular addend.”

2nd. Write down . for the first “sum found.”

3rd. Put a parenthesis mark ( at the left of the right-hand-most . of
the last “sum found.” Considering what remains at the left of the pa-
renthesis as the entire expression of a number, add to it “the regular
addend.” The sum will be the next “sum found.”

4th. Repeat the third operation until you get a “sum found”™ con-
sisting of a single . followed, or not, by os. Then these os, if there be
any, followed by all the numbers to the right of the parenthesis marks,
from last to first, constitute the circulating secundal of the reciprocal.
Example: Find the reciprocal of 27, or ..o..

To get “the regular addend” ..o0.].

Regular addend ...0

e000
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ee w0
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egeo0
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The reciprocalis 66 000@00000 000000086

Proof ewoaed
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[The] circulating decimal [in the answer], composed entirely of .s,
differs from 7 by less than any finite number.

The secundal notation has also a mathematical interest. It expresses
a number virtually in the form

a4 2b42%c 4+ 23d + 2%+ etc.

where &, b, ¢, d, e, etc. are such quantities that a® = a, B> = b, ¢* = ¢,
d* = d, ¢* = ¢, etc., these quadratic equations expressing that they are
each either I or 0. Let us use ~ to represent the operation of taking the
difference between two such quantities. So that if x* = x and y* = y
(x ~y) = (x—y)*. This is also a quantity having the same property.
Let us call such a quantity a dyadic quantity. The sum of two dyadics,
x and ¥, is expressed in the secundal notation as (x ~ y) -+ 2xy. For xy
is also a dyadic. The operation of taking the difference between dyadics
is associative. That is (x ~y)~z = x ~ (y ~z). Hence we may write
X~y ~z, without parentheses. The sum of three dyadics, x, y, z, is
expressed in the secundal notation as

(x~y~2)+ 2xy ~ yz ~2X)
The sum of four, x, y, z, w is expressed as

(x~pmza~w) 4 2xy~xz~xWw e~ pz~pw~zw) -+ 22xpzw,
The sum of any number, x;, X3, X3, X4, X35, etc. has in the units’ place
the continued difference of all; in the twos’ place, the continued difference
of all products of two; in the fours’ place, the continued difference of
all products of four of the dyadics; in the eights’ place, the continued

difference of all products of eight of the dyadics; and so on. Hence, the
sum of
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a+2b4-22c+ 234+ 2% 1 etc. and

a+28+ 22+ 2354 2%+ ete. is

(@~ a)+ 2aa~b~ f)+ 2*(aab ~ aaf ~bf~c~ )

+ 23(gabf ~aabc ~aaby ~ gafic~aaffy ~ bfic ~ by ~ ey~ d~ d)
+ the next term is quite complicated, though formed in an obvious way.
The product of @+ 2b+42%¢c + etc. and a4 28+ 2%y 4 ete. will be ex-
pressed in the secundal notation thus:

aa + 2{aff ~ ab) 4 2*(ay ~ ae ~ bf) + 2%} (afab ~ ayac

~ad ~ ad ~ by ~ fic) + 2*(ae ~ ae ~ bd ~ fd ~ cy ~ aadd

~ aficd ~ abyd) + etc.

This sign ~ has interesting relations to the algebra of logic where
we write a ¢ b for (a + b) — ab but nowa ~ bis (@ v b) — ab. Itis
expressed in our usual notation for logical algebra, as ab + ab or
(a v b)(a < b).

I have written all this to show that I fully appreciate all the merits of
secundal numeration, its simplicity and its educative value. But I do not
think any propaganda would ever move the world, because there is
nothing in secundal numeration to excite the emotional nature ....



C. SECUNDAL COMPUTATION
RULES (54)

Notation. One is denoted by a short vertical line called a “unit”; zero
by a dot on the horizontal line on which that vertical line would stand.

Every number is represented by a horizontal row of such units and
dots placed at successive horizontal intervals equal to the height of a
unit; and if any unit were placed by one such interval further to the left
the value it would represent would be doubled. Each unit thus represents
an integer power of two; and the whole row denotes the sum of such
powers. In the notation of any number, the *unit” or zero in the “zerofh™
place, as it will best be termed, i.e. the place of the coefficient of B®
(where B is the base of numeration, here fwo), is to be made heavy, thus:
1 or . and every place from the highest positive that is occupied by a
unit to the highest negative that is so occupied must contain either 4 unit
or a dot.

In the somewhat rare contingency of its being desired to express secun-
dally the exact value of a rational fraction whose denominator has
another prime factor than two, the circulant should be enclosed by a
brace placed underneath the secundal expression of it; because [this] will
enable one at once to see whether or not the half last of the circulant is
the arithmetical complement of the first half, etc. For instance, one will
thus be shown that. .11.1..1 equals ;- ; since it evidently denotes
a fraction whose denominator is 24%? —1 i. e (2% —1)(2* + 1), while its
numerator is also divisible by (2* —1), with 111 as the quotient.

Addition, First: Write the different numbers to be added together, ac-
cording to the rule for Notation, one under another, and so all coeffi-
cients of the same power of two shall appear unmistakably in the same
vertical column.

Secondly: Examine the right-hand-most column (of those whose ex-
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amination has not yet been completed); and do this again and again,
until you come upon a column that contains more than one uncancelled
unit; and there cancel units to the exact number of any positive integral
power of twoe you please (but preferably to the highest possible). Thence,
# being the exponent of that power of two, skip to the nth column to the
left of the one where you have just cancelled the (1.)" units, and cancel
a single unit in it if there be one there. Now cancel a single unit in the
column next to the left of the one where you last cancelled a single unit.
But wherever the rule would require you to cancel a single unit if there
were one but where you find there is none, there insert a single unit, at
the foot of the column but forming a part of it, and returning to the
column where you last cancelled more than one unit, and repeat the
whole of this second operation, until it can no longer be repeated.
Thirdly: When there is no longer any column containing more than
one unit, draw a horizontal line under the addends (or summands) and
bring the units in the columns where they are, to express the sum required.

Subtraction. Having written the minuend and subirahend, either over
the other, place by place, secundally,

(2nd), bring your pen, lifted a bit above the paper, over a horizontal
line imagined to be drawn below one of the two numbers just written,
but above the other; and beginning at the right of all their units, pass,
very attentively, to the left of them all, while scrupulously observing the
following two rules:

Rule I. Whenever the pen is off the paper, let it remain so until it
has just passed a secundal place where there is a unit in the subtrahend,
without any in the minuend, when instantly depress the pen so as to make
it begin to actualize the imaginary line.

Rule II. Whenever the pen is on the paper, it must continue to actualize
the imaginary line until it has just passed a place where there is a unit
in the minuend but none in the subtrahend, when instantly let the pen
be raised and cease to mark.

(3rd). That done, pass over all the places occupied (more conveniently
from left to right) and in whatever place the number, vertical and hori-
zontal together, is odd (i.e. one or three), write a unit in the remainder,
but wherever that number is even (none or two), mark a dot in the re-
mainder.

Multiplication is, in general, best performed by long multiplication rather
than by cross-multiplication. There are, however, many cases in which
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the operation can be abridged. Thus, where one of the factors contains
in its secundal expression three or more units in succession, one can by
a subtraction somewhat abridge the work., But, of course, a table of
antilogarithms to base 1. is desirable.

Division, too, is, in general, best performed by long division or by loga-
rithms, though the reciprocals of most low primes are very simply ex-
pressed. _
Any Root of any Algebraic Equation is easily evaluated in the form of a
rational fraction to a high degree of precision, as soon as a value has
been obtained whose modulus differs less from that of the root required
than from that of any other root. For it can then be put into the form

1= ﬁajx,"“"; and then assuming any rough approximations to the first
1

m — 1 positive powers of x, by calculating, according to the formula,
the successive negative powers of x, after a considerable number of such
easy calculations, x~"**/x~" will be found to be very near to the true
value. One should however avoid allowing any of the ;s to vanish.

Extraction of Square Roots. Of course, the practical way to extract a
root is by a Table of Antilogarithms. With a view to making a definite
test of the secundal notation, T have begun the computation of such a
table;* but since such computations are founded on extractions of square
roots, T here give the rule that T have used for the purpose.

I do this work on paper of letter-size ruled in squares, all the ruled
lines being alike. They are ruled wider than 2 to the centimetre, but

closer than 5 to the inch. Two secundal places go [into] the square, the
1 Fragments of this labor are still extant. Peirce worked on logarithms, anti-loga-
rithms, and square roots in secundals. Many details are found in manuscripts 218,

56, 58, 59, 60, and 65 where he computed +/1. = (1002 = /Z; (10091 = v/ 4/2;

(100 = ——-1—§~; 107 =2 = 3; 100001 = 9 — /WA
-‘\.n" .V’
The following statement is found in MS. 65.
“The Binary System of Numerical Notation
This is a system of written signs by which every rational number can be denoted
to the exclusion of all others, the essential characteristics of the system being as
follows:
1st, The number denoted is represented either as an integral power of 2 or as
the sum of different integral powers of two.
2nd, Only two incomplex numerical legisigns, or sign-types, are employed, one
of which signifies the presence, the other the absence of that particular
power to which any individual character of that type refers.
3rd, The sign of denoting a number consists of a row of individual characters
each of one or other of those two types (though it may happen that the row
reduces to a single such character), and by some mark or indication one
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even places on the ruled lines. Each unit is half the height of a square.
The numbers are written along the breadth of the paper, where there is
room for fully 80 secundal places, which are equivalent to 24 decimal
places. (For most offier purposes, 3 secundal places go to a square; and
sometimes 4.) But if one does not carry out one’s figures beyond the plus
80th place (i.e. not beyond ¢1*+*:--#), there will remain a blank triangular
area in the upper right hand corner of the paper, amply sufficient for
carrying the root well beyond plus sixty-four places of secundals equiva-
lent to 19 of decimals. (I postpone to a later page a proposal for a
secundal remenclature of numbers.)

I find it advantageous to use three colours of ink in rotation (perfectly
regular after the first round); black for the minuends, obtained, after
the first, as remainders, and for the horizontal lines below them required
according to the rule for subtraction; green or blue (pale enough to show
unmistakably as colored) for the part of any that may be derived from
the approximation last already found and recorded for the root; and
bright red for every [part] in the line appropriated to the root, as well as
for the final figure of each subtrahend.

of those two characters in the row that have each but one next to it is
distinguished, as its beginning, from the other limit as end, Furthermore,
some one individual character in the row that denotes a number is distin-
guished by some kind of a mark put upon it from all the other characters
of the same row as being that one which refers to the zero power of two,
and then the power of two to which any other character of the row refers
is known from one or other of two rules, namely.
Any character near the beginning of the row [other] than that character
which refers to the zero power of two, refers to a power of two whose
exponent may be ascertained by the rule that every character of the row
except the last refers to a power of two whose exponent is greater by one
than that power of two referred to by the character next to it in the row
toward the end of the row.
The exponent of the power of two referred to by any character of the row
that is nearer the end of the row than is that character that refers to the
zero power of two may be known by applying the rule that every character
in the row except the first refers to a power of two whose exponent is one
less than the exponent of the power of two referred to by the character of
character of the row that is next to this character but more toward the
beginning of the row.

4th, Because an endless series of characters cannot be written, it follows that
in order to represent in this system a number which is equal to the sum of
an endless series of different powers of two, it is necessary to have some
mark to show that a certain part of [a] row at the end of it is to be con-
ceived as endlessly repeated, without the intervention of any other charac-
ters; and therefore that must be such a mark of eirculation, if every rational
number is to be distinguishable from every other.”
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Certain words in this rule have to be understood in somewhat special
senses, which had better be explained at once. By a “figure” will be meant
any arbitrary scribable sign that may permissibly be understood to denote
a number. But since the term *arbitrary scribable sign™ is applicable to
two different categories of objects, namely, before it is actually written,
to a general and always more or less indefinite shape, whose only real
being is that of a habit of the imagination and of the nervous organiza-

tion, and after it has been written, to each single instance of such writing-

that has ever been created, it follows that the definition of the word
“figure” allows it to be used in these two senses, in one of which the
secundal notation employs but two “figures,” viz: 1, which shall be called
the “ace,” and ., which shall be called the “dot,” while in the other sense
(in the other “acception™ is the more precise expression in such a case
of a variation of meaning to which all the words of a broad logical class
are alike is subject. Only, do not confuse “acception™ with “acceptation™)
there will be as many secundal “figures” as there will have been written
of “aces” and “dots” taken together. It is further to be observed that,
according to the above definition of the word “figure,” to say that the
ace and the dot are “the only two *figures’ of the secundal notation™ by
no means implies that they ought ro be, but only that they could be,
regarded as denoting numerical quantities. In point of fact, a much truer
conception of the system will result from regarding the ace as the affirma-
tion and the dot as the denial of the presence of that power of .1, or a
half, which is denoted in no other way than image-wise, in its exponent,
by the succession of marked intervals from the place of a heavily marked
figure, — that is, from the “start,” or zero-place of the exponent of .1,
to the place where the mark of assertion is, the exponent increasing by
one at each additional interval toward the right, and vice versa. That
this is the proper way of conceiving the Secundal Notation is a truth
that will be forcibly brought home to us by analyzing, on the one hand,
the conceptions of the different kinds of numbers, and on the other hand,
the properties of the Secundal System. Numbers, as not being objects
brought to light through sensation, but inventions imposed by the arts
of reasoning, ought primarily to be recognized as having their very being
in a classification, like all other products of reason. Now just as, not
merely the arts of geometry, but the very objects are primarily: 1st, such
as have in themselves no other characters than those involved in extension
and in dimension, namely, Listing’s numbers, which I call Chorisy, Cy-
closy, Periphraxy, Apeirisy, ef cefera ad infinifum, together with the dif-
ferent kinds of Singularities, or exceptional places, such as Terminations
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and Nodes (but not cusps and other merely projective singularities), and
together also with such complications of the characters mentioned as we
meet with, for example, in the theory of map-coloring; 2nd, such as if
two coincide through any part of their extension coincide everywhere,
as rays, unbounded planes, etc. which are the only objects that Projective
Geometry never leaves out of view; and 3rd, the objects of Metrical
Geometry, such as proportionality of lengths on rays, areas and angles
on planes, volumes, spherical areas, etc. in flat solids (i.e. such as have
their apeirisy zero); just as there are, I repeat, these three types of Geo-
metrical Objects, because such objects are creatures of human instinet,
i.e. of what we call Reason (1) (because we cannot discern its bounds),
so we derive from the same origin, which seems to have decided tendency
to trichotomy, a three-fold division of studies of numbers. This requires
some explanation. Beginning with the idea of a particle, or of a dot,
suppose we conceive [it] to be changed into a multitude of dots whether
by some or all of the dots breaking, one into several, or by new dots
coming into existence, and when this is endlessly repeated, the result is
an “infinite” collection of dots, the characteristic of which is that it has
parts each of which is equal to the whole, that is the dots of the whole
can be conceived to be paired each with a dot of the part. No addition
to, or multiplication by, itself could increase the infinite multitude; [...]?

I 1

2 In MS. 60 Peirce writes of the computation of 105° — 23, “There are two methods.
The first is one of my own invention, which, in this particular case, reduces to the
method of continued fractions (substantially). That is, we have to solve the equation
(1+x)'° =10 or x'°+ 10x = 1. We start with any two numbers @, regarded as an
approx. to x'? (though we will make it 0) and &, regarded as an approx. to x (though
we will assume it to be 1). With these by means of the equation x*° 4 10x = 1 we
calculate an approx. to 1. Then since x:1 = x':x we treat the approx. x and 1 as
approx. to x'® and x, and proceed in that way as far as we please, finally dividing the
last but one by the last to get the final value of x. Since we want it to be about forty
or fifty secundal places, we work until the last two approx. to 1 have about 20 to
25 places each.” A second method is given in MS. 56.



D. ESSAY ON SECUNDAL AUGRIM
DEDICATED TO JLM.P. (57)

PREFACE

Secundal augrim is a tool of minor utility in mathematical reasoning,
but still of very decided utility. It has a charm of simplicity.

CHAPTER FIRST. The Notation

In this system, a number is in general denoted by a horizontal row of
figures, each of which is either a 0 or a I. One of the figures has a bar
through it, thus:® or #. The last (or righthand most) figure and one of
the others may have dots over them. If so, this part of the row is called
the circulate while the part to the left of it is called the serious.

The places of figures in the row are called the secundal places. Each
has an ordinal number one greater than that of the place next to the right,
the place of the barred figure being the zeroth.

Let [ be the ordinal of the place of the last dotted figure in any row
denoting a number and let & be the ordinal of the place of the other
dotted figure. Let n, be the value of the figure in the i** place (the value
of 1 being unity and 0 not having any value). Then x being any arbi-
trarily chosen positive integer, the number denoted by the row is

o0 R 1 k=x
(0) ram2' + 7o ni
E+l=- = I=-x

Whatever positive integer x may be we may remove the first dot from
the k' place to the (k— x)*™ place, provided we affix additional figures
to the right of the /'* place making m,_; = m,, ; for each positive value
of j, and provided we remove the last dot from the /'"® place to the (k —
—x-yl—yk)'™ place, y being any positive integer we choose, and the
number denoted will remain the same, by the formula (0).
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CHAPTER THE SECOND. Of Addition

The most convenient rale is as follows:

I1st, Write the secundal expressions of the angend and its successive
addends in additory array, that is, so that figures in the same secundal
place are in the same vertical column.

2nd, Change the places of the dots so that they are over the same
secundal places in all the numerical expressions, by making the k of each
agree with the smallest k and k4 1 —/ for each the least common mul-
tiple of the k4 1 —1 of all as given.

3rd, Call the following operation the Staple Process, viz:

i. Scrutinize the right hand most column of the array, and if need
be the column next to the left of the column last scrutinized, until you
find a column containing more 1s than one. Cancel these two.

ii. If the column next to the left of a column in which one or more
1s have just been cancelled contains a 1, cancel one 1 in that column.

But if that column does not contain a 1 insert a 1 in it and there-
by bring the Staple Process to an end.

Perform the staple process upon the circulate of the array again and
again as long as any column contains more than one 1; and in doing
this, if the rule requires a 1 to be inserted in a column to the left of the
k column, and therefore in the serious, the 1 is not only to be inserted
in that column of the serious but also in the column of the circulate
that is k 41—/ places to the right of that column. If the final result is
that there is one 1 in every column of the circulate, all these 1s are to be
cancelled and a 1 is to be inserted in the last column of the serious.

4th, Perform the staple process upon the serious of the array, modified
as it may be by insertions of 1s by the third operation. This operation
[and] the third will in practice be performed as one.

5th, Draw a horizontal line under the array, and bring down into a
row beneath it the s remaining in the array, without altering their secund-
al places, and filling with Os the vacant places between them and in the
last places, if there be any vacant to the right of all the 1s, Mark the same
places as barred and dotted. The result is the sum required.

Example. Add the first sixteen odd numbers after attaching i6 to the
Ist, 5th, 9th, and 13th, ioi to those next following, &i to those next fol-
lowing, and 616 to the rest. T set down these numbers in black, enlarge
the circulates with lead pencil, connect the cancellings with lines and use
brown, blue, red, green, ink in cyclical order, so that it shall be easy to
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see what has been done.?

o
-

-

F
-
- mrAnA

AT

ey

.
P

P ———

1 00001 01 & 0000CO0O0
CHAPTER THE THIRD, Subtraction

The safest and best rule I know is the following:

Ist, Write down the subtrahend and write the figures of the minuend
under the collocated figures of the subtrahend, and extend the circulates
so as to give k and [ the same values in subtrahend and minuend.

These colors appear in the MS.
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2nd, See whether the circulate of the subtrahend is greater than that
of the minuend or not. If it be so, begin at the last place and draw a
horizontal line between subtrahend and minuend and extend it until it has
passed to the left of a place in which the figure in the subtrahend is 0 and
that in the minuend is 1. If it be not so no horizontal line is to be between
the last figures of subtrahend and minuend. In either case now pass a
point along toward the left between subtrahend and minuend, until this
point has passed a secundal place where the figure of the subtrahend is 1
and that of the minuend is 0 when a horizontal mark must immediately
commence between subtrahend and minuend. And every time the point
passes a secundal place on the line where the subtrahend has 0 and the
minuend has 1, the line must immediately thereafter stop; while every
time the point passes a secundal place where there is no line but sub-
trahend has 1 and minuend has 0, immediately thereafter the line must
recommence. There must be no line at the beginning; for if there is,
the subtrahend exceeds the minuend and subtraction becomes absurd.

3rd, Now begin at the extreme right hand place and write under each
figure of the minuend the figure of the remainder for that secundal place,
by means of this rule. Where there is no line between subtrahend and
minuend, a 0 in the subtrahend shows that the figure in the minuend is
to be copied in the same secundal place of the remainder; and where there
is a line a 1 in the subtrahend shows the same. But where there is no line
a 1 in the subtrahend or where there is a line a 0 in the subtrahend shows
that the figure in the minuend must be changed from 0 to 1 or from 1 to
0 to give the figure in the remainder,

Example. Subtract 420973 from 6189439, I write the subtrahend and
minuend in black in the most compact form. I then perform the first
operation in brown, the second in red, and the third in blue. The black
dots must be imagined to be erased in the first operation.

Subtrahend ic1o0010001110614#01101101101101

Minuend 111100011100011.410160101001016

Remainder 010011010101 0014#00110111011100
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CHAPTER THE FOURTH. Multiplication

This is the multiplication table
10
00
All multiplication will be ordinary long multiplication and calls for
no example, except for the treatment of circulates. The proper way of
ireating these will be considered later. Meantime they can be managed.
as in the following example.
Example. Multiply 12 by 1%, .........

That is Fo1i X 10
This is - e0ii - 8i6 + (ng X #00i X 0i)
To multiply edoi by @6i or séioloi by doo100i

‘We have ﬂ'oooc:-lo/i\c;/!o 0
‘6 0\1 ol
which equals Zo00011
which we multiply by 114
#601100
110

11g X gooil X goi =

Answer which is 2-% 1£011000

CHAPTER THE FIFTH. Division

Besides ordinary long division, I know of two easier ways of finding the
circulate that represents the reciprocal of a given integer. One of these
is about as easy as the other. I think that in decimals the less obvious
of the two is a trifle the easier and in secundals the other. I will first give
an example in decimal arithmetic of all three ways, because my way of
doing long division merits attention. Required, then, the reciprocal of
351. T first begin a table of multiples as shown in A, I calculate a column
at a time [and] having got it T run it down with my eye and where a
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figure is less than the one above, I put a dot in the column to the [left]
to show that there is one to carry. There is a check. Namely, the last
figure of each column must be the same as the first of the previously
found column. So I next bring the table to the state B, Then to state C
last to state D. This table greatly facilitates long division.?

A B C D .002849
1 0351 1 0351 1 0351 1 0351 0702
2 2 2 .02 2 1702 2 0702 298
3 3 3 53 3 .053 3 1053 2808
4 4 4 .04 4 404 4 1404 172
5 5 5 55 5 755 5 1755 1404
6 6 6 .06 6 .106 6 2106 316
7 7 7 57 7 457 7 2457 3159
8 8 8 .08 8 808 8 2808 001
9 9 9 59 9 .159 9 3159
.0 .10 510 3510
Second Way Third Way
351 © 000351
9 28 4|4 o
31509 1254' |3159
e 1404
| 1548 Suas
1 0316 2528 d503
2 0632 2682
3 0948 {]632!
4 1264 0900 002849
5 1580 || 000351
6 1896 .002849 - o
7 2212 reep =.000351 <1 =.002849
8 2528
9 2844
3160

¥ In MS. 67 Peirce describes how “to transform an integer from decimal or sextal
to secundal expression.” The rule follows,
“Establish a column for decimal expressions and a parallel column for secundal
expressions. Let a be, at any stage, the last expression in the decimal column and
f any in the secundal column. Write the expression to be transformed at the head
of the decimal column, as the first a, and perform the operation @.
The operation @ consists of the following steps. Remove the last figure of a
and put the equivalent secundal expression in column B as a # with its last figure
as far to the left of the fractional point as was the figure removed from a. In place
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of the removed figure of a put 0 and divide the resulting a by two to make a new a

upon which to perform the operation @. to column B and then doubling the number in every other line, using Arabic figures,

: y Tt and at the same time bringing [it] down to the next Jower line.
‘1;;5:1 a:h';h :u?npeg?tt;n g; ;n:;]leu expr B;‘E; 0& siivad Repeat operation ¥ until column A is exhausted. Add the numbers in column B
Examples: Transform 1893 into secundals and the sum is the desiced SR
Example: Transform 11101100101 to decimals
A B
1893 11
18%0
94|5 101
940

23[5 101

B et Reans

28 256
28 256 512 512
0 256 512 1024 1024
5i5 101 1893 "

ok

11]5 101

CRNROoOOMNRBNORRNR
E == T e

-

-3

=]
SN = B = B T e B
o B e e B - - -

2/5 101

5 101
0 11101100101

Transform 1025 into secundals
102)5 101
1020
51j0 0
510
23|5 101

125 101

3j0 0
1|5 101

Is 101
i 10000000001 »

Peirce also tells how “to transform an integer from secundal to decimal expression.”
The rule runs:
“Establish two parallel columns, one of which, A itself, consists in a series of
parallel columns for secundal expressions and mixed expressions, while the other
B will contain only decimal expressions. [Peirce writes “This is a stupid perform-
ance.”] Write the given secundal expression in A each successive figure under the
preceding one. Perform operation ¥,
Operation ¥ consists in transferring the number in the lowest line of column A
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I will now calculate the reciprocal of the same number in the last two CHAPTER THE SIXTH. Evolution
ways.
251 =10101111# (1 To extract the Square Root of a given number,
— Joti0000 Ist, Move the bar through an even number of places to the right or
ST wm;g; 10000 left, so as to make the modified number > 4 and <108
10110100 Then the 1st approximation will be ¥, and its square will be ¥,
“g 2nd, Go through the following Staple Operation repeatedly until the
I;??gg;g‘“ . square of the last approximation is as near the modified number as you
11130010 care to have it:
10110000 1. Under the square of the approximation last obtained write that

|
1110““”: approximation itself, beginning at such a place that when added to its
10110000 ; ; : :
ek I square it shall give a sum less than the modified number but as little less
10110009l | as possible.

1000101)10 ; ] ii. Letn—1 be the number of [the] place by which the last number
bl I extends to the right of the last 1 of the number above it, Affix to the last
wong 1| &

10110000 1 | number n Os and a 1.
10010100 | g - iii. Add the last two numbers, and the sum will be the square of the
10110000} | 1 101011111 next approximation, which approximation will be found by adding to
e pp pp! y g
m:i:};; toi ] ':E%i:;;l the last a 1 in the nth place after its last 1.
11101100 lll } |101011111 3rd, When the Staple Operation has given a close enough result, move
Rl “H“}“{ = | 1 10000100 the bar back in the opposite direction and through half as many places
1;::g;gih | i { i_,,__.';":':;;;“ as in the Ist operation.
101001 ) | | 1 lotoinim Example. Find the square root of 7 or 11%. Modified number #11
”“W““HI | STeeT I
10100000l 1] Ti01011111 10 e
1031800 ! 111 'i1oo1100 : ) PPI 001
100000000 11| 101011111
[ERE 1
L e
VW ranonee | g
|
1 113%'1 : (#0101)° #10111001
1 _—‘___—"——s-
1 10101,0001
1101011111: Pl
1E111000 1 1§ (0101001)'2 = %10111110010001
it N T 10101001001
ool 11 1
100011108} § ) | (t010100101)%__ = -#101111111001011001
11101010 | : I } 1 T 1010100101,001
10101111y 1 1 | |
iooraoros | 1] 1| | (Y01010010101)*° = +1011111111101010111001
101011111l | SR 101010010101,001
roroooo0 111 1y 1 !
sovortit 1, 1] 0! 411000000000000000000111 001
i 1] ! P [#01010010101 = (#11)5% approx.; 1941010010101 = (118
[#] ©0000000DI01L101010110110010101100001

aApprox. ]
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[Find the square root of 2 or 10 as given below; also the square root of

the square root of 2 or 10 as given below.]

A2 2= 4/10
Y ¥
01 1,001

1 101,01

01 1011,001

01 101101,001

000001 10110101,0000001

001 10110101000001,0001

1 ,10110101000001001,01
Sumsofar #1111111111111110110111100101101001

Copy {101 10101000001001,01
fromx

Sum 1111111111110100110000010(}0010000101001

Copy {1{}1101010000010011110011001,01

from
001 T
1
1
1
1
1
1 Okﬂiﬂb 0010@¥1i nnz 00700
001 01%0%0W00000 Y00'4+1#00
Sum 111111111111011000101011101000100001001
1 10110101000001001111001100
1 1011010100000100111100110
01 10110101000001001111001

4//10= 10110101000001001111001100110011111110011101
[Errors: in second sum, one zero; in fourth, two zeros]
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+/4/10
E
001 1,0001
1 1001,01
000001 10011,0000001
1 10011000001,01
1 100110000011,01
Sum #011010100000101000110001
Too much by 0000001 0001001010100110000001
Sub 0000001 1001100000111

11100000111111
4/4/10 = ¥0011000001101111111



9

MISCELLANEOUS NOTES



A. [A TELEGRAPHIC CODE] (parts of 1575 and 1361)

1. The principal part of a code for telegraphing consists of a classifica-
tion of ideas. This is so no matter what the plan of it may be.

This work is about the most difficult task that can be set to a logician,
and no other man is fit to undertake it. It is a problem upon which T
have been constantly at work for more than forty years; and I probably
know more about it than any other living wight.

2. The parts of the work are about as follows:

i. The machinery or spelling of the significant units.

il. The distribution of kinds of meaning among them (to which your
idea relates) or the accidence.

iii. The construction of the vecabulary.

iv. The manner of using the code, or the synrax.

3. The provision for secrecy is so very readily applied that this condition
may as well be insisted upon.

Plan for the machinery of the Code

The telegraphic signs have to be considered; and when a mistake is sus-
pected, the reader should consider what telegraphic mistake is likely to
have occurred. ;

The international telegraphic alphabet, then, must be considered first,
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Characters of the International Telegraphic Code

One mark Four marks Five marks
- E i waiw H s v w05
-T e 8

Two marks +~-. F ser==3
- I - +«—— Notused=UT| »+--= 2
- A I P 1
-+ N +—~+— Notused=RT|~+--+6
- M vanais P N |

Three marks et | -———- - 8

. 8 e B s 9
TS 1 ey |essessas 0
e —+=- C Six marks
-=-W et SO "+ Pericd
s D sy IR . N
oK s -
L=t G m-——+ Notused=TG| + «+==++ 1
== 0 ~——=~ Notused =TO

T would propose to spell every code-word with four four-mark charac-
ters, Since there are 16 of these, there would be 16%, or 65536 code-
words. These, skillfully used, would be sufficient.

The Cable company would receive and send merely the dots and
dashes, every dot being written 0 and every dash 1.

Each code-word would thus appear as a number in the binary nota-
tion of arithmetic. But the user of the code would only need to under-
stand this in case he was going to employ a secret cipher.

The code dictionary would consist of 1024 pages with 64 code-words
and their explanations on each page.

In order to make a secret cipher, it should be agreed between the corre-
spondents, that the sender after getting his code-words should treat them
as numbers and perform a certain arithmetical operation on each and
that the receiver should perform the inverse operation. The binary system
is excessively easily and rapidly worked.

If only one arithmetical operation were performed, the decipherer into
whose hands the dispatch might fall, would only have to find out which
one of the possible 209227898879999 operations this was, But since the
operation might change with every word of the dispatch, with a different
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kind of change from one dispatch to the next, the decipherer would be
up a tree.

It is an important fact that 65537 (one more than the number of code-
words) is a prime number, that is, is exactly divisible by no whole number,
while 65536 itself is exactly divisible by no odd number.

If, then, the result of any arithmetical operation had more than six-
teen figures, all the figures to the left of the right hand sixteen should be
cut off and being written under the others in the extreme right hand
places should be subtracted from them.

If in performing the inverse operation one had to subtract a greater
number from & smaller one, it would only be necessary to add certain
figures to the left of the smaller, every figure so added being also added
to the figure sixteen places to the right.

One very simple concealing operation then would be to add to the
number corresponding to a word any number less than 65537,

It would also be permissible to multiply by any of those numbers,
since (65537 being prime) no two different numbers multiplied by the
same number (and brought down to 16 figures in the above manner)
could produce the same 16-figure result.

Moreover, owing to 65536 being divisible by no odd number, it would
be permissible to raise the number corresponding to a word by any of
the 32767 odd powers whose exponents are less than 63537, and no am-
biguity could arise.

Moreover all the first 65536 powers of any odd prime number (or at
any rate of a great many such numbers) would be all different. The result
of this would be that the code dictionary could give for every word a
logarithm and antilogarithm of that word, by means of which it would
be very easy to perform calculations otherwise tedious.

As an example, [ will calculate a few powers of 3. Since 3 is written 11,
to multiply by 3 we have only to increase each figure by the one next to
the right of it.
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Exponent Power
0 (000,0000,0000,0001
1 0000,0000,0000,0011
2=10 0000,0000,0000,1001
3=H 0000,0000,0001,1011
4 =100 0000,0000,0101,0001
5=101 0000,0000,1111,0011
6= 110 0000,0010,1101,1001
7=111 0000,1000,1000,1011
8 = 1000 0001,1001,1010,0001
9 = 1001 0100,1100,1110,0011
1110,0110,1010,1001

Here the result is reduced to bring it into 10,1011,0011,1111,1011
16 figures. . 10
1011,0011,1111,1001

That is, we subtract twice 65537.
10,0001,1011,1110,1011
Again a similar reduction. 10
0001,1011,1110,1001
I will calculate a few successive powers of 257
Exponent Power
1 — — 10000 0001
1 0000 0001
1 0000 0010 0000 0001
1
2=10—- — e ———— (000 0010 0000 0000
10 0000 0000
10 0000 0010 0000 0000
10
3=l 0000 0001 1111 1110
111111110
1111 1111 1111 1110
1
4=10—-— 11111111 1111 1101
1111 1111 1111 1101
1000000001111 11001111 1101
1 0000 0000
5=101 —— 1111 1011 1111 1101

1111 1011 1111 1101
1111 11001111 1000 1111 1101
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1111 1100
6=110—————— 1111 1000 0000 0001

7T=1l1

1111 1000 0000 0001

1111 1000 1111 1001 0000 0001
1111 1000

1111 1000 0000 1001

g 1000 ———

1111 1000 0000 1001
1111 1001 0000 0001 0000 1001
1111 1001

e (000 0000 0001 0000

0001 0000

9 = 1001 —

10 = 1010 —— oo

11 = 1011 — i

12 = 00—

S 0001 0000 0001 0000
1 0000 0001 0000

1 0000 0010 0000 0001 0000

1 0000

e 0010 0000 0000 0000
10 0000 0000 0000

10 0000 0010 0000 0000 0000

10 0000

0001 1111 1110 0000

11111 1110 0000
11111 1111 1111 1110 0000
11111
7777111 1111 1100 0001




B. [NOTE ON A THEOREM IN FERMAT]' (236)

P.S. The following may amuse you. Fermat says that the area of a right
triangle whose legs and hypotheneuse are whole numbers cannot be a
sguare; and gives as the reason that if two squares had their sum and
difference both squares, it would follow that there was another pair of
squares of which the same was true, the sum of the second pair being less
than that of the first. On this M. Cantor remarks “Er hat [auch] den Be-
weis jener Unmdglichkeit in rithselhafter Kiirze angedeutet, dessen Schluss
allein ganz klar and verstindlich ist.”" This seems to me rather obtuse.
Let M2 and N? be such a pair of squares and assume that their sum is
as small as that of any such pair. Then if they had any common divisor,
division would give another pair of squares having the same property
and a smaller sum, contrary to hypothesis. We may therefore assume
they are relatively prime. As such both are not even. Nor can both be
odd, since the form of an odd square is 1 + multiple of 8 and that of
an even square a multiple of 4. Hence the larger is odd; the smaller,
even. Let M2 >N? and write

NZ i zxn2

where n is an odd number. Then the hypothesis is that
M?4-2n* = §?
M2 %2 =2

Then s and ¢ are both odd; their sum and difference are even; and the
halves of sum and difference are integers. Since the sum of 4(s+ ) and
${(s—1) is 5 which is odd, it follows that one of the two, 4(s-1) and
s —1), is odd and the other even. Let v be the odd one and 2y, where
v is an odd number, be the even one. Or

! This manuscript is a postscript to a letter which has as yet not been identified.
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Hst)=u

HsF 1) =2
Now had & and v a common divisor, it would divide both 5 and ¢. But
if 5 and ¢, being odd, had a common divisor it, would divide both 2M2

~and 2%*1p? and therefore M2 and N2 which are relatively prime.

The equations give
M? = > 4 42
Hence if M and either « or v had a common divisor it would divide both
u and v. Hence M, u, v are relatively prime.
The equations also give
nz = 2yt
and since », », v are all odd —x+4y+1 = 0 and

m=uy

Of course & and v are squares.
The other equation gives
= (M+2v)(M —2*v)
and since M and v are odd numbers relatively prime, it follows that

M+2%v and M —2% are relatively prime, and are therefore squares,
their product being a square. We may, therefore, write

M4 2y = p?
M—2y =g
Hence u=pg

and p and g being relatively prime are both squares.

-1, P+d P—4
- T
whence PR P
2y = ——, — i p
. N —f uv 3 5 rPq
If _2_q andf——-z—i had a common divisor, it would divide both p and g
which are relatively prime. If either ¥ —; 9 and ? ; L

had a common divisor, it would divide both pand g. Hence

and either p or ¢
pP+qp—q
2 27
P q are relatively prime and since their product is a square all are squares.
r—q
2 ')
are two squares whose sum and difference are

(Of course the even one is

pt+4q P—q
3 and 3
both squares., Their sum is p. Now

Hence




198 MISCELLANEOQUS NOTES

p= M+ =/ JU{s+17) +IF D)

(Y 17l
-

Hence p <+/2s and a fortiori p<s>. Hence it is impossible that two
squares should have their sum and difference both squares.

But if the right triangle whose legs and hypotheneuse are 4, b, &, had
its area, 1ab a square, A% and 4(3ab) would be two squares whose sum
and difference were both squares.

I? 4 4(Lab) = (a+b)*
1 — d(hab) = (a—b)®
Hence there is no such triangle. Tt scems to be quite clear that that is
what Fermat had in mind.
If N = 0, the proof breaks down,

C. A COMPUTER’S DEVICE (213)

In dealing with the problem of three moments, and elsewhere, powers of
numbers of the form P+0Q+/N occur. These satisfy the difference equa-
tion

Uy ya + (P2 —Q*Nuy = 2Puyy 1.
By taking out (P*—Q*N)** as a factor from u,, the quotient satisfies
the equation '

Vepa T+ Ve = 2P’Vx+ 1
which otherwise written is

Vop Ve = 2PV
The solution of this, dropping the accent, is

v, = Cy(P + P =1) + Cy(P — /PP =1)".
But obviously

(P+/PP=D)(P - /P -1) =1
Separating the square factor of P?—1, we return to the form

1
P +Q\]1N = W
Specimens of such numbers are
34242
24+ +/3
94 44/5
54 24/6
B4-34/7
34+ /8
194 64/10
10434711
T424/12
649 4 180+/13
Of course all their powers possess the same property.
(P+Q+/N)* = 2P(P+Q+/N)—1
(P4+Q+/N)? = (4P>* —1}(P+Q+/N)—2 etc.
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A Device of Computation

Suppose we have a series of numbers such that
Uppg = dlby g+ bity

where @ and b are rational. Then
E2—gE="b

—
a a
E—ii»\/z +b
% x 2 x
a a a a
H;’!“Cl(i‘f‘:ja +b) +Cz(i-4/§ +b)

T\ -
= o2t S 1)+ (ot O 1)
S SOV R T S VIV R T

If three rational numbers, P, Q, N are such that

P*—QIN =1,
then (P+0+/NYP—0+/N) = 1. For any given P, there is one largest
possible @ and corresponding N. We write these 0" and N'. We have
two functions of which the cosine and sine are special cases, which we
may term the P-clos and P-slin, defined by the formulae,

(P+Q' N + (P+Q'N')"
2

clospx =
(P+QYNY — (P+QYN)™

2 /N’
For the cosine and sine P, Q, N are not rational but P = 1 — 4, + 4 +
etc. Q@ = 1—- 51+ 4 — 5+ ete. N = —1. We shall always have

slinx =

. = CR* cm@

For we have Clospl = P SlingI =0 ClosO=1 Slin0=10
aA+bB a+b A+B a-b A-B
2 Sl 2 2 2
Clos (x+y) = Clos x * Clos y - + N Slin x - Slin y
Slin (x+ ) = Slin x Clos y 4 Clos x - Slin »
Clos (x +2) = P Clos (x4 1) + NQ' Slin (x41)
Slin (x+2) = @’ Clos (x-+1) + P Slin (x+1)

Now since in general

D. NOTES OF A COMPUTOR® (213)
NO. 1

The first thing the computor must do is to decide upon this system of
numerical notation. Now, as to the principle of “places,” that a figure
put one “place” further is multiplied by an integer, nothing could be
more admirable. But the plan of taking for that integer a multiple of
five is indisputably barbaric in the extreme, downright troglodytical. For
it ought, as its prime requisite, to be an integer by which it is easy directly
to divide with extreme precision anything directly measurable with preci-
sion, such as an angle and such as a weight. Now everybody knows that
an angle cannot generally be geometrically divided by any number except
a power of two; and everybody accustomed to weigh with precision
knows that the only simple method of dividing a mass of powder by
an integer is to put the whole upon one pan of an equal armed balance,
and then by successive approximations, transfer such a part of it to the
other pan as will balance the remainder. It is true that with a balance
one of whose arms was four times the length of the other one could divide
a mass of powder by five; but then the only technically precise way of
testing such a balance would depend upon the facility with which multi-
plications and divisions by two can be performed.

The reasons of the economic kind, of which [ have, thus far, given but
two examples, appear to me to be conclusive; but all that I feel warranted
in positively asserting by what has thus far been shown is that they are
very strong.

I now come to a reason which ought, T think, to appeal still more strong-
ly to the minds of mathematicians as such. It is founded on the principle
that when an idea is introduced into mathematical procedure, it ought to
be carried out as far as it will go and not be mixed up with any hetero-
geneous idea that conflicts with it. T will give an example or two to illus-

L The Century Dictionary gives this spelling as an alternate for computer.
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trate my [meaning]. If, for example, then, there be good reason for
counting by tens and powers of ten, I hold it to be bad mathematical
procedure to do as the French do and from eighty to [a] hundred to count
by twenties, or to do as the English sometimes do, to count by “long
hundreds” or by “dozens” and “gross.” Such procedures not only offend
the esthetic sense of mathematicians but conflict with the character of the
procedure which renders mathematics efficient by relieving the mind
through the application of uniform general rules, which is the very life-
blood of mathematical method. So, to give still another illustration,
when it came to be perceived that a “tenth,” a “hundredth,” etc. are
merely powers of ten that have negative exponents, it was a violation of
good mathematical method to introduce the decimal point between the
place of coefficients of ten to zero power and the places of coeflicients
of ten to negative powers, although the reason for doing so was in itself
a good one, that the places to the left of it are places of whole numbers
while those to the right are places of fractions. For though that was true
enough in itself, it did not harmonize with the more important [design
for procedure] and for the purposes of the class of computations that are
facilitated by the decimal system, since zero is no more positive than it is
negative. Instead of inserting that point, they should have put some mark
on the place of the coefficients of ten to the zero power, itself;? and thus
certain general exceptions for the place of the decimal point became in-
evitable, such as that 100. is the square of 10. while .001 is not the square
of .01. The remarkable facility of the differential caleulus is due to
Leibniz's mind having been eminently one of those to whom such hybrids
between different kinds of ideas were offensive.

3 This is precisely what Peirce did at one time in the development of his secundal
arithmetic. He used the symbol _ , 1 ¢, for example, meaning 2; 1 1, meaning 3.

E. A NEW RULE FOR DIVISION IN ARITHMETIC!

The ordinary process of long division is rather difficult, owing to the
necessity of guessing at the successive figures which form the divisor.
Tn case the repeating decimal expressing the exact quotient is required,
the following method will be found convenient.

RULE FOR DIVISION

First, Treat the divisor as follows: —

If its last figure is a 0, strike this off, and treat what is left as the divisor.

If its last figure is a 5, multiply the whole by 2, and treat the product as
the divisor.

If its last figure is an even number, multiply the whole by 5, and treat
the product as a divisor.

Repeat this treatment until these precepts cease to be applicable. Call
the result the prepared divisor.

Second, From the prepared divisor cut off the last figure; and, if this
be a 9, change it to a 1, or, if it be a 1, change it to a 9: otherwise keep
it unchanged. Call this figure the extraneous multiplier.

Multiply the extraneous multiplier into the divisor thus truncated, and
increase the product by 1, unless the extraneous multiplier be 7, when
increase the product by 5. Call the result the current multiplier.

Third, Multiply together the extraneous multiplier and all the multi-
pliers used in the process of obtaining the prepared divisor. Use the
product to multiply the dividend, calling the result the prepared dividend.

Fourth, From the prepared dividend cut off the last figure, multiply
this by the current multiplier, and add the product to the truncated

1 Reprinted from Science 2, 46 (Dec. 21, 1883).
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dividend. Call the sum the modified dividend, and treat this in the same
way. Continue this process until a modified dividend is reached which
cquals the original prepared dividend or some previous modified dividend ;
so that, were the process continued, the same figures would recur.

Fifth, Consider the serics of last figures which have been successively
cut off from the prepared dividend and from the modified dividends as
constituting 2 number, the figure first cut off being in the units’ place,
the next in the tens’ place, and so on. Call this the first infinite muomber,
because its left-hand portion consists of a series of figures repeating it-
self indefinitely toward the left. Imagine another infinite number, identi-
cal with the first in the repeating part of the latter, but differing from this
in that the same series is repeated uninterruptedly and indefinitely toward
the right, into the decimal places.

Subtract the first infinite number from the second, and shift the decimal
point as many places to the left as there were zeros dropped in the process
of obtaining the prepared divisor.

The result is the guotient sought.

Examples

1. The following is taken at random. Divide 1883 by 365.

First, The divisor, since it ends in 5, must be multiplied by 2, giving
730. Dropping the 0, we have 73 for the prepared divisor,

Second, The last figure of the prepared divisor being 3, this is the
extraneous multiplier. Multiplying the truncated divisor, 7, by the extra-
neous multiplier, 3, and adding 1, we have 22 for the current multiplier.

Third, The dividend, 1883, has now to be multiplied by the product
of 3, the extraneous multiplier, and 2, the multiplier used in preparing
the divisor. The product, 11298, is the prepared dividend.

Fourth, From the prepared dividend, 11298, we cut off the last figure,
8, and multiply this by the current multiplier, 22. The product, 176, is
added to the truncated dividend, 1129, and gives 1305 for the first modified
divisor. The whale operation is shown thus; —
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1883
6
11298
176
1305
110
2140
88
90
198
176
195
110
12[9
198
210
53
74

We stop at this point because 24 was a previous modified dividend,
written under the form 240 above. Our two infinite numbers (which need
not in practice be written down) are, with their difference, —

10,958,904,058 .
10,958,904,109.5890410958904
51.5890410958904

Hence the quotient sought is 5.158904109.

Example 2. Find the reciprocal of 333667.
The whole work is here given: —

33366|7 |7
163496[9
233567 2102103
2265599
2102103
2328662
467134

i : 700000
Answer, .000002997.
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Example 3. Find the reciprocal of 41,

Solution. — 41
3719

Answer, . ('}243§.

|9
333
111
14j4
148
16)2
74"
90

C. S. Peirce.

F. NOTE ON A SERIES OF NUMBERS (68)

The series herein described appears interesting; but since my regular
occupations do not permit me to develop its properties, I note such of
them as I have remarked, in hopes that somebody else may be moved
to make a systematic inquiry into them.

The series is that whose first two dozen members are
2.3.3.4.5.5.4.5.7.8.7.7.8.7.5.6.9.11.10.11.13.12.9.¢
If p be the ordinal place of a number in the series, [ will denote the number
by Np.

If p = 2"+ m, where 2" is the highest power of 2 which does not exceed

+3%
. Then, as

>
long as p is neither a power of two nor one less than such a power, Np
is the sum of the two Ns earlier in the series, the reflexions of whose ps
are next larger and next smaller than Rp; namely, Np’ and Np", where

, m o m+1

Rp = 7 Rp = o Thus, suppose p = 17, or if ... the figures are to
be interpreted as written in the secundal (instead of decimal) notation,
p = 10001, Then Rp = .00011 (the first significant figure being carried to
the end and the fractional point inserted where it had been). This lies be-
tween Rp’ = .0001 and Rp"" = .001, (which we get by subtracting and
adding 1 in the last place.) Hence, p’ = 1000, p" = 100; (carrying the
last unit to where the point has been, this being removed). Now N1000 =
5, N100 = 4; and accordingly N10001 = 5+4+4 = 9. If p = 18 = 10010,
Rp = .00101; Rp' = .001, Rp" = .0011; p’ = 100, p” = 1001. But
N100 = 4, N1001 = 7. Whence N18 = N10010 = 4+7 = 11.

The definition of the series is completed by adding that N(2"*! —1) =
N2" = p-+2; and in accordance with this, NO = [.

From this definition it follows that if 2" be the largest power of 2, not

p, I will speak of the reflexion of p, meaning Rp =
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greater than p, then every rational fraction whose value lies between 0 and
1 is expressed in its lowest terms by N(p—2"™)/Np, where there is but one
value which p can take to express the given fraction. This is too obvious
to require proof. The sequence of values of the fractions is that of the
values of Rp.

An easy way of writing down the series will be to write in the /th line
of a first column the number /41, / varying from 1| toward co. Then
make a second column beginning with the second line, the number in
this second line being the same that is in the same line of the first column;
and to get the number to be written in successive lines, add each time
the number in the first column that stands on the line unoccupied in this
second column. Next, go to the third line; and start two more columns
by writing the numbers already in that line in reversed order; and to fill
up the columns add for each new figure of the first the number in the last
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I give a considerable number of values, because the inspection of the
table will furnish a person with a choice of fractions approximating to
any given value. If, however, the value of a single term should be wanted,
it may be calculated as follows. First, take the reflexion of p, or R. It
is, then, necessary (or desirable) to calculate a certain number MR, being,

" in fact, the numerator of the fraction of which Np is the denominator.
In order to find this, we have the formule

M{2"—1) = m

MI"FR = [u{z— 1)+ 1). MR+ uM1'R
Here, 1"0°R denotes a number expressed by expressing R in the secundal
notation and prefixing (or affixing) z zeros and outside of them u units.
Tt will be convenient to have the lower values of MR before one’s eyes,

in making the calculation.
R 110 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1119

column that stands in the last line unoccupied in this column and in the MRL1'2 1 38 2 3 1 2 3 & 3 5 3 4
] R 10000 10001 10010 10011 10100 10101 10110 10111 11001 11010 11011 11100 11501 11110 11111
second of the new columns add always the number in the second column S TR B T B T, e i ek Tl et S B

from the last (that is, the first) in this same line. Next form four more
columns, beginning in the fourth line and repeating in reverse order the
numbers already in that line, to start these new columns. To fill them up,
use for the constant difference of the first of them the number in the last
column of [the] last line that will remain unoccupied in the new column;
for the constant difference of the second column the number in the same
line of the second from the last of the completed columns, and so on. Thus
we form the following table:

Np is the sum of MRp and M(1 — Rp). For example, required the value
of N65594. This is given on the last line of our table, where its value
appears as 203. The calculation proceeds as follows:

p = 65594 = 10000000000111010
Rp = 00000000001 110101
M.00000000001110101 = M 1110101
=M 10 3
+3M 1101]I - {15

1

oo

I

2

13

4. 5.5 4
5. 7.8 7.8 7.5

6. 9.11.10.11.13.12. 9. 9.12. 13.11.10. 11. 9. &

7.11.14.13.15.18.17.13.14.19, 21.18.17. 19.16.11.11. 16. 19, 17. 18. 21. 19. 14. 13, 17. 18. 15. 13, 14, 11. 7 : I
8.13.17.16,19.23.22.17.19.26. 29.25.24. 27.23.16.17. 25. 30. 27. 29. 34. 31. 23. 22, 29, 31, 26. 23, 25. 20,1313 20. %5, 23, 26. 31. 29, 22. 23, 31, 34. 20, 27. 30. 25, 17. 16, 23. 27. 24, 25. 29, 26, 19. 17. 22, 23, 19, 16. 17. 13. &
9.15.20,19.23.28.27.21.24.33, 37.32.31. 35.30.21.23. 34. 41. 37. 40. 47. 43, 32, 31, 41. 44. 37. 33. 36. 29.19.20. 31. 3. 36, 41. 49, 46, 35. 37. 50. 55. 47, 44. 49, 41, 28, 27. 39, 46. 41. 43, 50. 45. 33. 30. 39, 41, 34. 29, 3], 24.15
0.17.23.22,27.33.32.25.20.40,. 45.39.38. 43.37.26.29. 43, 52. 47. 51. 60. 55. 41. 40, 53. 57. 48. 43. 47. 38.25.27. 42. 9, 49. 56. 67. 63. 48. 51. §9. 76. 65. 61. 68. 57. 39, 38. 55. 65. 58. 61. 71. 64. 47. 43. 56. 59. 49. 42. 45. 35.22
1.19.26.25.31.38.37.29.34.47. 53.46.45. 51.44.31.35. 52. 63, 57. 62. 73. 67. 50, 49, 65. 70. 59, 53. 58 47.31.34. 53.97. 62. 71, 85. 80. 6l. 65. 88. 07, 83, 78. 87. 73. 50. 49, 71. 84. 75. 79. 92. 83. 61. 56. 73. 77. 64. 55. 59. 46.29
2.21.29.28.35.43.42.33.39.54. 61.53.52. 59.51.36.41. 61. 74. 67. T3, 86. 79. 50. 58, 77. 83. 70. 63. 69. 56,3741, 64 1. 75. 86. 103. 97. 74. T9.107.118.101. 95.106. £9. 61. 60. 87.103. 92, 97.112.102. 75. 69. 90. 95. 79. 68. 73. 57.36
3.23.32.31.39.48.47.37.44.61, 69.60.59. 67.58.41.47. 70. 85. 77. 84, 99, 9l. 68, 67. 89, 96. 8. 73. 80. 65.43.48. ?5-;‘5- 88.101. 121. [114]. 87. 94.126.139.119.112.125.105. 72. 71.103.122.109.115.134.121. 89, §2.107.113. 94, 81. 87. 68.43
4.25.35.34.43,53.52.41.49,68, 77.67.66. 75.65.46.53, 79. 96. 87, 95.112.103. 77. 76.101.109. 92, §3. 91. 74.49.55. 86. W.101.116, 139, 131. 100.108.145.160.137.129.144,121, 83, 82.119.141.126.133.155.140,103, 95.124.131.109. 94.101. 79.50
5.27.38.37.47,58.57.45.54.75. 85.74.73, 83.72.51.59. B8.107. 97.106.125.115. 86. 85.113.122.103. 93.102. 83.55.62. 97.18.114.131, 157, 148. 113.122.164,181,155.146.163,137. 94, 03,135.160.143.151.176.159.117.108.141.149.124.107.115. 90.57
6.29.41.40.51.63.62.49.59.82. 93.81.80. 91.79.56.65. 97.118.107.117.138.127, 95. 94.125.135.114.103.113. 92.61.69.108. [i7.127.146. 175. 165. 126.136.183.202.173,163.182.153.105.104.151.179.160,169.197.178.131.121.158.167.139.120.129.101 .64
7.31.44.43.55.68.67.53.64.89.101.88.87. 99.86.61.71.106.129,117.128.151.139.104.103.147.148.125.113.124.101.67.76.119. '1.140.161. 193. 182. 139.150.202.223.191.180.201.169,116.115.167.198.177.187.218.197.145.134.175.185.154.133.143.112.71
8-33,4?.46.59.?3.7157.69.96.109.95.94.1D?.Q?-.Eli,??.l15.I40.12T.139.]64.I51.!I3.112.159.161.]36.]23.135.110.73.33.1.30-155.15].]‘?6.[25]]. 199, 152.164.221.244,209.197.220,185.127.126.183.217.194.205.239.216.159.147.192.203.169.146.157.123.78
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M.11111111110001011 = M L1111111110001011
=21 M10]] 105
+ limn} - { 80
= 185
Mp = MRp-+ M(l —Rp) = 18-+ 185 = 203.

My attention was first called to these series in an endeavor to make
it clear that the conception of quantity, so far as it concerns mathematics,
is merely that of serial order. This my pupils seemed to understand in
some sort, as far as whole numbers were concerned; yet they could not
disabuse themselves of the notion that the arithmetic of fractions assumed
some unanalyzable so-much-ness. In order to show them that it was not
so, I had to produce a definition of the order of succession of fractions,
and demonstrate the arithmetic from that. The arithmetic of whole num-
bers was already developed. Namely, the system of whole numbers had
been defined as a collection of objects, connected by a relation G, such,
1st, that for any integer, x, there was just one integer Gx, which is not x.
2nd, that there [are] never two integers, x and y, such that Gx and Gy
are the same; and there is just one integer, 0, such that there is no integer,
x, giving Gx = 0; and 3rd, that no integer exists which could be supposed
nonexistent (whether alone or along with others) and still leave the first
and second conditions satisfied. Addition had been defined by the for-
mule, 040 = 0 and Gx+y = x+ Gy = G(x+y). Multiplication had
been defined by the formule 0:0 = 0 and (Gx).y = xy+y; x(Gy) =
y-+x.y. I now define rational fractions, as follows:

P, . ] M P
is intermediate between — and

M+ P k!
"N+Q N o’

>y oy
Of course, it had to be proved that the last clause was consistent with
M4+ M

the arithmetic of integers. From the first clause 1t {ollowed that — NIN

uals}'—{ dh A'Ms ihtMr L MQ+NP
eq and hence —; 50 Nte = "nNo
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Another way of defining the relations of fractions would be as follows:
First write

Lcicicicetc,

. Now insert the fractions of denominator 2; then those of denominator 3;

and generally those of any denominator only after having inserted all
those of lower denominator (in the same limits of value), In thus in-
serting the fractions of any denominator, N, follow this rule:

1st, Do not insert any fraction until all fractions of the same denomi-
nator and lower numerators have been inserted.

2nd, Begin at the extreme left of the row and make the insertions in
every (n— 1)th space between a sign and a fraction.

3rd, When a fraction is inserted in a space bounded on the left by a
fraction, the sign == is to be inserted to the left of the new fraction; but
when the space is bounded on the left by a sign, this sign is to be repeared
to the right of the new fraction.

Following this rule, I get the following lines, in each of which I put
commas to show where the next insertions are to be made:

1! = + <y % <3 % <|‘l‘.
% %< %‘:! T =" <s "{?1 !%{: g{r%
 =b<.d<h <i<, = i<, 4<h <2

=3 2 ?
f=f= =<, 3<i<, =<, I<i =d= 120 é':‘g"::r 3
$=4=4, =3=f<, b<i<d, <h<i=, d<i<i, <i<i<, i=3=4,
$=i=g=, 3=i=8<, d<b<i<, =i<i< d=i=ic, d<int=,
P=%=%=% =§=9=2<, 7<s<¥<h <7 ‘:T_%‘:s%{%‘:%=%;
§=i=f=ge, §=d=f=i<, d<i<i<i<, imi<d<in, dei<i
In concluding I give a single specimen of the formule relating to the
Ms:

N2ENQ@P L = NQr 42" L )+ N3+ p am+d 1 1),
where < 2™ < 2",



G. TEACHING NUMERATION (part of 179)

1t is only of late years that we have been in a condition to appreciate
the tremendous importance of the earliest lessons a child gets in counting.
It had already been recognized that numerals are not learned by children
in the same involuntary way in which they seem to learn the other parts
of speech. They have to be taught numbers; and it is almost indispen-
sable to their future facility with arithmetic that they could be taught in
a scientific manner, so as not to burden their minds with fantastic notions.

It was Napoleon Bonaparte who first remarked the great differences
between men in respect to visualizing imagination. “There are some,”
he said, “who form a picture of everything. These men, no matter what
knowledge, courage, or other fine qualities they may possess, are unfit
to command.” T have, for many years, collected data upon this subject.
I find these unfortunates to be extremely numerous, not often of masculine
and analytic intellect, always liable to self-deceptions. Owing to the
metaphorical use by all the world of phrases literally importing vision
to express the action of the imagination, it is easy to overlook the great
differences among mankind in respect to visualization. This test is this:
request the person under examination while he is seated with you quietly
in a well-lighted room to imagine a red vase; then when he has complied
with the request, inquire in precisely what part of the room he saw the
vase, If he does not visualize, he will be unable to answer this question,
if he is trained to accuracy. If he does visualize, he will say, “I saw it
under that chair, near the forward lefthand leg,” or will give unhesitatingly
some other answer equally definite. With such a man, imagination al-
most amounts to hallucination; and intellectual imagination is slow, dif-
ficult, and hampered by clothing which it is the very purpose of thought
to strip off.

There is evidence that education does something for the cure of this
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hallucinatory imagination; at any rate, children are more subject to it
than grown persons. Still, we cannot hope by any training totally to
extinguish it in those to whom it is natural. :

But there are others, who without localizing the objects of their imag-
ination, still cannot think of an abstract number without the accom-
paniment of colors and of shapes which have no intrinsic connection with
the number. These persons get into the habit of thinking of each number
in connection with constant fantastic shapes. Galton, in his Inguiries inro
Human Faculty (Macmillan, 1883, ...) has given many examples of this.

If the teacher cannot prevent the formation of associations so un-
favorable to arithmetical facility, as in many cases he certainly cannot,
he can at least do something to give them the least disadvantageous
peculiarities. To this end, it is desirable that children should receive
their first lessons in number from an instructor conversant with the
dangers of these phantasins.

There can be little harm in the association with a number of the Arabic
figure, or figures, which express it. Such an association is, of course,
requisite; but it is somewhat disadvantageous to be unable to shake it
off. The number which we write as 137 is in the binary system of notation
written 10001001. There are probably few persons who will not instinc-
tively think of the former as the real number, and the latter as a mode of
expressing it, and who can without difficulty think of 137 as a mode of
expression of 10001001. But, for several reasons, it will be best to en-
courage the association with a number of the Arabic expression of it

There is no better diagrammatic presentation of a number than a row
of dots, all alike. For this reason, the usual abacus with round beads on
wires is to be commended. The beads should be spherical, or somewhat
flattened, in the direction of the length of the wire, so that their form may
attract as little attention as possible. They should all be of one color,
so as to avoid insignificant associations of color with number.

We must not fail, in teaching numbers, to show the child, at once, how
numbers can serve his immediate wishes. The school-room clock should
strike; and he must count the strokes to know when he will be free. He
should count all stairs he goes up. In school recess playthings should be
counted out to him; and the same number required of him. This is to
teach the ethical side of arithmetic.

Many children will learn the names of numbers, and even apply those
names pretty accurately, without having the slightest idea of what a num-
ber is. This should not discourage the teacher. Such children learn by
first acquiring the use of a word, or phrase, and then, long after, getting
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some glimmer of what it means. If it were not for this, formulas would
not have the vogue they have — How many of those who talk of the law
of supply and demand have any idea what that law is, further than that
it regulates prices by the relation between wants and stocks of goods?

The way to teach a child what numbers mean is to teach him to count.
It is by studying the counting process that the philosopher must learn
what the essence of number is.

In counting, the child should begin by arranging his pack of cards in
regular order, and then laying down a card upon each object of the
collection to be counted. In this way, he will count articles of furniture,
flower-pots, plates, books etc.

Pay no attention to the ordinary names of numbers above nine. The
child will learn those for himself. But in learning arithmetic the strict
systematic character of numeration must be made prominent. Therefore,
call ten, onety; eleven, onety-one; twelve, onety-two; thirteen, onety-
three; twenty, twoty, ete. [...].

H. TWO LETTERS TO RISTEEN (L376)

Dear Risteen
The following method of division is good. Required the repeating deci-
mal equal to 54+ I open Crelle at 367. Looking down the last column,
I find 99 at 97 and 367 % 297 = 108999. Then I take 109 as multiplier
109 % 297 = 32373. Set down 373 and carry 32
109 x 373 = 40657 and carrying 32 we have 40639
109 x 689 = 75101. Set down 689 and carry 40

and so proceed, setting down numbers as follows:

50206 13952 43055 40003 44799 15369 40657
43600104531 7085 10355 92323 48396 75101 32[373297]
659400544959128065395095095367847411444141689 373297

Having got so far I keep doubling all I have got thus:

0108991825613079019073569482288 8283378746594
0217983651226158038147138964577656 6 7|57493188
0435967302452316076294277929155313 3[514986376
0871934604904632152588555858310626[7029972752
174386920980926430517711171662125[34 059945504
3148773841961852861035422343324 250681 19891008

69754?633923?05722070344686643g]ﬁ1 36239782016
|00272479564032

This is the decimal reading up from the last line. I proveit by noting that

the last half is the arithmetical complement of the first half. It is also

useful to check by adding successive numbers thus:
00544959128065395095367847411444141689373297
05994550408719346049046321525885558583106267

Also by subtracting successive numbers. In both ways we should get

another portion of the decimal.
Very truly
C. S. Peirce
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Dear Risteen
To extract a root proceed as follows. Required 5 root of 2. It evi-
dently a little exceeds 1.1 for
(1.1)° = 1.61051
2

3.61051
5

18.05255
0.38949

18.44204
17.66306

7789800
7065224

0724576 1.0441

7065224 10441

J0180536 1.14851 ... 2" approximation
1.148698 ... frue answer

Yours faithfully
C. S. Peirce

P.S. Take any fraction whose period expressed in decimals has an even
number of figures say 4% = .153846

153
846
999
If a prime is the sum of three squares so is its square
11 =141+49

121 = 4-+36+81
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A. PLAN OF THE PRIMARY ARITHMETIC (180)

I
The first ten numbers and their succession to be taught. (The Arabic
figures to be shown but not insisted on.)
Their use in counting.
Exercises in counting objects in the room, with the use of the “INumber
Cards.”
Counting various figures.

L1
Higher numeration, with the Arabic figures.

False names to be used first, with a view of keeping irregularities of
language in the background till the Arabic system is understood.
Then the usual names to be introduced.

I
Exercises in counting considerable numbers, up to a thousand with ra-
pidity and accuracy.

v
Counting by tens.

v
Counting by fives.

VI
Counting by twos.

v

Counting by nines.
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VI
Counting by eights.

X
Counting by fours.

X
Counting by sixes.

X1
Counting by threes.

X1

Counting by sevens.

In all these lessons the number-cards are to be used at first. Afterwards,
coffee beans. The drill is to be carried so far that given any number under
ten, the pupil immediately proceeds from that with perfect fluency, adding
successive ls, 2s, 3s, 4s, 3s, 6s, 7s, 8s, 9s, 10s, etc. up to 101. This drill
is the foundation of all facility in arithmetic. Competition and prizes.

b 4111
Sums in addition of two numbers done in the head, and expressed con-
cretely.

XIv
Adding columns. These are gradually lengthened until fifty figures.
Minute attention to all the details of the methods.

XV
Simple subtraction.

XVI
Subtraction taught with the abacus.

XVII
Multiplication.

B. C.S. PEIRCE’S ARITHMETICS (1546)

Conspectus of Copy and Notes 1893 May 21

1. Notes on the teaching as hitherto done.
A. Arithmetics now, or of late, used in American Schools.
a. Primary Arithmetics.

(1) Robinson’s Progressive Primary A. (1st of a 6-book Series or
2nd of 7 books.)

(2) Robinson’s New Primary A. (1st of a 5-book Series or 2nd of
7 books.)

(3) Robinson’s First Lessons in Mental and Written A. On the
Objective Method. (In what series not stated.)

(4) Ray's New Primary A. (1st of 4-book Series.)

(5) Greenleaf’s First Lessons in Numbers. (1st of 3-book Series.)

(6) Wentworth’s Primary Arithmetic. (1st of 3-book Series.)

(7) The Franklin Primary Arithmetic. (1st of 3-book Series.)

f. Intermediate Arithmetics,

(8) Robinson’s Progressive Intellectual, on the Inductive Plan.
(2nd of 6-book sequel to (1) or 3rd of 7.)

(9) Sheldon’s Elementary Arithmetic. (1st of 2-book Series.)
(10) White’s New Elementary Arithmetic. (Ist of 2-book Series.)
(11) Ray’s New Elementary A. (Ist of 2-book Series.)

(12) Rickoff’s First Lessons in A. (1st of 2-book Series.)

(13) Cruttenden’s Objective or Synthetic A. 1869. (Ist of 2-book
Series.)

(14) Ray’s New Intellectual A. (2nd of 4-book Series.)

(15) Quackenbos’s Elementary A. (2nd of 4-book Series.)

(16) Robinson’s Elements of A. (2nd of 4-book Series.)

(17) Robinson’s Rudiments of Written Arithmetic. (3rd of 6-book
Series.)
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(18) Robinson’s New Rudiments of Arithmetic. (3rd of 5-book
Series.)

(19) Franklin Elementary Arithmetic. (2nd of 3-book Series.)

(20) Greenleaf’s Brief Course in A. (2nd of 3-book Series.)

(21) Wentworth's Grammar School A. (2nd of 3-book Series.)

(22) Robinson’s Junior Class A. (4th of 6-book Series.)

(23) Ray’s New Practical A. (3rd of 4-book Series.)

(24) Sanford’s Common School A. (3rd of 4-book Series.)

(25) Robinson’s New Practical A. (4th of 5-book Series.)

Advanced Arithmetics.

(26) Franklin Higher A. (3rd of 3 books. But probably intended
as 3rd of 4.)

(27) Sheldon’s Complete A. (2nd of 2-book Series.)

(28) White’s Complete A. (2nd of 2-book Series.) |

(29) Davies and Peck Complete A. (2nd of 2-book Series.)

(30) Olney’s Practical A. (2nd of 2-book Series. Probably original-
ly 2nd of 3 books.)

(31) Rickoff Numbers Applied. A complete Arithmetic. (2nd of
2 books.)

(32) Loomis’s Normal A. 1866. (2nd of 2 books.)

(33) Ficklin’s National A. (2nd of 2 books.)

(34) Wentworth and Hill Practical A. (3rd of 3-book Series.)

(35) Wentworth and Hill High School A. (Same revised.)

(36) Greenleaf’s Complete A. (3rd of 3 books.)

(37) Ray’s New Higher A. (4th of 4-book Series.)

(38) Sanford’s Analytical A, 1872. (4th of 4-book Series.)

(39) Dean’s High School A. 1874.

(40) Mann and Chase. Arithmetic. 1850.

Other books in use in American Schools.

(41) Renck’s Practical Examples.

(42) Robinson’s Arithmetical Examples.

B. Other Modern Arithmetics.

(43) Brook-Smith’s Arithmetic.
(44) Orton’s Lightening Calculator.

C. Old Arithmetics, not ancient.
a. In possession of C.5.P.

(45) Cuthbert Tonstall. De Arte Supputandi. 4'° Paris 1538. The
3rd or 4th Ed. of this admirable book.

(46) Giovanni Sfortunati. Nuovo Lume. 1544. The book dates
from 1490. This author is hardly known to the historians.
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(47) Gemma Frisius. Arithmeticee practice methodus, facilis.
Paris 1549, Beautiful print. First ed.: 1540,

(48) Orontius Finaeus. De Arithmetica Practica. 4'® Paris 1555.
The Privilege is dated 1553. The author’s preface 15355 Janu-
ary. He died the following October. This is the author’s
revision of 4 books of his protomathesis published in 1532.

(49) Christopher Clarius, Epitome Arithmeticae Practicae.
Corrected by author. Rome. 1585. Not sufficiently known
to historians.

(50) Robert Recorde. Grounde of Artes. With Dr. Dee’s additions
and Mellis’s supplement 1668. This celebrated and important
book was first published 1543.

(51) T. Hylles. Arte of Vulgar Arithmeticke. 1600. Described by
DeMorgan.

(52) Gio. Battista Zuchetta. Prima parte della Arimmetica folio.
1600. Notin DeMorgan (except the name Zuchetta), Peacock,
Cantor.

(53) Cataldi. The first two of 4 volumes of “Practica Arithmetica”
folio 1602, 1606. The 4th part only is mentioned by De-
Morgan. [Moritz] Cantor gives some information. A re-
markable work.

(54) Antonio Pace. Scorta de’ mercanti. 1628. Totally unknown
to historians.

(55) Gio. Giacomo Pierantonio da Cravegna. Diversi Operationi
d’aritmetica. 1653. The name “Pierantonio” alone known to
DeMorgan.

(56) Cocker’s Decimal Arithmetic. Perused, corrected, and pub-
lished by John Hawkins. 4th Ed. 1713. This is not the original
and most celebrated Cocker's Arithmetic, but was first pub-
lished 1685. DeMorgan shows that both books were really
written by Hawkins.

. Not in C.5.P.’s possession.

(57) Leonardo of Pisa. Ed. by Boncompagni.

(58) Jordanus Nemorarius.

(59) Nicholas Oresme.

{60) The Treviso Arithmetic, 1478,

(61) Bamberger Rechenbuch. 1483,

{62) Luca Paciulo. Summa de arithmetica. 1489,

(63) Nicolas Chuquet. Triparty en la science des nombres 1880.



C. ROUGH LIST OF WORKS CONSULTED FOR ARITHMETIC
BY C.S. PEIRCE (170)

DeMorgan. Arithmetical Books. London 1847,

Peacock. Article Arithmeric in Encyc. Metropolitana.l .
Thirion. Histoire de Parithmétique. Not dated. 18867

Cantor. Geschichte der Mathematik.

Libri. Histoire des sciences mathématiques.

Gow. History of Greek Mathematics.

Eisenlohr. Ein mathematisches Handbuch der alten Aegypter,
Euclid. Elements Books VII, VIIT, IX, X.

Boethius. Arithmetica. Musica.

Margarita Philosophica.

Tonstall. De Arte supputandi. (My ed. 1538)

Orontius Finaeus. De Arithmetica practica. (My 2nd Ed. 1555)
Recorde. Ground of Artes.

Gemma Frisius. Arithmeticae Practicae Methodus Facilis. (My ed. 1549)

1 On another list of Peirce’s old arithmetics he writes “Peacock, Geo. Arithmetic, 4.
A most valuable work and difficult to obtain separate. I was about 5 years hunting
for mine. The plate referred to is wanting.” Peirce’s copy is now in the Houghton
Library. The author is identified in Peirce’s hand on the title page writien in another
hand as the “Very Reverend George Peacock, Dean of Ely Cathedral.” Under the
date “1849" written at the bottom of the page Peirce inserted the observation: “this
date, which was in the book when I bought it, indicates that its former possessor was
pretty careless about the history of the history of arithmetic. For it appeared in 1825
and 1826. See De Morgan's Notes on Arithmetical Books, p. 21. It is a most extra-
ordinary performance, and has marvelously few errors.” This Arithmetic by Peacock
appeared in the Encyclopedia Metropolitana with which Peirce was very familiar,
Peirce, himself, planned a scientific dictionary called “Summa Scientiae; or Summary
of Human Knowledge" (see 1176). Of the 1500 pages in the projected work, 250
pages were to be distributed in the mathematics section as follows: History (25),
Synopsis of Pure Mathematics (100), Tables (25), Rigid Dynamics (25), Hydrodynamics
(15), Thermodynamics (10), Kinetical theory of bodies (5), Thermotics, etc. (5), Optics
{5), Electricity and Magnetism (10), Mathematical psychics (5), Mathematical econo-
mics (5), Probabilities (10), Miscellaneous (5).
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Christopher Clavius. Epitomae Arithmeticae 1585.

Cataldi. Practica Arithmetica. (I have only the first two volumes of this
important work: 1602, 1606.)

Th. Hylles. Vulgar Arithmeticke 1600,

 Giov. Sfortunati. Nuovo Lume. 1544 (First Ed. 15167)

Gio. Batt. Zucherra, Aritmetica 1600 (I have only 1st vol, 400 page folio.)

Antonio Pace. Scorta de’ Mercanti 1628,

Gio. Giacomo Pierantonio. Diverse Operationi d’aritmetica 1653.

Hawkins. Cocker’s Arithmetick.

Horace Mann and Pliny E. Chase. Arithmetic 1850.

W. G, Peck. Complete Arithmetic (Barnes) 1877,

Ficklin. National Arithmetic. (Barnes) 1881 (considerable success)

Sanford. Common School Arithmetic (Lippincott) 1872,

Sanford. Analytical Arithmetic (Lippincott) 1870.

Orton. Lightning Calculator 1871. (Many useful dodges)

White, E. £. New Complete Arithmetic (Van Antwerp Bragg and Co.)
1883,

Cruttenden. The Objective or Synthetic Arithmetic. Ist Course 1869.

Robinson. Arithmetical Examples. 1864 (pretty good)

Quackenbos. Elementary Arithmetic 1863.

Reuck. Practical Examples in Arithmetic 1854 (poor).

Dean, Philotus. High School Arithmetic 1874,

Olney. Practical Arithmetic (Sheldon) 1879,

Wentworth and Hill. Practical Arithmetic 1881 (The best.).

Brook-Smith. Arithmetic (Macmillan) 6th Ed. 1381.

Rickoff. Numbers Applied (Appleton) 1886 Good.

Loomis, 5. L. Normal Arithmetic 1858. Some merit. Has an alpha-
betical index with references to statistical information. But very little
of it.

HIGHER ARITHMETIC
Schrider

Gauss. Disquisitiones arithmeticae
Legendre. Théorie des nombres
Dirichlet. Zahlentheorie

CABBALA
Mahan, Palmond.
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WEIGHTS AND MEASURES

Petrie. Article Weights and Measures in Encye. Brit.
——. Inductive Metrology.

Paucton. Métrologie 1780.

Béckh. Métrologische Untersuchungen 1838.

Fenner von Fennerberg. Untersuchungen 1859,

Lepsius. Die Linenmasse der Alten 1884,

Nissen. Grieschische und romische Metrologie 1886.
Hultsch. Grieschische und rémische Metrologie 2nd ed.
Aurés. Métrologie égyptienne 1880.

Brandis. Das Miinz-, Mass- und Gewichtswesen in Vord Crasien [866.

Queipo. Systemes métriques. 4 vols.

A book of Ms. copied by me from many books.
Kupfer. Travaux de la commission russe. 2 vols.
Chisholm. Weighing and Measuring 1877.
Noel. Natural Weights and Measures.

Report on Weights and Measures 1857,
Warden of Standards Reports.

Publications of commission internationale.
Petrie. Pyramids and Temples of Gizeh.
Smyth. Our inheritance in the Great Pyramid.
Description of the City of Canton.

Barnard. Metric System.

Scriptons metrologici.

Kelly. Cambist.

Tate. Cambist Last Ed.

Jackson. Metrology,

Browne, Handbook.

Woolhouse. Money Weights and Measures.
Clarke. Measures Weights and Money.
Nelkenbreche. Tasehenbuch.

Base du Systéme métrique.

Bleibtren. Handbuch.

Lenale. Monnaies Poids Mesures.

Zuan Manenti. Tariffa 1534,

Zuan Mariani. Tariffa perpetua 1564.

Many private official letters.

D. AXIOMS OF NUMBER (40)

The following is a complete list of the assumptions of arithmetic. They
may be considered as constituting a definition of positive, discrete number.
From them, every proposition of the theory of numbers may be deduced
by formal logic.

I
Whatever is greater than, is other than.

I

“Greater than® is a transitive relative; that is, whatever is greater than
something greater than, is greater than.

I
Whatever is greater than a number is a number.

v

Number is a system of simple quantity; that is to say, every number is
related to every other either as greater or less.

v
There is no maximum number; every number is less than a number.

Vi
Unity is the minimum number.
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VII

Number increases by discrete steps. Whatever is greater than a number
is greater than some number without being greater than an intermediate
number greater than that.

VI
Number is singly infinite; that is, any number can be reached by successive

minimum steps, More precisely, if every number greater than but not-

greater than a number greater than another is in any transitive relation
to that other, then every number greater than another is in the same tran-
sitive relation to that other.

IX

In any counting, every object of the lot counted is counted off by a
number.

X

No number, in any counting, counts off anything counted off by any
other number in the same counting.

XI

No object in any counting is counted off by any number that counts off
any other object in the same counting.

XII

In any counting, every number counting off an object is less than every
number that does not count off an object.

XIIL

The lot counted being finite, there is a final number in every counting of
it. '

v
In any counting, the final number of the count counts off an object.

XV

In any counting, the final number of the count is greater than any other
number that counts off an object.
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DEFINITIONS OF ADDITION AND MULTIPLICATION

The sum of two numbers n, and n, (whether these be the same or dif-
ferent) is the final number of a count of a lot of objects, consisting of two
mutually exclusive lots, of countings of which n, and », are the final num-
bers respectively.

The product of a number n; by a number m is the final number of a
count of a lot of objects that consists of mutually exclusive lots, the final
number of a count of each of which being n,, while the final number of
the count of these final numbers, considered as a lot of objects, is m,.!

1 In Peircian representation 3 x 2 would be given as follows:

N&/ "
m

There are 3 sets of 2 rays each and m, = 6.



E. PROOF OF THE FUNDAMENTAL PROPOSITION
OF ARITHMETIC (47)

The proposition is that the order of sequence in which the things of any
collection are counted makes no difference in the result, provided there
be any order of counting in which the count can be completed,

I wish to use this language. Suppose there is a class of ordered pairs
such that PQ is one of them (QP may, or may not, belong to the class).
Then, supposing 4 signifies this class of pairs, I say that P is A of Q and
0 is A'd by P.

Suppose a collection of things, say the As is such that whatever class
of ordered pairs A may signify, the following conclusion shall hold.
Namely, if every 4 is 4 of an 4, and if no 4 is J’d by more than one A,
then every A is ’d by an A. If that necessarily follows, I term the collec-
tion of As finite. That is the sense in which I use the word finite.

T begin with the following lemma. Every collection of things the count
of which can be completed by counting them in a suitable order of suc-
cession is finite. For suppose there be a collection of which this is not
true, and call it the As. Then there is some relative, 4, such- that while
every A is A of an 4, and no two As 4 of the same A, there is some 4
not A’d by any 4. Remove this 4 which is not A’d by any A. Then, the
same thing will be true. Namely, Ist, every 4 is still 1 of an A, for no
A 2’d by an A has been removed; 2nd, no two 4s are A of the same 4;
and third there is an 4 not A’d by any A, namely, that 4 which was Ad
by the removed A, and by no other 4. Now if we consider the terminated
counting of the collection, and lower by one every cardinal number higher
than that which in the counting was called against the removed A, we
see that after this A has been removed, the counting of the collection can
still be terminated; only it is terminated by a number less by one than
before. It follows by a Fermatian inference that if there be a collection
not finite the count of which can by a suitable arrangement be terminated
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by any number #, then the same is true of some collection the count of
which can be terminated by any lower number. Then there must be some
collection whose count can be terminated by 1 which is not finite. But
if this unit, say 4, is A to an A, which can only be itself, it is A’d by an 4;
and so it is finite; and thus the original supposition is reduced to ab-
surdity, and the lemma is proved.

The whole difficulty of the main proposition will be found to be con-
tained in this lemma (which another proposed proof virtually takes for
granted). For let the 4s, which have been counted in two ways, be ranged
in a row, with the number which was called against each in the first count
written above it, and that which was called against it in the second count
written below it, and let the terminating number of the second count (if
either) be the greatest. Let the cardinal numbers from 1 up to the highest
number of the second count be called the as. Then, as they stand written
above and below the As, every a is under an @, but no two as are under
the same @ (for no number occurs twice in the upper line). Consequently,
the number of as being finite (since a count of them is terminable),
every.a is above an g, or in other words every a, including the greatest,
is found in the upper line and was used in the first count.

I may mention that I have written off this proof without running over
it in my mind; for the principles of logic showed me that a “syllogism
of transposed quantity” must be used, and that for that purpose, the
lemma was required; and further that this lemma could only be proved
by Fermatian inference.r Of course, such a proposition has only a logical
interest.

i Recall the Hottentot illustration for DeMorgan’s syllogism of transposed quantity.
See Volume IV, 3.



F. NOTES ON NUMERICAL NOTATION (52)

All mathematicians are great admirers of what they call “elegance.” By
this they seem to mean a style of exposition in which, a fertile form of re-
presenting certain mathematical objects having been found, all possible
use is made of that form before introducing any point foreign to the idea
of that one. The quality is not only pleasing but usually facilitates the
development of a mathematical subject to a certain point. But pushed
too far, its practical inconveniences may become extreme. Thus, no
notation for integers could exceed in clegance that by a row of marks
equal in their multiplicity to the integer represented; and I suppose the
whole Theory of Numbers could be elegantly developed from this germ,
in view of the perspicuous forms of representing addition, multiplica-
tion, and invelution, to which this system naturally lends itself. But how-
ever prettily some general propositions might be so demonstrable, such
a mode of representation would be the worst conceivable for the computa-
tion of individual numbers; and moreover it would only represent a count
and not any system of subdivision. The Roman system show[s] about
the best accommodation of the method to practical purposes.

For a computor’s purposes a very promising idea has been applied
to the notation of numbers for over a millenium, although as yet in-
elegantly, inconsistently, and stupidly. It consists in, firstly, establishing
arow of places, in each of which the same numerical character would have
a special value. This part of the idea is at least of double the antiquity
of the rest, and was, of itself, of incontestable utility; and this utility
was immensely angmented by the second part of the idea, which was
to endow every place that was next to another on a certain side of it (say,
on its left) with the power of making any numerical character standing in
it, denote in every case a number greater by one and the same multiplier
than it would have denoted had it occupied the other place.
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But the awkward stupidity and incapacity for discerning a simple
regularity which has been displayed especially by the earlier of modern
mathematicians is most striking. Even to this twentieth century men put
a point between the places where the base has negative exponents and
that where its exponent is zero; as if zero were more positive than negative,
instead of marking the place of the zero power itself.

As soon as the waning, as well as the waxing, exponents of the base of
numeration come to be employed, it becomes urgent to inguire what
number is most suitable to serve as that base. To thoroughly unmathe-
matical minds, to whom alone all questions concerning numeration seem
hitherto to have been referred, the question will naturally take the shape,
“Into what number of equal parts is it easiest to separate a length of
space or time or bending?” And, of course, the answer will be in each
case, “Two!”

A person who looks upon numbers as expressions of weighing and
measurements, will be in the constant habit of roughly estimating how
much labour a given task of weighing or measuring would demand by
the number of numerical places that are required to be exact. Therefore,
in order to render such estimates as accurate as it is in their nature to be,
such a person would prefer not to use as base of numeration a greater
number than two. Several analogous advantages would accrue from the
use of this same base.

A somewhat different sort of consideration presents itself in a large and
varied class of operations of which chemical analysis is an instance. For
precise weighings the only instrument ordinarily to be seriously proposed
is an equal-armed balance; and expedition is always important, not sel-
dom imperative. Now the most rapid weighing with an equal-armed
balance is one with weights each just one half the one last tried, until one
has almost reached the limit of accuracy; and even then, so far as time
is valued, the method of bisection ought to be continued until the limits
of oscillation give the mean inclination of the beam. In every rescarch
that is based upon a hope that there are realities that are expressible, to
some considerable degree of approximation, at any rate, in terms of
general conceptions within the range of human understanding, and that
this is true of the particular subject of the inquiry, so that there is some
finite chance of a human conjecture’s approximating to an expression
of an element of the reality, and so being either quite or almost what we
call a “ruth” ; what to aim at doing, so as to attain to that approximate
truth through the smallest number of guesses, each of which will have to
be subjected to a test, which will be more and more laborious as the
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approximation becomes closer, is at each new testing to bisect the proba-
bilities.

One can see, almost instinctively, that this would be the case; and
owing to the complication[s] that arise in considering other modes of
partition, I will bere drop this consideration, only mentioning that if,
every time there were 3 chances of the truth being in one alternative,
against two chances in the other, one would by such a mode of partition,

in ten repetitions and testings only, on the average, have separated the.

possibilities into about 733 parts, one would by bisections with the same
labour have infallibly separated them in 1024 parts, or a good deal more
than half as many again.

I pass over other advantages of two as the base of numeration because
I suppose the reader to be already impatient for the examination of its
inconveniences. I will, therefore, hasten to that inquiry. Only, for the
purposes of that inquiry, a somewhat closer acquaintance with the prop-
erties of different bases of numeration must be gained; and the subject
is of sufficient importance to warrant our giving as much time and atten-
tion to it as may be requisite for forming an intelligent opinion about it.

To begin with, I will give a table of a few of the lowest numbers as
they might be represented in the primitive and most elegant system, in
the secundal numeration (that is, with two as the base of numeration),
both graphically and orally and in the decimal system, graphically, in
our present oral system, and in a more rational oral system ....

G. ON THE WAYS OF THINKING OF MATHEMATICIANS (51)

If you were to ask me how many different objects could be distinguished
by the answers, yes or no, to twenty questions, I should reply that their
possible multitude would be two to the twentieth power. Thereupon,
you might very likely ask “How much is 2*°?” And if I were to reply,
1048576 you might say “Now I know; before you only replied by telling
me that it was the solution of a problem in arithmetic.” Yet how can
you be said to know the multitude any better when you are told that it
is 1048576 than when you are told that it is 2*°? Why should 10% 4 4.10*
4 8.10% 1+ 5.10% 4 7.10 4 6 express the essence of the number rather than
2299 One expression is in the decimal system of numeration, the other
in the secundal system.

The answer to this question is that the decimal system of expressing
multitudes is the system that is familiar to us; and whenever we ask what
a thing is what we desire is that its relation to familiar ideas should be
set forth.

The decimal system of numeration is by far the commonest among all
the races of mankind. The reason for this is commonly and doubtless
rightly said to be that the fingers are the most convenient instruments for
counting and that men have ten fingers. If that be the true explanation,
the decimal system is a monument to human stupidity. For in that way,
the ten fingers will only count to ten. There are five on each hand. Now
if in counting at one we put down, J, the little finger of the right hand,
at two, r, the ring-finger, at three m, the middle finger, at four f, the fore-
finger, at five ¢, the thumb, still of the right hand, at six L, the little finger
of the left hand, at seven LI, both little fingers (L for 6 and [ for 1), at
eight Lr, the right little finger for 6 and the left ring-finger for 2, etc.,
we could count to 35 upon the fingers. This sextal system would have
the great advantage that every prime number except 2 and 3 (or as we
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should express it, except r and m) would use either / or t. Thus every
number on division by 5 would leave the same remainder as the sum of
the values of its figures. Thus 1000 would appear written (as if an in-
definite number of hands were used) as fmff. The sum of the figures is
15 or rm; and the sum of these again is r.

The remainder after division by 7 (or II) would be the same as that of
the sum of the figures in odd places less those in even places. Thus, in

the case of 1000, m+f = Il and f+f = Ir, Il —Ir = —[ showing that -

1001 is divisible by 7.

The remainder after division by 11 (or /) would be the same as that
of the number resulting from removing any figures of the original number
and adding a half of them one place further to the right, or adding their

triple two places to the right. Thus 1000, or fmff, twice subjected to the
former process gives

fmflf
rit
rrim
T
[f=10

Subjected to the other process, it gives
fmlff

Ilm
m|ol
L
1 f=10
Of course, 1000 = 11 % 90 + 10.

H. REASONING POWERS OF MEN IN DIFFERENT AGES (1121)

... I should not wonder if the power of thought of the future historian
of reasoning were to enable him signally to improve upon my attempt
to state the elements of the excellence of a reasoning.

I should not wonder if that same historian were able to begin some
estimate of the power of reasoning even of prehistoric man. For my
part, [ detect only considerable ability in social and even in artistic lines
without being able to form any idea of the brightness of his reasonings.
His counting in tens, as he seems to have done everywhere, as soon as
he had once really grasped the idea of numeration (which clearly implies
its endlessness) was certainly a stupidity. For after he had counted up
to five on the fingers of one hand, the natural suggestion to a mind not
densely stupid would have been to make each finger of the other hand
count for six, He would thus have naturally been led to make six, in-
stead of ten, the base of his numeration. It really seems as if the angel
who created Man, intended this suggestion, so obtrusive was it. Had six
taken the place in numeration that ten has actually taken division by 3
would have been performed as easily as divisions by 5 now are, that is
by doubling the number and showing the decimal point one place to the
right. Now we naturally, that is, in the absence of any special influence
tending to increase the frequency of divisions by any particular number,
should have 1013 occasions to divide by 3, for every 642 occasions to
divide by 5; so that there would have been a marked superiority of con-
venience in this respect in a sextal over a decimal system of arithmetic.
Moreover, the multiplication table would have been only about one third
as hard to learn as it is, since in place of containing 13 easy products
(those of which 2 and 5 are factors) and 15 harder products (where only
3, 4,6, 7,8, 9 are factors), it would have contained but 7 easy products,
and only 3 hard ones (namely, 4 X4 = 24,4 X5 = 32, and 5 x 5 = 41).
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Now, it is true that today, this is no advantage at all, since it is a beneficial
exercise of children’s memories and morals to learn the multiplication-
table. But the history of arithmetic shows that multiplication and division
were, down to about two centuries ago, regarded by serious men as really
serious difficulties; and as long as this was the case the facilitation of
these operations would have made a great difference in daily affairs by
preventing ordinary people from being victimized by experts in special

branches of accounts. It is true that it would have been necessary to -

write more than five figures for every four that are now written. For
example, the number 21, 848,743 which is written with 8 figures would
in sextal notation be written 2100543331 in 10 figures. But this doubtful
disadvantage in dealings with enormous numbers, — such dealings being
usually extremely expensive, since the average cost of avoiding a small
proportionate error is inversely proportional to the square of its ratio
to the quantity it affects, so that making three more figures right multi-
plies the expense by a million, — this disadvantage, I say, if it be at all
appreciable, is small compared to a considerable increase in the promp-
titude with which a number may be divided by three, since the latter
will be a need perhaps of almost every grown person once a week on the
average, while the need of dealing with millions occurs to hardly one man
in a million in any given week, and that man will be a trained accountant
or computer, who will not be conscious of difficulties which would bring
the average citizen to a full stop. The choice of the decimal instead of
the sextal numeration was therefore, without speaking of its awkward
division of the circle, a misfortune from which the race bids fair to suffer
to the end of time. Of course, if 2 had been adopted as the base of nu-
meration one might have counted on the fingers up to 1023, and there
would have been mo multiplication table, and scarce a possibility of
committing any mistake of ciphering. But instead of writing “A.D. 1910
Dec. 31,” we should have to write “A.D. 1101110110 Dec, 11111,” which
would, perhaps, be mincing numbers a little too small. Division by 3
would [be] quite as easy as division by 11 now is. To find the remainder
after division by three, count the ones in the lst, 3rd, 5th, etc. places
beginning at the right hand, and from the sum subtract one for every
one in the 2nd, 4th, 6th, ete. place; the result will be the place sought.
To find the remainder after division by five, add the 1st, 3rd, 5th, etc.
pairs of figures, and subtract from them the other pairs, Thus, to find
the remainder after dividing 110110 by five, we add 10 and 11, or two
and three, and from the sum we subtract 01, or one. The remainder is 4,
which is correct since the original number was fifty-four. The remainder
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after division by seven is obtainable just as, in decimal arithmetic, the
remainder after division by 999 might be obtained. Namely, separate the
secundal expression of the dividend into periods of three figures each
(beginning of course with the coefficients [of the] three lowest powers of
two), write these periods under one another as separate numbers; and
add them. If the sum exceeds seven treat it in the same way, and the first
sum less than seven will be the remainder in question. Take for example
as dividend the number of the year above 11101110110, The adoption of
decimal numeration was therefore a misfortune and a fault. Tt is, of
course, easy to see how it came about. Before speech was fully developed,
while men communicated their thoughts in large part by gestures, but
when society had reached the stage when business was conducted, and
men, with insufficient speech-facilities, had to show numbers by their
fingers, in the absence of any previous understanding, had to give each
finger the value of a unit. Then, ten being the number of fingers, neces-
sarily became for the time being the base of numeration, This was the
expedient of the moment. By neglect to consider the tremendous problem
of the future, it was allowed to grow into a permanent institution; and
day by day, year by year, generation by generation, a difficulty of changing
it [as] the base grew up until it seems to have become an impossibility.
A makeshift expedient, a mere jury-mast, was inconsiderately allowed to
stand until it grew into an ineradicable inconvenience. This is what has
happened and is still happening. The same thing is still happening to
the injury of individuals and of communities continually, It is a defect
in man’s reasoning instinct which can now only be remedied by some
company who by avoiding this fault drives the rest of us to ruin and es-
tablishes itself on the ground we are too indolent to retain. It is a lesson
in logic that will make the fortune of the community that first corrects
it, while it is as certain to destroy us as a stone left to itself is to fall with
accelerated speed. We see the error repeated every day in one field or
another. Men do not foresee the inevitable future magnitude of problems
of small beginnings.

T need not say that the most remarkable relic of the reasoning of pre-
historic man is speech. It is curious what difficulties writers have made
in accounting for this phenomenon. It is ridiculous to say, as many have
said that men have lost the power of originating language. They are, of
course, less ready at inventing roots now-a-days, that new roots are s0
seldom needed than they were when it used to be frequently needful to
practise such invention. But in spite of that roots are invented today and
s0 are syntaxes.
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To begin my defence of this statement, which has been so often, so
flatly and so warmly contradicted in advance of its assertion, by consider-
ing the question of roots, I maintain that they are today created and
adopted whenever seriously needed, in precisely the same manner that they
always were. Namely, two persons fall into a habit of using some ar-
ticulated sound to express some very [...].

I do not intend to dwell on this subject or any other, except so far as

I can make it aid in the briefest possible survey of the reasoning powers -

of men in different ages. I cannot see that men’s present powers are not
fully adequate to producing all the languages that exist within the time
of Man’s existence. Yet it seems to me that Hyatt’s hypothesis that the
course of the development and decline of the different races of animals
parallels that of individual animals, quite independently of any specific
evidence in its favor, is an exceedingly plausible one...

I. SECUNDAL COMPUTATION (53)

All people who really count, and do not merely recognize the characters
of small collections, count by tens. Some of them sometimes reckon,
besides, by dozens, by scores, by sixties, etc. But every people that count
at all, be they Indo-European, or Shemitic, or Hamitic, or Chinese, or
Turanian, or Dravidian, or Malay, or Polynesian, or Australian, or
Papuan, or Caucasian, or Basque, or Bantu, or Nubian, or American
speakers, chiefly count in tens. Tt seems as if they must have done so
from the time they ceased to be apes. For this system is not only the most
universal character of mankind, but it is also the one that is most marked
by lack of thought. It is supposed to have grown up from the habit of
counting on the fingers. But a person of any intelligence who proposed
to count upon his fingers would have seen that it was much better to count
by sixes than by tens, not merely because the things one has to count
much oftener are grouped in threes or in multiples of threes than in fives
or multiples of fives, but also because having counted up to five on fingers
of one hand, an intelligent person would have seen that by calling each
finger of the other hand a half-dozen, and then each toe of one foot as
half a dozen of half dozens, and each toe of the other foot as half a dozen
dozens, he would be able by showing only a single finger or toe of any
one limb, to reckon up to within one of a gross. Will man never rise
above his thralldom to apehood?

Mathematics is not listed, along with music, architecture, and the rest,
among the fine arts. Nor ought it to, — since feeling is not what it aims
to produce. Yet there is one esthetic quality that all mathematicians
unite in extolling, because its beauty is due to its economy. They call
it “elegance,” meaning that pleasurable quality which results when, driven
to use a novel principle, we make that principle do us all of the service
that it is naturally adapted to rendering, and so escape resort to a lot of
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devices unrelated to one another, to further a4 purpose that one of them,
by itself, could more simply accomplish, without any such intermeddling.
In short, elegance — mathematical elegance, at any rate, — might be
defined as the beauty of full utilization. As such, it belongs to the same
general category as the beauty of holiness; that is, it is one of those kinds
of beauty that spring from deeper and more vital sources than any need
of mere contemplative pleasure. So perhaps, the most elegant woman
is not so much the most esthetically adorned as she is that woman who,
as long as she must appear in the world, contrives the most successfully
50 to appear as to command that particular shade of pleasurable regard
that a lady of her personal qualities and her standing entitles her to
expect.

Let us, however, confine ourselves here to mathematical elegance, and
in order to acquaint ourselves with its issues, i.e. with the nature of the
practical effects that can result from it, let us study it in the simplest of
all its applications, which is the application of it to the notation of
numbers.

The series of whole numbers, — “integers,” mathematicians call them,
— is endless: a person who really knew how to count at all, whether by
keeping tally or otherwise, would never, in doing so, reach a number
beyond which he could not count, — unless he fell asleep, or otherwise
encountered some obstacle entirely extraneous to the nature of the series
of integers itself. Therefore, since nobody can commit to memory the
meanings of purely arbitrary characters in any such vast multitude as,
say, a million, it follows that, unless one contents oneself with keeping
tally, — that is to say, with having a simple figure to mean one, with or
without a few others to denote, each of them, a collection of a fixed
amount, — he will find it utterly impossibly to invent a system of notation
adequate to expressing every integer, unless he resorts to some device
whereby one or more of his figures shall denote an endless series of dif-
ferent integers, according to the different ways in which it is joined to
other signs.

We may be confident, then, that almost as early as civilization anywhere
reached the stage at which men dealt accurately with numbers reaching
into the millions, they must have made use of the same general principle
that we apply in our system of decimal places: I mean the principle of
s0 expressing numbers in writing that, in interpreting what has been
written, the only thing that has to be counted is a series whose single
members express the exponents, or numbers of times in which a fixed
number, — the so-called base, — is to be understood to be multiplied
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into itself.

The reader ought [to] feel that an apology is due to him for the apparent
irrelevancy of introducing any statement about the course of history in
discussing the issues of mathematical elegance. For this is a pure question
of mathematics; and mathematics has nothing whatever to do with the
truth or falsity of any statement of fact. A mathematician may happen
to share in the general preference for statements that accord with facts
over such as conflict with them; but he will not be a bit the better mathe-
matician on that account. There are two reasons for his being on his
guard against too strong a preference of that sort. The stronger of the
two is that in more than one way it may lead him into mathematical error,
which it is his special business to avoid. The other reason is that the
study of mathematics being (as it would seem) the most completely, and
(beyond question) the most narrowly, engrossing of all pure scientific
pursuits, and at the same time affording far less than any other occupa-
tion, — one might almost say none at all, — of training in the ascertain-
ment and estimation of evidences of matters of fact, it results that great
mathematicians are found to be, other things being equal, inferior to the
average of men in judging of the truth in matters of fact. Yet their known
profundity leads most men to defer to the judgments of eminent mathe-
maticians more than they would defer to those of other men. This, it is
true, is the fault of those who are so deferential, and is no fault of the
sincere mathematicians, But it is a second reason why the mathematician
should be upon his guard against too passionate a love for truth of fact.

Perhaps the reader is puzzled to know just what is meant by “truth of
fact,” as distinguished from other truth. There are three “modes™ of
reality. There is that which really can be or may be, of which the dis-
tinguishing mark is that while it either can be in any given way or else
can be otherwise, without any third way, but always either in the given
way or else not 50, yet on the other hand, nothing prevents both these
things being true; viz: that it can be so, and at the same time can be other-
wise, Thus, I can raise my arm, and yet I can refrain from raising it.
That is the very essence of that which merely can be. Contrast this with
another “mode” of reality that of the would be. It is never true that that
which would be agreeable at the same time would be disagreeable. Would-
bes differ therein from cgn-bes, Moreover, while I either ean raise my
arm or else can go without raising it, it is not necessarily true that a given
state of things either would be agreeable or would be disagreeable; since
it might depend upon other circumstances whether it pleased me or not.



J. TRANSFORMATIONS OF CARDS (1535)

Let N be the number of cards in the pack. Suppose them numbered from
Oupto N—1,
If dealt out into P packs numbered from zero up to P—1, and if the
cards in each pack are numbered from zero up,
Let ny be the original position of a card

Po be the pack it comes in

g be its position in the pack

ng = Pgo+po Po = h (mod P)

or if R* denotes the remainder after division of x by y.

Qf- the quotient after division of x by y so that

X x
x = y0-+4 R-
yQy 3
n n
R“PE“PO Q§=‘Ia
ng = Pgo-+po Po = ny (mod P)

Let the packs so laid down be taken up in the order
0 L 2L 3L etc. (modP)
Let the position of a card in the new order be n,

Then first suppose N divisible by P, There are -j;- cards in a pile. For

the first N cards n, = Pn,

¥ N
sothatform:-j;—l ng=N-P
For the next card n, = % ng = L instead of N
That is the modulus is such that
N=L

or the modulus is N—L and we have in general
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Hyg = Pny (mod N —L)

Pny
Ayl
If N is not divisible by P let the maximum number of cards in a pack
N
be Q = Q‘P* +1
Take N’ = QP
, Pn}
nj so that ny = RN' 5
and imaginary cards may be conceived to be inverted so as to make
N' =N nj =n,

We shall return to this.
Suppose the dealing out and taking up to be repeated then we shall
have

iy = R;zni or rather
— Ly
PR_P-’*ﬂ_
N ""’Lz
Y =BT
or ny = Pyny (mod N — L)

Pn, = PP,n, (mod N — L,)



K. [AN ARITHMETIC PROBLEM] (L 217)

Editor Illustrated American:
Divide any number by 1234, Then, the ultimate sum of digits of the
dividend is equal to that of the quotient and remainder.

Thus: 1234) 314159 (254 24544=11
2468 T+24+3=12
T6735 23
6170
75659
4936
723 34144414549 =23

The reason is obvious; and the same thing is true of 19 and many other
numbers.

Divide any number by 53. Then the ultimate sum of digits of [the]
quotient subtracted from the remainder equals that of the dividend.

53) 1891 (35

159 36—35=1

301

265 14+8494+1=19 149=10 140=1
36

P.

L. LETTER TO E.S. HOLDEN (L 200)
January 1901.

My dear Holden:

T am going to send you the Arithmetic papers I found, although on
looking them over I see that the principal piece has not yet turned up.
My Arithmetic was to [be] a Two-Book Arithmetic. Onthe advanced book
I had not done much, and very likely the papers 1 send include all T ever
did. But my labor was expended mainly on the primary book. I had a
final copy of a great part of it, 50 pages of MS at least (for I find a mem.
to the effect that that amount was finished on a certain date). It was all
in dialogue between a mother Lydia and two children, Benjamin and
Eulalie. An incredible amount of effort had been put upon it. I shall
make a new search for it, but not just now, and must eventually find it.
All the papers I now send belonging to the primary arithmetic are rejected
matter. Nevertheless, they show what I was trying to do, and how I
proposed to accomplish it. So you will be able to form a judgment of it.

Counting beans and things is to be practised first up to a thousand.

Addition was taught by teaching children to count up to a hundred
or near a hundred by fens, by fives, by fwos, by nines, by eights, by fours,
by threes, by sevens, by sixes, beginning with any number.

In order to enliven this task, the principal aid was to be a pack of a
hundred cards, numbered from I up to 100. There might be a zero card
beside, but that is not necessary. These cards are to be arranged in
regular order from back to face of the pack and then being turned face
down are to be dealt out one by one, turning up each one, into N packs.

Then the children are to learn, first, to say off the numbers in each
pile forwards and backwards, and then to say at once what is the m™
number in the #'® pile, and also where is any given number to be found.

This is a long job and requires to be enlivened and varied in every pos-
sible way; since it must never disgust the child nor fatigue it.
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But when it is once done, the child not only has very little more to
learn in addition, but also little to learn in multiplication and has laid
a solid foundation for a computer.

If two such packs are taken in regular order as above and one of them
is dealt into 3 piles, except the last card which begins a new heap and
the first card of the second pack is put where that last would have been
placed, — and if then the middle pile is taken up and the first is placed

at the back of it and the third at the back of that, — and the pack is-

dealt anew into 3 piles, except that the last card is made the second of
the new heap, and the top one of the other pack put where it would have
gone — and this is continued over and over again a hundred times, the
result will be that all the cards of the first pack will be in the new heap,
in the order shown in column B of Table 1. [See end of letter.]

The arrangement of the pack in the hand will be that of the Ds in
Table IT.

If a card marked zero is added to the pack in hand and it be cut and
dealt out into any number of piles and these be taken up so that if M
is the number of piles and the last card is laid on the m'™ pile, then the
first pile to be taken up is the m™ and after taking up the #™ pile (what-
ever # may be) the next to take up is the (n m)™ or (n- m— M)™.
And each pile is to be placed with its face to the back of the pile last taken
up. Finally the pack is to be so cut as to bring the zero card to the face
of the pack. Then the other pack can be so cut that if in either pack the
p'® card has the value g, in the other pack the g* card will have the
value p.

It follows that the arrangement can be used as an aid in multiplica-
tion. For taking out the Ds corresponding to the two gquantities to be
multiplied considered as Cs and adding (neglecting the hundreds place)
and taking the B of the sum regarded as an 4, this B will give the product
when the appropriate multiple of 101 is added to it. For example:
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Find 2x 3 Find 5% 7 Find 2x 6
C D C D C D
2 B0 b 2 B0
3 52 7 6 81
A=32B=6 A=598=35 A=6l B=
Answer 6 Answer 35 Answer 12
Find 98 x 99 Find 7 % 49
C D C D
98 2 7 12
99 30 49 73
A=32 B=6 A =85 B=40
But 98 % 99 Productendsin 3
ends in 2 Add 303

606  Answer: T343

And since 612
nearly 10000 909
Answer: 9702
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Find 11 % 12
C D
11 28
12 10

12 As=38 Be=3l

But the last fig-
ures of 11 and 12
show that
product ends

in 2
Hence add 101

Answer: Ez

Find 365 % 24
303
C D
62 16
24 39
A=55 B
74
404
101
62x24 1488
303 x24 7272
Answer: mﬁ}-
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Find 49 X 49 Find 7 x 2401

C D C D

49 713 7 12

49 73 2401 =178 95

A=46B = 78 A& 7B =1l

Product ends in 1 606

Add 303 ButOin 647
T 381 10s place .. 1616

But near 2500 202 Answer 16807

Answer: " 2401

Many other things can be done with the pack calculated to stimulate
the children to cipher. The book must bz made positively agreeable to
them.

The greatest pains to be taken with all minutiae as the papers herewith
indicate.

There are a vast number of little dodges for the advanced arithmetic.
For example required 4/2. Here is how I do it. u,s = ,+5u,.y +
1{}11“+2 + 1[]&,,4.3 + 5“,,4.4

0

0

0

0

1

5

35

235

1580
10626 /2 is about 1 4;:23 = 1.14869842

71460

430570 480570

3231845 /2 is abou ”323845 = 1.14869835

Numbers can by themselves express nothing but serial order. Hence
it must be possible to arrange the rational fractions in their order of
values without doing more than count the places. The rule is as follows:

Ist Write

fcicicic<ti<etn
and i>i>4>1> 1> et
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denominators
numerators
with a sign between each successive two, start from just before the frac-
numerator
denominator
a fraction and a sign.

; denominator
3rd Insert the fractions of
numerator

after each fraction the same sign that immediately precedes it, if it is a
sign that immediately precedes it. But if it immediately follows a fraction
write = immediately before it. Thus:

2nd Having written all the fractions of { } less than N

tion with { } zero and mark every (N — Dth interval between

} N in those places putting

Mark every place

<< <hl<Hl

> [H > > B > 4 > 4

Insert the 2s thus

T= f<%ﬁr i<i<i=4$<i

t=t>i>1=3>i>3=%>%

Mark every 2nd place
=lg<Pi<f=l<P<P=li<B<l=li<|i<]
=lp>[t> H=la> >3- 1> = > 3>

Insert the 3s thus:
=g=g<i<i<i<imi=i<i<ici<i=g=i<ic<ic<i<

2
1
1

3

qnnh
el

<
>3=%>%

-.Ji-r-l |.'||-4

<
=

Mark every 3rd place thus
0-0l=9<Pa{<i<[t=3|=%<|i<<i<|t=§|=2<3<3<|
Insert the 4s thus:

$=¢=¢=¢<i<i<i=i<i<i<i=i=t=i<i<i<i=f<i<i<
Mark every 4th place
$=g=lg=g<li<i<P=i<f<i<f=i=lt=i<[i<i<fi=t<i

Insert the 35 thus
0__0_0 1 1 1 ey 3 2 5 4 Yo R
=¢=9=¢=%<i<i<ici<i=t<i<i<i<i<i=3=§=%=

<i<i
Mark every 5th place
p=g=t|=g=g<li<i<d{<i<i=fi<i<i<d<t<{=3-4
-t-3<lg<t

Insert the 6s thus
o ) U 1 1 o R 3 r R
I=f=t=f==3<i<y<i<i=i<i<i=g=%<3i<3=
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We see that owing to the great number of signs of equality near fractions
of low denomination the values of rational fractions are thinly scattered
in those neighborhoods.
A practical rule about fractional values suggested by the above is that
the fraction ‘é_:ﬁ is always intermediate in value between g- and .DE
In fact, from this the whole theory of rational numbers can be deduced.

To begin with, since {%4 is intermediate between and g it is equal

(3
to them.

Which is the greatest %% or %7 We have the sequence
27 28 1
100 113 4
But } = 4%. Hence we have the sequence
9 28 1= 28
1 13 4

112
S vos < 7y

Very faithfully
C. S. Peirce

I have made a glowing eulogium of your classic little Life of Herschel,
if the Post will only print it.

52100
53 98
34 92
55 74
56 20
57 60
58 79
39 35
60 4

@)
g

51
80
52

47
81
12
38
53
76

S MO 00 =) Oy L s W R e

pa—

A

61
62
63
64
65
66
67
68
a9
70

11
12
13
14
15
16
17
18
19
20

B
12
36

21
63
88
62
85
53
58

28
10
65
41
48
67
21
82
35

5

A B
71 73
72 17
73 51
74 52
75 55
76 64
77 91
78 71
79 11
80 33

21 13
22 57
23 45

25 43
26 94
27 54
28 70
29 90
3077

A B
81 99
82 95
53 83
84 47
83 40
86 19
87 57
88 70
89 8
90 24

CD
31 87
32 9
33 29
34 50
35 8
36 11
3775
38 64
39 66
40 34
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Table 1

A B
91 72
92 14
93 42
94 25
95 75
96 23
97 &9
98 5
99 15
0 45

A B
34

Table 2

c.D
41 56
42 42
43 69
44 86
45 49
46 74
47 33
48 68
49 73
30 72

C D
51 22
52 23
53 18
54 83
55 24
56 99
57 36
58 19
59 92
60 6

A B
11 89
12 65
13 94
14 80
15 38
16 13
17 39
18 16
19 48
20 43

CD
61 84
62 16
63 14
64 25
65 61
66 58
67100
68 79
69 46
70 37

A B
21 28
22 84
23 50
24 49
25 46
26 37
27 10
28 30
29 90
30 68

C D
71 27
72 40
73 20
74 4
75 44
76 93
77 89
78 95
9 7
80 63

A B
i1 2
32 6
3318
34 54
35 6l
36 82
37 4
38 31
39 93
40 77

CD
81 53
82 85
83 32
84 71
85 17
86 98
87 91
88 15
89 60
90 78
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A B
41 29
42 87
43 59
44 76
45 26
46 78
47 32
48 96
49 86
50 56
51 67

C D
9126
92 3
9388
9462
9531
9697
97 59
98 2
99 30
100 1
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The sum of any four numbers in one line, or in one quarter of the square,
or at the corners of a parallelogram concentric with the square equals

34
I 16 11 6
13 4 7 1| 10
8 9 14 3
12 5 2| 15

M. “MAGIC SQUARES” FROM INTERLEAF OF
THE CENTURY DICTIONARY!

1 15 | 12 6 1 12 15 6
& | 10| 13 3 8 13 10 3
14 4 7 9 14 7 4 9
11 5 2 116 11 2 5] 16

A better even-numbered Magic Square

ate b+f ctg d-+h
d+g | ¢+h | b+e | a+f
b+-h atg d+f cte
c+f | d+e | at+h | bitg

Leta, b, c,and dbe 0, 4, 8, 12
Lete fog, hbel, 2, 3,4
We thus get 576 magic squares, which number is doubled by turning
OVer an axis.
If we take a4+b =c+d =12
etg=f+h= 5
we get a square with many interesting properties

1 14 8 | 11
12 71 13
15 4 | 10 3
6 9 3 16

1 Peirce's copy of the interleaved Century Dictionary, which was sent to him for his
corrections and commentary before final publication in 1889, is to be found in the
Charles 8. Peirce Manuscript Collection at Houghton Library.



N. “MATHEMATICS" FROM INTERLEAF OF
THE CENTURY DICTIONARY

The traditional definition of mathematics as the science of guantity was
put forth and adopted at a time when three words had utterly different
meanings from those they now bear. These three words are mathematics,
science, and quantity. By mathematics was then meant what were called
Geometry, Arithmetic, Astronomy, and Music. The geometry meant
metrical geometry. The arithmetic excluded what we now so call (then
called logistic) and was a wordy business since well forgotten. The as-
tronomy assumed the Ptolemaic system and sought only to correct the
periods. The music related to tones given by strings of different length
etc. These four branches related to measures, or ratios, and what was
then meant by mathematics was supposed to give a comprehension of
ratios. The real nature of mathematics has only come to be understood
by mathematicians during the last half century. B. Peirce in 1870 first
gave the definition now substantially approved by all competent persons.
Mathematics is the science which draws necessary conclusions. There is
no other necessary inference than mathematical inference. Some (as
Dedekind) make mathematics a branch of logic. But mathematics is
synthetic of inferences, logic analytic.

Mathematics may be divided according to the degree of complexity
of its hypotheses. (No more natural division has hitherlo been clearly
made out.)

Mathematics of logic (two grades of value only: truth and falsehood)

Mathematics of finite collections

Mathematics of integers (theory of numbers)

Mathematics of irrational quantity (theory of functions)

Higher quite undeveloped forms of mathematics

Mathematics of continuity (topology or geometrical topic or topical
geometry).
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table, 87
wheel, 88

numbers (definition), 12217,
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numeration, 81, 108, 109
eyclical, 128
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residue, 129 square root, 172, 175n., 185-186
rule of three, 32 advantages of, 233-134
notation, 145-147, 1460., 158-160, 170,
secundals, 1451, 172n., 176
definition, 145 transformation, 181n.
addition, 148-14%, 160-161, 170, 177, sextals, 158, 235-236
178 finger numeration, 235, 241
subtraction, 149, 150, 161-163, 171, squares, 78
178, 179 squares, magic, 254, 253
multiplication, 150, 163-165, 171, 172,  subtraction, vigi
180

division, 150, 165-168, 172, 180-184 unit (definition}, 109
evolution, 185-187



