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Complexity and Postmodernism explores the notion of complexity in the light
of contemporary perspectives from philosophy and science. Paul Cilliers
contributes to our general understanding of complex systems, and explores the
implications of complexity theory for our understanding of biological and
social systems. Postmodern theory is reinterpreted in order to argue that a
postmodern perspective does not necessarily imply relativism, but that it could
also be viewed as a manifestation of an inherent sensitivity to complexity.

As Cilliers explains, the characterisation of complexity revolves around
analyses of the process of self-organisation and a rejection of traditional notions
of representation. The model of language developed by Saussure—and
expanded by Derrida—is used to develop the notion of distributed
representation, which in turn is linked with distributed modelling techniques.
Connectionism (implemented in neural networks) serves as an example of these
techniques. Cilliers points out that this approach to complexity leads to models
of complex systems that avoid the oversimplification that results from rule-
based models.

Complexity and Postmodernism integrates insights from complexity and
computational theory with the philosophical position of thinkers like Derrida
and Lyotard. Cilliers takes a critical stance towards the use of the analytical
method as a tool to cope with complexity, and he rejects Searle’s superficial
contribution to the debate.

Complexity and Postmodernism is an exciting and an original book that
should be read by anyone interested in gaining a fresh understanding of
complexity, postmodernism and connectionism.

Paul Cilliers lectures in philosophy at the University of Stellenbosch, South
Africa. He worked as a research engineer for over a decade, specialising in
computer modelling.  
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Preface

 
‘Complexity’ and ‘postmodernism’ are both controversial notions.
Contemporary society is readily described as being postmodern, but reactions
to this description diverge sharply. For some (like Zygmunt Bauman)
postmodernism creates the possibility to escape from the strictures of
modernism and to re-enchant the world. For others (like Ernest Gellner) it
exemplifies relativism—a theoretical framework in which anything goes—and
leaves them with a feeling of vertigo. Postmodernism can also be seen as being
parasitic on modernism, or as modernism’s underbelly. In such a case it could
be argued that we should drop the concept altogether if we want to move
beyond the oversimplified ideals of the Enlightenment.

The different responses to postmodernism are based on different
understandings of the word’s meaning. Even if it were possible to clarify this
debate, it is not my intention to do so in this book; nor shall I attempt to
provide an apology for postmodernism. My main concern is with the notions of
complexity and complex systems. As far as postmodernism is concerned, the
argument is simply that a number of theoretical approaches, loosely (or even
incorrectly) bundled together under the term ‘postmodern’ (e.g. those of
Derrida and Lyotard), have an implicit sensitivity for the complexity of the
phenomena they deal with. Instead of trying to analyse complex phenomena in
terms of single or essential principles, these approaches acknowledge that it is
not possible to tell a single and exclusive story about something that is really
complex. The acknowledgement of complexity, however, certainly does not
lead to the conclusion that anything goes.

The concept ‘complexity’ is not univocal either. Firstly, it is useful to
distinguish between the notions ‘complex’ and ‘complicated’. If a system—
despite the fact that it may consist of a huge number of components—can be
given a complete description in terms of its individual constituents, such a
system is merely complicated. Things like jumbo jets or computers are
complicated. In a complex system, on the other hand, the interaction among
constituents of the system, and the interaction between the system and its
environment, are of such a nature that the system as a whole cannot be fully
understood simply by analysing its components. Moreover, these relationships
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are not fixed, but shift and change, often as a result of self-organisation. This
can result in novel features, usually referred to in terms of emergent properties.
The brain, natural language and social systems are complex. The problem of
understanding this kind of complexity is a central issue throughout the book.

Secondly, it is necessary to say something about the relationship between
complexity and chaos theory. The hype created by chaos theory has abated
somewhat, but the perception that it has an important role to play in the study
of complex systems is still widespread. Although I would not deny that chaos
theory could contribute to the study of complexity, I do feel that its contribution
would be extremely limited. When analysing complex systems, a sensitivity to
initial conditions, for example, is not such an important issue. As a matter of
fact, it is exactly the robust nature of complex systems, i.e. their capability to
perform in the same way under different conditions, that ensures their survival.
Although the metaphor of the butterfly’s flapping wings causing a tornado on
the other side of the globe is a good one for describing a sensitivity to initial
conditions, it has caused so much confusion that I feel it should not be used at
all. Chaotic behaviour—in the technical sense of ‘deterministic chaos’—results
from the non-linear interaction of a relatively small number of equations. In
complex systems, however, there are always a huge number of interacting
components. Despite the claims made about aspects of the functioning of the
olfactory system, or of the heart in fibrillation, I am unsure whether any
behaviour found in nature could be described as truly chaotic in the technical
sense. Where sharp transitions between different states of a system are required,
I find the notion of self-organised criticality (see Chapter 6) more appropriate
than metaphors drawn from chaos. This might sound too dismissive, and I
certainly do not want to claim that aspects of chaos theory (or fractal
mathematics) cannot be used effectively in the process of modelling nature. My
claim is rather that chaos theory, and especially the notions of deterministic
chaos and universality, does not really help us to understand the dynamics of
complex systems. That showpiece of fractal mathematics, the Mandelbrot set—
sometimes referred to as the most complex mathematical object we know—is in
the final analysis complicated, not complex. Within the framework of the
present study, chaos theory is still part of the modern paradigm, and will not
receive detailed attention.

The objective of the book is to illuminate the notion of complexity from a
postmodern, or perhaps more accurately, post-structural perspective. The most
obvious conclusion drawn from this perspective is that there is no overarching
theory of complexity that allows us to ignore the contingent aspects of complex
systems. If something is really complex, it cannot be adequately described by
means of a simple theory. Engaging with complexity entails engaging with
specific complex systems. Despite this we can, at a very basic level, make
general remarks concerning the conditions for complex behaviour and the
dynamics of complex systems. Furthermore, I suggest that complex systems can
be modelled. The models could be computationally implemented, and may lead
to machines that can perform more complex tasks. The models themselves,
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however, will have to be at least as complex as the systems they model, and
may therefore not result in any simplification of our understanding of the
system itself. As an example of such models, I make extensive use of neural
networks—an approach also known as connectionism. As a matter of fact, the
significance of postmodern theory for the study of complexity is underscored
by arguing that there are structural similarities between the operation of neural
networks and Derrida’s descriptions of the working of language.

Apart from introductory chapters on connectionism (Chapter 2) and post-
structuralism (Chapter 3), and a dismissal of Searle’s contributions to the
debate (Chapter 4), the central issues discussed are representation (Chapter 5)
and self-organisation (Chapter 6). A discussion, or perhaps a deconstruction, of
the notion of representation exemplifies the contribution that a primarily
philosophical analysis can make to modelling techniques. Conversely, the
discussion of self-organisation—a notion usually (but certainly not exclusively)
encountered in a scientific context—helps us to make the (philosophical) point
that the behaviour of a system without a predetermined or fixed structure is not
necessarily random or chaotic, in other words, that anything does not go.

The book does not engage with moral theory in a systematic way, but it is
impossible, of course, to operate in a value-free space. Ethical issues therefore
do surface now and then, especially in Chapter 7. The characterisation of
complexity and complex systems developed in the present book certainly has
implications for social and moral theory that demand to be developed further.
This, I hope, will be a more central aspect of future projects.

I would like to thank the following people for the contributions they have made
towards the development of the ideas presented here: Johan Degenaar, Mary
Hesse, Jannie Hofmeyr, and the members of the two interdisciplinary
discussion groups at the University of Stellenbosch, one based in the arts
faculty, the other in the sciences. The help of Esmarié Smit in the completion of
the manuscript was invaluable.

Previous versions of some of the material used in Chapters 2, 3 and 7 have
appeared in the South African Journal of Philosophy. Permission to rework that
material is gratefully acknowledged.



1 Approaching complexity

The worlds of science and philosophy have never existed in isolation, but one
could perhaps argue that the relationship between them is entering a new phase.
The ubiquitous pressure to do applied research certainly has something to do
with it, but there is also another, overtly less political, reason: the immense
increase in the importance of technology. At first glance one would suspect that
this may decrease the importance of the philosophical perspective, that the
importance of philosophy is somehow linked to the importance of theory only,
but my suggestion is that the contrary is true. Not that theory is unimportant, or
that theoretical aspects of science are not philosophical. Few scientific
endeavours have been as ‘philosophical’ as contemporary theoretical physics.
The argument is rather that the technologisation of science (as well as the rest
of our life-world) is changing the relationship between science and philosophy
in a radical way.

Since we are in the midst of this process of change, a clear description of
what is happening is not easy, but the heart of the matter is that our
technologies have become more powerful than our theories. We are capable of
doing things that we do not understand. We can perform gene-splicing
without fully understanding how genes interact. We can make pharmaceutics
without being able to explain effects and predict side-effects. We can create
new sub-atomic particles without knowing precisely whether they actually
exist outside of the laboratory. We can store, and retrieve, endless bits of
information without knowing what they mean. Central to all these
developments are the phenomenal capacities of the electronic computer. It
forms part of most of our tools (like washing machines and motor cars); it
infiltrates our social world (think of financial matters and entertainment); and
it is rapidly becoming the most important medium for communication.
Although we know that nothing ‘strange’ happens inside a computer, nobody
can grasp all aspects of what happens when a computer is performing a
sophisticated task—at least not down to the level of switching between zeros
and ones. It is simply too complex.

The power of technology has opened new possibilities for science. One of
the most important scientific tools has always been the analytical method. If
something is too complex to be grasped as a whole, it is divided into
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manageable units which can be analysed separately and then put together again.
However, the study of complex dynamic systems has uncovered a fundamental
flaw in the analytical method. A complex system is not constituted merely by
the sum of its components, but also by the intricate relationships between these
components. In ‘cutting up’ a system, the analytical method destroys what it
seeks to understand. Fortunately this does not mean that the investigation of
complexity is hopeless. Modelling techniques on powerful computers allow us
to simulate the behaviour of complex systems without having to understand
them. We can do with technology what we cannot do with science. The
increased interest in the theory of complexity over the past decade is therefore
not surprising.

The rise of powerful technology is not an unconditional blessing. We have to
deal with what we do not understand, and that demands new ways of thinking.
It is in this sense that I argue that philosophy has an important role to play, not
by providing a meta-description of that which happens in science and
technology, but by being an integral part of scientific and technological
practice. Specific philosophical perspectives can influence the way we approach
complex systems, and I want to argue that some of these perspectives—often
broadly labelled as postmodern—are of special value to the study of
complexity. In order to apply some aspects of postmodern theory to the study
of complex systems, a general understanding of what a complex system is
should first be developed.

A SKETCH OF COMPLEX SYSTEMS

At this stage it could be expected of one to provide at least a working
definition of what ‘complexity’ might mean. Unfortunately the concept
remains elusive at both the qualitative and quantitative levels. One useful
description, by Luhmann (1985:25), states that complexity entails that, in a
system, there are more possibilities than can be actualised. This can hardly
serve as definition, but perhaps one should not be surprised if complexity
cannot be given a simple definition. Instead, an analysis of characteristics of
complex systems can be attempted in order to develop a general description
that is not constrained by a specific, a priori definition. That is what will be
attempted in this section. I will turn to the problem of quantifying complexity
in the next section.

Before turning to some characteristics of complex systems, we have to
look at two important distinctions. The distinction between ‘simple’ and
‘complex’ is not as sharp as we may intuitively think (Nicolis and Prigogine
1989:5). Many systems appear simple, but reveal remarkable complexity
when examined closely (e.g. a leaf). Others appear complex, but can be
described simply, e.g. some machines, such as the internal combustion
engine. To compound matters, complexity is not located at a specific,
identifiable site in a system. Because complexity results from the interaction
between the components of a system, complexity is manifested at the level
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of the system itself. There is neither something at a level below (a source),
nor at a level above (a meta-description), capable of capturing the essence
of complexity. The distinction between complex and simple often becomes
a function of our ‘distance’ from the system (Serra and Zanarini 1990:4, 5),
i.e. of the kind of description of the system we are using. A little aquarium
can be quite simple as a decoration (seen from afar), but as a system it can
be quite complex (seen from close by). This does not imply that complexity
is merely a linguistic phenomenon, or simply a function of our description
of the system. Complex systems do have characteristics that are not merely
determined by the point of view of the observer. It does, however, imply
that care has to be taken when talking about complexity. The simple and the
complex often mask each other.

A second important distinction, and one that is equally difficult to
maintain consistently, is the one between complex and complicated. Some
systems have a very large number of components and perform sophisticated
tasks, but in a way that can be analysed (in the full sense of the word)
accurately. Such a system is complicated. Other systems are constituted by
such intricate sets of non-linear relationships and feedback loops that only
certain aspects of them can be analysed at a time. Moreover, these analyses
would always cause distortions. Systems of this kind are complex. I have
heard it said (by someone from France, of course) that a jumbo jet is
complicated, but that a mayonnaise is complex. Other examples of
complicated systems, systems that can, in principle, be given an exact
description, would be a CD-player, a snowflake, the Mandelbrot set.
Complex systems are usually associated with living things: a bacterium, the
brain, social systems, language. This distinction remains an analytical one
that is undermined specifically by powerful new technologies (e.g. is a fast
computer with a very large memory complex or complicated?), but it is
useful in developing a description of the characteristics of complex systems.
I offer the following list:1

 
(i) Complex systems consist of a large number of elements. When the

number is relatively small, the behaviour of the elements can often be
given a formal description in conventional terms. However, when the
number becomes sufficiently large, conventional means (e.g. a system
of differential equations) not only become impractical, they also cease
to assist in any understanding of the system.

(ii) A large number of elements are necessary, but not sufficient. The
grains of sand on a beach do not interest us as a complex system. In
order to constitute a complex system, the elements have to interact,
and this interaction must be dynamic. A complex system changes with
time. The interactions do not have to be physical; they can also be
thought of as the transference of information.

(iii) The interaction is fairly rich, i.e. any element in the system influences,
and is influenced by, quite a few other ones. The behaviour of the
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system, however, is not determined by the exact amount of interactions
associated with specific elements. If there are enough elements in the
system (of which some are redundant), a number of sparsely
connected elements can perform the same function as that of one
richly connected element.

(iv) The interactions themselves have a number of important
characteristics. Firstly, the interactions are non-linear. A large system
of linear elements can usually be collapsed into an equivalent system
that is very much smaller. Non-linearity also guarantees that small
causes can have large results, and vice versa. It is a precondition for
complexity.

(v) The interactions usually have a fairly short range, i.e. information is
received primarily from immediate neighbours. Long-range interaction
is not impossible, but practical constraints usually force this
consideration. This does not preclude wide-ranging influence—since
the interaction is rich, the route from one element to any other can
usually be covered in a few steps. As a result, the influence gets
modulated along the way. It can be enhanced, suppressed or altered in
a number of ways.

(vi) There are loops in the interactions. The effect of any activity can feed
back onto itself, sometimes directly, sometimes after a number of
intervening stages. This feedback can be positive (enhancing,
stimulating) or negative (detracting, inhibiting). Both kinds are
necessary. The technical term for this aspect of a complex system is
recurrency.

(vii) Complex systems are usually open systems, i.e. they interact with their
environment. As a matter of fact, it is often difficult to define the
border of a complex system. Instead of being a characteristic of the
system itself, the scope of the system is usually determined by the
purpose of the description of the system, and is thus often influenced
by the position of the observer. This process is called framing. Closed
systems are usually merely complicated.

(viii) Complex systems operate under conditions far from equilibrium. There
has to be a constant flow of energy to maintain the organisation of the
system and to ensure its survival. Equilibrium is another word for
death.

(ix) Complex systems have a history. Not only do they evolve through
time, but their past is co-responsible for their present behaviour.
Any analysis of a complex system that ignores the dimension of
time is incomplete, or at most a synchronic snapshot of a
diachronic process.

(x) Each element in the system is ignorant of the behaviour of the
system as a whole, it responds only to information that is available
to it locally. This point is vitally important. If each element ‘knew’
what was happening to the system as a whole, all of the complexity
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would have to be present in that element. This would either entail a
physical impossibility in the sense that a single element does not
have the necessary capacity, or constitute a metaphysical move in
the sense that ‘consciousness’ of the whole is contained in one
particular unit. Complexity is the result of a rich interaction of
simple elements that only respond to the limited information each
of them are presented with. When we look at the behaviour of a
complex system as a whole, our focus shifts from the individual
element in the system to the complex structure of the system. The
complexity emerges as a result of the patterns of interaction
between the elements.2

 
Let us illustrate these characteristics through some examples. Consider a
snowflake. From a distance it appears to be a pretty simple object, but when
we examine it closer it reveals remarkable detail. The snowflake is arranged
hexagonally with each of the six ‘branches’ showing an elaborate and beau-
tifully patterned structure. Although all snowflakes share this form, every
specific one is different. A snowflake consists of a large amount of elements
(water molecules) interacting through its crystalline structure. Each molecule
is influenced only by local information (there is no external decision as to
what the position of the molecule must be in the snowflake), but the
relationships between the molecules are fairly fixed. There are no real
feedback loops and there is no evolution (except perhaps decay). As far as its
structure is concerned, it is not really an open system. It is in temporary
equilibrium, cannot adapt to its environment, and therefore quickly loses its
structure. A snowflake, although wondrously complex in appearance, is only
complicated.

Let us then examine some truly complex systems. The human brain is
considered by many to be the most complex object known. Similarly, the
language with which we communicate daily does not yield to analytical
descriptions. These two complex systems—the brain and natural language—
will receive detailed attention throughout this study. I will therefore elucidate
the ten characteristics of a complex system using another example: the
economic system.3

In order to frame our description, we have to decide what our ‘distance’
from the system will be: in other words, what level of detail are we going to
consider? If we stand far away, we could only consider the activity of large
financial institutions—banks, large corporations, even countries. Obviously a
lot of smaller detail will get lost in the process. If we are going to examine the
system in microscopic detail, we may have to keep track of the status of every
individual penny. In that case we will run the risk of all meaningful patterns
being obscured by the buzzing activity at the lower level.4 Let us, for
argument’s sake, frame the system in a way that will allow us to consider
individual human beings—in their capacity as economic agents—as the
elements of our complex system, and to draw the border of the system around a
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single country. The ten characteristics of complex systems will then manifest
themselves in the following way:
 

(i) The economically active people in a country certainly comprise a large
amount of elements, usually several million.

(ii) The various individuals interact by lending, borrowing, investing and
exchanging money for goods. These relationships change continually.

(iii) An economic agent interacts with a large number of the other
elements: shops, banks, other agents. Some agents are more active than
others, but this is not a function of the amount of money they transfer,
or indicative of their influence on the system.

(iv) The interaction is non-linear: money can receive compounded interest;
small investments can produce large returns (e.g. buying the right
shares at the right time, or vice versa).

(v) Economic agents primarily interact with others that are in their near
vicinity (not necessarily in a spatial sense): local shops or providers of
service, as well as their colleagues or partners. They can, however,
easily interact with more distant parties via intermediaries like banks
or brokers.

(vi) The activity of an agent may eventually reflect back on itself. A good
investment can produce good returns (positive feedback), and
overspending can result in a shortage in the money supply (negative
feedback). Without feedback there would be no economic system—
who would invest if there were no returns? Activities can also reflect
back after a large number of intermediary steps. The complexities of
inflation serve as a good example.

(vii) The economic system is certainly open. It is virtually impossible to
draw its borders. It is continuously influenced by the political system,
agriculture (and therefore the climatic conditions), science and
technology, international relationships, the stability of the society, etc.
There is a constant flow of commodities, products, money and
information through the system.

(viii) Since the economic system is driven by the dynamics of supply and
demand it can never be in a state of equilibrium. It may be growing or
shrinking, swing up or down; it never stands still, not even in a
recession. Even when we refer to a ‘stable’ economy, the ‘stability’
has to be understood in dynamic terms.

(ix) Economic systems are greatly influenced by their history. Today’s
prices largely depend on yesterday’s. Many important economic trends
change fairly slowly over long periods of time, but specific influences
can cause sharp changes.

(x) An economic agent can only act on the available information. It does
not know what all the other agents are doing. When, for example, an
agent wants to purchase a commodity, a decision is based on a number
of ‘local’ factors: how much do I want it?, can I afford it?, in place of
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what else will it be purchased?, etc. The effects of this act on the
inflation rate, the balance of payments, investor’s confidence, interest
rates, and the like, are not normally taken into account, even though
this act does affect (minutely, but no less than other similar acts) all
these factors.

 
Our description of the economic system may seem a little thin (which in
many respects it is), but there are good reasons for this. We have been
describing the elements of the system and their interactions on the level at
which they operate. If we want to shift the discussion to more complex
economic phenomena (gross national product, stock-market indexes, the
gold price, etc.), nothing extra needs to be added; the phenomena
mentioned emerge as a result of nothing more than the interactions between
the various elements of the system. These interactions often take the form
of clusters of elements which co-operate with each other, and also compete
with other clusters. A bank, for example, is nothing more than a number of
individuals grouped together to perform specific functions. The components
of the complex economic system do not consist of different types of things
(banks, the state, corporations and individuals); they consists of individual
agents clustered together to form the larger-scale phenomena. The higher-
order complexities of which we hope to get an understanding reside not in
any of the individual agents, but in the rich pattern of interactions between
them.

The example of the economic system allows us to make a last significant
point. An element in the system may belong to more than one clustering. A
person may bank with more than one bank, work for a big corporation and play
the stock-market on his own. Clusters should not be interpreted in a spatial
sense, or seen as fixed, hermetically sealed entities. They can grow or shrink, be
subdivided or absorbed, flourish or decay. The clusters are dynamic and interact
with other clusters, both directly as well as through the individual members
they share with each other.

The ten characteristics proposed here help us to talk about complexity in
a qualitative way, but do not provide us with a method to measure
complexity. We would like to be able to deal with complexity in a more
quantitative way, especially when modelling complex systems. To what
extent is this possible?

QUANTIFYING COMPLEXITY

One of the first successful attempts to deal with complex phenomena was
the development of thermodynamics in the second half of the nineteenth
century, particularly in the work of Ludwig Boltzmann.5 Through the
formulation of three ‘laws’ it allowed scientists to deal with the use and
transfer of energy in an accurate way, without getting entangled in the low-
level complexities.  
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…equilibrium thermodynamics was the first response of physics to the
problem of nature’s complexity. This response was expressed in terms of the
dissipation of energy, the forgetting of initial conditions, and evolution
toward disorder. Classical dynamics, the science of eternal, reversible
trajectories, was alien to the problems facing the nineteenth century, which
was dominated by the concept of evolution. Equilibrium thermodynamics
was in a position to oppose its view of time to that of other sciences: for
thermodynamics, time implies degradation and death.

(Prigogine and Stengers 1984:129)
 
In classical mechanics, time was reversible, and therefore not part of the
equation. In thermodynamics time plays a vital role. This is perhaps best
expressed in the second law of thermodynamics, which states that the entropy
of a system can only increase. Entropy can be seen as a measure of the
‘disorder’ in a system. As a system transforms energy, less and less of it
remains in a usable form, and the ‘disorder’ in the system increases.

The concept of entropy is a complex one, and it was a stroke of genius
by Claude Shannon to use it as a measure for the information content of a
message. In two seminal papers (Shannon 1948, 1949) he developed a
mathematical theory of communication which formed the basis for modern
information theory. By replacing ‘energy’ with ‘information’ in the
equations of thermodynamics, he could show that the amount of
information in a message is equal to its ‘entropy’. The more disorderly a
message, the higher is its information content. An example will clarify the
argument. Consider a message consisting of a string of digits that is being
transmitted to you one at a time. If, for example, the string consists of
threes only, you will notice this quickly at the receiving end. The next digit
is so predictable that it will carry no new information. Although the
message is highly structured, its information content is very low. The
sequence 1489 1489 1489 has a slightly higher information content, but
also becomes predictable very quickly. The less able the receiver is to
predict the next digit in the sequence, the higher the information content of
the message. A message high in information is one low in predictable
structure, and therefore high in ‘entropy’.

Because Shannon’s theory was neatly formalised, it was possible to apply it
to many engineering problems with ease. Communications technology in
particular benefited tremendously, and there is no denying the practical
importance of his work. The entropy theory of information does, however, have
a problematic implication: if information equals entropy, then the message with
the highest information content is one that is completely random. Obviously
there is some tension between the concepts of ‘information’ and ‘randomness’.
Despite the elegance of the entropy theory, there is reason to claim that it is not
an adequate model for the understanding of complex systems like human
cognition (see Katz and Dorfman 1992:167), where the intricate structure
certainly cannot be equated with ‘randomness’.
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Some interesting new perspectives are supplied by the work of Gregory
Chaitin (1975, 1987). In his reinterpretation of information theory, in what he
has termed ‘algorithmic information theory’, randomness is defined not in
terms of unpredictability, but in terms of ‘incompressibility’. His definition of
randomness is the following: ‘A series of numbers is random if the smallest
algorithm capable of specifying it to a computer has about the same number of
bits of information as the series itself’ (Chaitin 1975:48).6 Consider a sequence
of numbers of significant length, say a thousand. If this sequence consists of
threes only, it is clearly possible to write a very simple computer program to
generate it. Something like:
 

Step 1. Print ‘3’.
Step 2. Repeat step 1 a thousand times.

 
This program is clearly very much shorter than the original sequence, which
therefore has a very low level of randomness. As the sequence of numbers
becomes more complex(!), the length of the program necessary to produce it
becomes longer. When the program becomes as long as the sequence, the
sequence is said to be random.

For a given sequence, there can obviously be a large number of programs,
some of which can be quite elaborate and lengthy. We are only concerned with
the shortest or smallest program capable of performing the task. Such programs
are called minimal programs (Chaitin 1975:49). Note that the minimal program
is itself random by definition, irrespective of whether the series it generates is
random or not, since it cannot be compressed any further. It is therefore
possible to reduce any non-random sequence to a random one (remember that
the program is—number-theoretically—only a sequence of numbers), with the
random one being shorter.

Through this process, randomness becomes a measure for the amount of
information in a sequence, but, and this is vital, randomness understood no
longer in terms of unpredictability, but in terms of the denseness with which the
information is packed. It also provides us with an interesting definition of
complexity: the complexity of a series is equal to the size of the minimal
program necessary to produce that series (Chaitin 1975:49).7

In a certain sense we have taken a long route to arrive at a truism:
complexity is complex. A complex system cannot be reduced to a simple one
if it wasn’t simple (or perhaps merely complicated) to start off with. This
claim has implications for an ideal many scientists have: to find the basic
principles that govern all of nature. The success of the analytical method has
created the illusion that all phenomena are governed by a set of laws or rules
that could be made explicit. The mercenary use of Occam’s razor, often early
in an investigation, is an indication of this belief. Chaitin’s analyses help us to
realise that truly complex problems can only be approached with complex
resources. This realisation is also a reinterpretation of the anti-reductionist
position. It does not deny that complex systems are built out of normal,
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material components. It does, however, deny that a description of these
components and their interactions, explaining the behaviour of the system as
a whole, is practically possible. A complex system cannot be reduced to a
collection of its basic constituents, not because the system is not constituted
by them, but because too much of the relational information gets lost in the
process.

Some final remarks concerning Chaitin’s definition of complexity: Chaitin
works in the context of numerical formal systems, albeit at a very low level.
Such formal systems, I will argue below, provide an inadequate starting-point
for modelling complexity in general. His analyses would, strictly speaking, be
applicable mostly to complicated phenomena. On an intuitive level, however,
the notion of ‘incompressibility’ remains very fruitful. It reminds us that when
dealing with complexity, there are no short-cuts without peril. The notion
should nevertheless not be used absolutely. The complex systems we are
interested in are never completely ‘minimal’; they contain a lot of spare
capacity or redundancy. This is necessary for more than one reason: it provides
robustness, space for development and the means for plasticity. A clearer
picture of why some ‘free space’ is necessary will emerge in the next section
when we examine two important aspects of complex systems which our models
have to capture. For now we can conclude that a strict measure for complexity
does not seem feasible. To describe a complex system you have, in a certain
sense, to repeat the system.

TWO INDISPENSABLE CAPABILITIES OF COMPLEX SYSTEMS

Complex systems have to grapple with a changing environment. Depending on
the severity of these changes, great demands can be made on the resources of
the system. To cope with these demands the system must have two capabilities:
it must be able to store information concerning the environment for future use;
and it must be able to adapt its structure when necessary. The first of these will
be discussed as the process of representation; the second, which concerns the
development and change of internal structure without the a priori necessity of
an external designer, as the process of self-organisation.

These capabilities are vital and will each receive detailed attention in
separate chapters. In this section they will only be introduced in broad terms. It
is important, however, to realise the implications of these capabilities for our
models of complex systems. Any model of a truly complex system will have to
possess these capabilities. In other words, the processes of representation and
self-organisation must be simulated by the model. This implies that these two
capabilities will have to be given some kind of formal description. I will argue
that this is possible.
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Representing information

In order to respond appropriately to its environment, a complex system must be
able to gather information about that environment and store it for future use.
Formulated differently, the structure of the system cannot consist of a random
collection of elements; they must have some meaning. In traditional
philosophical terms, this means that the system must somehow ‘represent’ the
information important to its existence.

The search to find mechanisms for this process of representation
constitutes a set of long-standing philosophical problems. How does the brain
represent the world? What is the relationship between linguistic components
and the objects they describe? When is a theory an adequate description of
the phenomena it tries to explain? Solutions to these questions have been
suggested, but they usually postulate a one-to-one correspondence between
elements of the system and specific external causes. This atomistic approach
is the legacy of the analytical method and usually takes the form of splitting
the structure of the system, and the meaning of that structure, into separate
levels. For example, in language, a distinction is made between the structure
of language (its syntax), and the meaning of the syntactic units (its
semantics). These two levels are usually taken to be independent of each
other. The syntactic level is seen as a specific implementation of the semantic
level. A concept can be ‘implemented’ either in Spanish or in Japanese, but it
would retain its essential meaning. Similarly, an object in the world can be
represented either in the brain or in a computer—the implementation is
different but the representation is the same.

I will argue that this understanding of representation is not adequate when
describing a complex system. Meaning is conferred not by a one-to-one
correspondence of a symbol with some external concept or object, but by the
relationships between the structural components of the system itself. This does
not deny a causal relationship between the outside and inside of the system. It
does, however, deny that the structure of the system is determined by the
outside. Meaning is the result of a process, and this process is dialectical—
involving elements from inside and outside—as well as historical, in the sense
that previous states of the system are vitally important. The process takes place
in an active, open and complex system.

In the section devoted to the problem of representation (Chapter 5) I will
argue for the notion of ‘distributed representation’. In such a framework the
elements of the system have no representational meaning by themselves, but
only in terms of patterns of relationships with many other elements.
Furthermore, the abstract level of meaning (the ‘semantic’ level) becomes
redundant, or, rather, unnecessary, for the process of modelling the system.
Distributed representation is best implemented in connectionist (or neural)
networks, and I will argue that these networks provide appropriate models for
complex systems. Before these models are described in more detail, and
compared with the traditional approach, something must be said about the other
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capability of complex systems, i.e. the way in which they develop organised
structure.

Self-organisation

A complex system, such as a living organism or a growing economy, has to
develop its structure and be able to adapt that structure in order to cope with
changes in the environment. Claiming an external designer (or Designer)
merely begs the question of the origin of complexity, and we have to find
mechanisms by which a system can acquire and adapt its internal structure on
an evolutionary basis.

The key concept here is the notion of self-organisation. This does not imply
that a complex system contains some form of internal ‘subject’ that controls the
behaviour of the system; as a matter of fact, the whole notion of central control
becomes suspect. What will be described in the section on self-organisation
(Chapter 6) is a process whereby a system can develop a complex structure
from fairly unstructured beginnings. This process changes the relationships
between the distributed elements of the system under influence of both the
external environment and the history of the system. Since the system has to
cope with unpredictable changes in the environment, the development of the
structure cannot be contained in a rigid programme that controls the behaviour
of the system. The system must be ‘plastic’. It will also be shown that the
process of self-organisation can be modelled mathematically. The notion of
‘autopoiesis’, like the notion of ‘emergence’, does not involve anything
mystical.

The general description of complex systems will be influenced by models of
complexity. Such models must share the characteristics of the systems they
model. We will now examine two possible types of models.

MODELLING COMPLEX SYSTEMS: TWO APPROACHES

Two perspectives on models

Why would we want to model complexity? We can answer from two
perspectives. From the traditional scientific perspective, models are required
in order to predict and control the behaviour of complex systems. The
advantages are obvious. Better models can give scientists a much firmer grasp
on the complexities encountered in economics, biology, medicine,
psychology, sociology, law and politics, to name but a few. We can only
benefit from better theories explaining disease, mental illness, crime and the
vagaries of the economic system. To be effective, however, these models have
to work, they have to produce results. At this point, however, there are
problems. How are these models to be tested and evaluated? How accurate
should they be? How much detail has to be considered? By and large, specific
scientific models of complexity have severe limitations. The most successful
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are those whose limitations are explicitly visible; models that remain within
the constraints determined by a specific modelling process. Examples here
would include models of flow-dynamics and turbulence, statistical quantum
mechanics and, in computer science, well-designed expert systems and signal-
processing systems.

From a more general philosophical perspective we can say that we wish to
model complex systems because we want to understand them better. The main
requirement for our models accordingly shifts from having to be correct to
being rich in information. This does not mean that the relationship between the
model and the system itself becomes less important, but the shift from control
and prediction to understanding does have an effect on our approach to
complexity: the evaluation of our models in terms of performance can be
deferred. Once we have a better understanding of the dynamics of complexity,
we can start looking for the similarities and differences between different
complex systems and thereby develop a clearer understanding of the strengths
and limitations of different models. This kind of perspective also allows us to
speculate more, and to incorporate ideas that would not be permissible from a
strictly scientific perspective.

One of the aims of this study will be to show that in order to model
complexity, we will need both the scientific and the philosophical
perspectives. To paraphrase a little, one can say that science without
philosophy is blind, and philosophy without science is paralysed. Co-
operation between them will benefit both. On the one hand, models of
complexity will only become successful in scientific practice once we begin
to understand more about the nature of complexity. On the other hand, our
understanding will only improve if we actually test our models scientifically.
An interdisciplinary approach can therefore open up new avenues for
research. It can, for example, be shown that certain models of language (from
the traditionally philosophical domain) are equivalent to certain models of the
brain, usually considered to be the domain of the natural sciences (see Cilliers
1990). As our exploration of complexity continues, the implications of
discoveries made in one field for knowledge in another field will be
emphasised.

In the remainder of this section I will discuss two possible answers to the
question ‘How would we model complexity?’ Both approaches can be modelled
in scientific terms and both have their own philosophical allegiances.

Rule-based symbol systems

Over the past forty years the search for artificial intelligence (AI) has provided
the focal point for research on models of complexity. The rapidly growing
capabilities of the digital computer created the expectation that it would be
possible to construct computers capable of behaving intelligently. Just how
intelligent these might be (sub- or superhuman) depended on your belief in the
power of the methods and tools of AI. Generally speaking, the early stages of
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this research (up to the early sixties) were marked by a great deal of optimism.
Soon there were computers solving mathematical problems and playing chess,
but the important hallmarks of intelligence—perception, movement and the use
of language—proved to be complex beyond all estimation. In these respects no
computing device has capabilities even remotely close to those of human
beings.

Although the expectations of what AI can achieve have been deflated
somewhat (and the required time-scales inflated), it is incorrect to declare the
program a failure. Along the way a number of quite useful by-products were
produced. One example would be expert systems. These systems model the
knowledge of some ‘expert’ on a specific domain of knowledge (like geological
surveying or the diagnosis of cervical cancer) as a set of rules on a computer. A
non-expert can then use this system to perform some tasks within the specified
domain. Although expert systems deal with some aspects of complexity and
intelligence, they are notoriously inflexible. Arguments attempting explanations
for the shortcomings of the AI paradigm will be provided throughout this study;
first, however, we need a description of the basic characteristics of a formal
symbol system.

A formal system consists of a number of tokens or symbols, like pieces in a
game. These symbols can be combined into patterns by means of a set of rules
which defines what is or is not permissible (e.g. the rules of chess). These rules
are strictly formal, i.e. they conform to a precise logic. The configuration of the
symbols at any specific moment constitutes a ‘state’ of the system. A specific
state will activate the applicable rules which then transform the system from
one state to another. If the set of rules governing the behaviour of the system
are exact and complete, one could test whether various possible states of the
system are or are not permissible.8

We now have a set of symbols that can have certain configurations. The
next step is to make these symbols ‘represent’ something. For example, if
each of the symbols stands for a word in a language, then the rules of the
system (the grammar) will determine the various combinations of words that
can be made in that (formal) language. The permissible states of the system
then translate into valid sentences of that language.9 The interpretation of
the symbols, also known as the ‘semantics’ of the system, is independent of
the rules governing the system. One and the same semantic level can
therefore be implemented in different actual formal systems, provided that
these systems can be shown to be equivalent to each other on a logical
level.

Formal systems can be quite simple, e.g. the pieces and rules necessary to
play noughts and crosses (tic-tac-toe), or extremely complicated, e.g. a
modern digital computer. The range of things that can be done on a computer
gives us an indication of the power of formal systems. This range is so
bewildering that we often forget that it is a formal system, consisting only of
a set of tokens manipulated by rules (in this case called a program). The
formal aspects of computing devices are best described by turning to the
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abstract models of automatic formal systems, known as Turing machines.
From these mathematical models both the generality and power of computers
become clear. One can also show the equivalence between different types of
Turing machines and different formal languages, e.g. those used by Chomsky
(1957) to model language.

Symbolic rule-based systems constitute the classical approach to the
modelling of complexity. The behaviour of the complex system has to be
reduced to a set of rules that describes the system adequately. The problem lies
in finding those rules, assuming that they exist. Can a system like natural
language or the human brain really be reduced to a set of rules? Classical AI
claims that it can. Before turning to another approach, let me summarise the
main characteristics of rule-based systems (following Serra and Zanarini
1990:26):
 
• Rule-based symbol systems model complex systems on an abstract

(semantic) level. The symbols are used to represent important concepts
directly. In this way a lot of the contingent aspects of the complex systems,
i.e. the unnecessary detail of the implementation, can be ignored. The
model consists of the set of logical relationships between the symbols (the
production rules).

• The set of rules are governed by a system of centralised control, known as
the meta-rules of the system. This control system decides which of the
production rules should become active at every stage of the computation. If
the central control fails, the whole system fails.

• Each concept has a symbol dedicated to it, or, conversely, each symbol
represents a specific concept. This is known as local representation. A
theory of representation is central to formal explanations of mind and
language, as can be seen in the Chomsky/Fodor model, for example.

 
What has been summarised here is a general method often employed in AI
research. This method is obviously not the only one. Researchers differ on
many points of detail and not everybody claims the same scope and power for
rule-based systems. In general there is a split between the supporters of strong
AI, who claim that formal systems provide an adequate model for all aspects of
human intelligence, and the supporters of weak AI, who merely see formal
systems as a powerful tool. Some of these internal tensions will come to light in
Chapter 4 when we analyse John Searle’s arguments against strong AI. This
case-study will also further elucidate the use of formal systems as models for
the brain and language. My dismissal of rule-based systems as an adequate
model for complex systems will rely on my critique of local representation (in
Chapter 5).
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Connectionist models

In discussions of complexity, the human brain has always held a special place,
not only because of its own structural complexity, but also because of its
capability to deal with complexity. For instance, how does the brain perform
complex tasks like the use of language or playing the violin? It is to be
expected that questions of this kind would prompt efforts to model the brain
itself.

Questions like these certainly prompted the young Sigmund Freud to
construct a rather fascinating model of the brain in 1895 (Freud 1950). This
model not only underpinned most of his later themes, but it has also been
argued that it is compatible with most of modern neurology (Pribram and Gill
1976). Modelling the brain advanced another step when McCulloch and Pitts
(1943) developed mathematical models of neurons and showed how
combinations of neurons could perform calculations. These models triggered
strong research efforts and in the late fifties Frank Rosenblatt (1958) achieved
considerable success with his so-called ‘perceptron’ models. These models still
had a number of limitations which were ruthlessly pointed out by Minsky and
Papert (1969). Their book resulted in a shift from neural-inspired models to
formal symbol systems. Neural models only regained their lost ground in the
early eighties after mathematical methods were found to overcome the
limitations of perceptrons. Since then these models have received
unprecedented attention in a wide range of applications (Rumelhart and
McClelland 1986).

In this section I will introduce neurally inspired ‘computational’ models,
variously known as neural networks, distributed processors or connectionist
models. Detailed discussions of their characteristics, use and philosophical
implications will follow in the rest of this study. A brief introduction to how
they work will be given in Chapter 2.

From a strictly functional point of view, the brain consists of nothing
more than a huge network of richly interconnected neurons. Each neuron
can be seen as a simple processor that calculates the sum of all its inputs,
and, should this sum exceed a certain threshold, it generates an output. This
in turn becomes the input to all the neurons that are connected to the
present one. Each connection is mediated by a synapse. The synapse can
cause the incoming signal to either excite or inhibit the target neuron and it
also determines the strength of the influence. Incoming information from a
sensory organ, for instance, is processed in this way and distributed to other
parts of the brain where it can have specific effects, e.g. the moving of a
muscle.10

This level of the brain’s operation can be modelled by means of a network
of interconnected nodes. Each node takes the sum of its inputs and generates an
output. The output is determined by the transfer function of the node, which has
to be non-linear. The connection (‘synapse’) between any two nodes has a
certain ‘weight’, which can be positive or negative and which determines the
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strength of the influence of node A on node B. In any specific connection, the
information flows in only one direction, but nothing prevents two connections
between A and B—one from A to B and one from B to A. Any node can also be
connected to itself, either directly, or via other nodes.

How does such a network process information? If certain nodes are taken as
input nodes, i.e. nodes that receive information from outside the network, and
certain nodes are taken as output nodes, the network can ‘process’ the input and
generate an output. The value of the output is determined by two things: the
input values and the present values of the weights in the network. For example,
the inputs can come from a ‘retina’ of light-sensitive sensors and the output of
the network can be connected to a lamp. With the right set of weights in the
network, this system can sense whether it is dark or light and accordingly make
the lamp brighter or weaker. The same network, with different weights (and
sensors), could perform a variety of other tasks, including the recognition of
changes and trends.

It should be clear now that the characteristics of the network are determined
by the weights. The vital question is the following: where do the different
values of the weights come from? They could of course be set by an external
agent, like the programmer of a formal system, but we wish to find a model of
a system that does not need a designer, a model of a system that can self-
organise. Suggestions for such a mechanism have been made in remarkable
detail by Freud in his model of the brain (see Cilliers 1990), but as far as the
connectionist models we know today are concerned, the use-principle
formulated by Donald Hebb (1949) provided the clue.

Hebb suggested that the connection strength between two neurons should
increase proportionally to how often it is used. Consider three neurons, A, B
and C. Each time both A and B are active simultaneously, the strength of their
interconnection (let us call it Wab) should be increased slightly, but when they
are not active, Wab should decay slowly. In this way, if A and B are often
active together Wab will grow, but if A and B are only associated spuriously
and A and C more regularly, Wab will decay and Wac will grow. In this way, a
network will develop internal structure, based only on the local information
available at each neuron. This development of structure can also be called
‘learning’.

To clarify the working of Hebb’s rule—as it has become known—let us
return to our example of a network that has to switch on a lamp when it gets
dark. Initially the network is untrained, i.e. the weights in the network have
random values and it cannot perform the tasks. In order to train the network
the lamp has to be switched on (by an external agent) every time it gets
dark. When the lamp is on, the output neurons of the network will be forced
into activity, and this will  be automatically associated with the
corresponding input, or absence of input, to the network. As soon as it
becomes light, the lamp is switched off and the network now has to
associate a different output condition with a different set of input values. If
this cycle is repeated a number of times, the network will adjust its internal
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weights, without external intervention. Through the application of Hebb’s
rule at each neuron, the input conditions representing darkness are
associated with an active output, and vice versa for conditions of light.
After it has been trained, the network will be able to perform the required
task by itself. Exactly the same principle can be used to ‘teach’ the network
completely different tasks, e.g. to turn on a tap when the earth is dry, or to
recognise someone’s voice.

Hebb’s rule, formulated in this way, appears to be only a qualitative
principle, but it has been given a mathematical formulation by several authors
(e.g. Grossberg 1982, 1988). The main problem that hampered the development
of neural network models was the absence of a mathematical model for
adjusting the weights of neurons situated somewhere in the middle of the
network, and not directly connected to the input or output. The problem was
solved by a few independent researchers during the seventies—the best-known
formulation being the so-called ‘generalised delta rule’ (Rumelhart and
McClelland 1986, Vol. 1:318–362). The rule is used in the popular ‘back-
propagation’ method for training feedforward neural networks (discussed in
more detail in Chapter 2).

We can summarise this introductory description on connectionist models
as follows. A network of interconnected neurons (which can be modelled
mathematically) can learn to perform complex tasks either by showing it
examples of these tasks successfully performed, or by using criteria internal
to the network that indicates success. These tasks include pattern
recognition, motor control, information-processing, regulation, prediction
and replication. The only requirement is that there should be some ‘sensor’
to get the information into the network, and some ‘motor’ that allows the
output to have an external effect. Inside the network itself there are only
neurons adjusting their weights based on the local information available to
them. At the level of the individual neuron no complex behaviour is
discernible, but the system of neurons is capable of performing specific,
complex tasks. Complex behaviour emerges from the interaction between
many simple processors that respond in a non-linear fashion to local
information.

COMPARING RULE-BASED AND CONNECTIONIST MODELS

Both the approaches to complexity mentioned in the previous section have
strong support.  The rule-based approach has been adopted by AI
researchers, computational linguists in the Chomskian tradition, and
cognitive scientists—especially those who adhere to a representational
theory of mind (Fodor 1975, 1981; Sterelny 1990). Connectionism is
supported by a less well-defined, more interdisciplinary group of
neuroscientists, psychologists and engineers. Several attempts have been
made to dismiss connectionism as simply wrong (e.g. Fodor and Pylyshyn
1988),11 or to assimilate it (Lloyd 1989), or parts of it (Sterelny 1990), into
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the rule-based paradigm. I do not deny that there are areas of overlap or that
practical models of complexity may combine aspects of both paradigms.
However, for the sake of understanding the two approaches properly, we
must initially focus on the differences between them. Most of the following
differences are important enough to make a persuasive case against the
assimilation of connectionism into the rule-based paradigm:12

 
• Whereas formal systems apply inference rules to logical variables, neural

networks apply evolutive principles to numerical variables. Instead of
calculating a solution, the network settles into a condition that satisfies the
constraints imposed on it.

• Neural nets have no central control in the classical sense. Processing is
distributed over the network and the roles of the various components (or
groups of components) change dynamically. This does not preclude any
part of the network from developing a regulating function, but that will be
determined by the evolutionary needs of the system.

• Every symbol in a rule-based system has a precise, predefined meaning—
this constitutes a local representation. In a connectionist network individual
neurons have no pre-defined meaning. Changing patterns of activity over
several nodes perform meaningful functions. This is often referred to as
distributed representation.

• Formal systems have well-defined terminating conditions and results are
only produced when these conditions are reached. Connectionist systems
tend to dynamically converge on a solution, usually in an asymptotic
fashion. The process does not have to terminate; as a matter of fact, usually
it will not arrive at a single, final conclusion.

• The internal structure of a connectionist network develops through a
process of self-organisation, whereas rule-based systems have to search
through pre-programmed options that define the structure largely in an a
priori fashion. In this sense, learning is an implicit characteristic of neural
networks. In rule-based systems, learning can only take place through
explicitly formulated procedures.

• Apart from the fact that formal rule-based models have to be interpreted on
a semantic level, the model itself is divided into two levels: that of the
symbols and that of the rules; or the data and the program. In connectionist
models there is only one level, that of the neurons and their weights.
Instead of an ‘active’ program and ‘passive’ data, you have numerical
weights that are dynamically adjusted through interaction. Instead of a
program you have memory.

 
For those accustomed to the high level of abstraction and the crispness of
logical inference, the connectionist approach often appears vague, shallow
and too sparse. As a result, they have serious misgivings about the
approach. Here, in the words of Kolen and Goel (1991), are three such
misgivings:  
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• Connectionist networks cannot represent ‘…higher order relations. This
representational poverty leads to an incapacity for generalisation to
higher order relations since a network can only learn what it can
represent’ (365).

• Connectionist learning methods are ‘weak’ since they do not make use of
external or a priori knowledge about the domain being modelled.
Domain knowledge has to be ‘hard-wired’ into the network by a designer.

• ‘Connectionist methods for learning do not reflect the structure of the
task they address’ (369). The same learning method can be used to solve
very different tasks.

 
The first objection merely states a commitment to a strong theory of
representation. It is true that networks do not ‘represent higher order relations’,
but that is only a problem if representation is insisted upon. This commitment is
made explicitly by Chandrasekaran et al. (1988). For them there is an abstract
level of ‘information-processing’ which is higher than any specific realisation
thereof, whether that realisation be symbolic or Connectionist (30). It is at this
abstract level that the ‘explanatory power’ resides (33). Like Fodor and
Pylyshyn (1988) and Lloyd (1989), they claim that connectionists remain
committed to representation, and the fact that this representation is ‘distributed’
makes no difference to anything. I will argue in detail (in Chapter 5) that
distributed representation makes all the difference; that, in fact, it undermines
the whole concept of representation. The fact that Connectionist networks
‘cannot represent’ becomes a distinct advantage.

The second objection reflects the urge of symbolic modellers to reduce the
domain to be modelled to a finite number of explicit principles using logical
inference. We have already argued that, when dealing with true complexity, this
is often not possible. Connectionist models can implement aspects of
complexity without performing this reduction. That is their strength. The claim
that the weight in the network has to be set to specific values by the designer is
simply incorrect. In most cases the weights in the network are explicitly
randomised before learning commences. One cannot make use of a priori
domain knowledge because one often does not know which aspects of the
domain are relevant. This also largely answers the third objection, i.e. that the
Connectionist model is too general and does not reflect the ‘structure’ of the
problem. The structure cannot be reflected, precisely because it cannot be made
explicit in symbolic terms. The fact that the same network can be taught to
perform ‘very different’ tasks is not a weakness, but rather an indication of the
power of this approach.

Serra and Zanarini (1990:28–29) point to a few further advantages, which
can be summed up in the following two points:
 
• Networks cope naturally with large amounts of data. The distributed nature

of the network is in that respect equivalent to a hologram. No separate
local representation is necessary for each bit of data. Input data do not have
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to be ‘interpreted’ in terms of symbolic relationships either; they can be
given to the network in fairly ‘raw’ form.

• Because networks operate on a basis of constraint satisfaction, they can
cope with contradictions. (Rule-based systems are ‘brittle’ by nature and
become completely unreliable when given contradictory information.) This
does not mean that a network can produce ‘correct’ answers from
‘incorrect’ data, but it does not blow up, as a logical rule-based system
will.13 A network will either resolve the conflict by giving more weight to
other constraints or it will produce no meaningful results. This is an
indication of the robustness of the connectionist approach.

 
As a final recourse, the supporter of formal symbol systems can claim that
nothing prevents her/him from continuously adding ad hoc rules to her/ his
system until it can perform the required task. This may be quite possible, but
when dealing with complexity, the demands such an approach will make in
terms of time and resources could be astronomical. Furthermore, the more ad
hoc rules there are, the more ‘distributed’ the model becomes. To get a working
model following this route may end up being nothing else than an extremely
tedious way of constructing a connectionist model.

From a slightly more philosophical perspective, Clark and Lutz (1992:12)
point to two other advantages of the connectionist approach:
 

First, we have a methodology in which the external world drives the
computational model in a very direct, non-ad-hoc way. Second, we have a
kind of system in which intelligent behaviour need not be grounded in any
quasi-logical process of inferential reasoning about sentence-like structure
representing states of the world. Intelligence and reasoning with quasi-
linguistic structures thus come apart.

 
From these considerations it should be clear that I wish to argue that
connectionist models are more useful for the understanding and modelling of
complex systems than are rule-based models. I hope that this claim can be
substantiated in the following chapters.

CONNECTIONISM AND POSTMODERNISM

One of the aims of this study is to show that some aspects of certain
theories falling in the broad (and often mislabelled) category of
‘postmodernism’ have important implications for the study of complexity.
These implications will be explored in more detail in the final chapter. They
are only briefly introduced here.

Although Lyotard’s The Postmodern Condition will form the basis of the
discussion in Chapter 7, it is perhaps more accurate to say that the focus will be
on the affinities between complexity theory and post-structural theory. The
reason for this is that I wish to steer clear of those postmodern approaches that
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may be interpreted as relativistic. The central arguments will come from
(mainly the early) work of Jacques Derrida (1973, 1976, 1978)—a position that
can only be termed ‘relativistic’ by the ignorant.

Post-structural analyses are applied mostly to language, literature, culture
and art, but the theoretical scope thereof is much wider. It is deeply concerned
with an understanding and interpretation of our whole life-world, and therefore
also has implications for our understanding of science. It is, however, rarely
mentioned in the context of the philosophy of science, and the scientific
community has paid little attention to these developments. This state of affairs
is perhaps not surprising, if one considers the following two reasons:
 
• The great advances made in science, especially in the first half of the

twentieth century, were modernist in nature. On a theoretical level, a strong
alliance developed between science and those brands of philosophy that
incorporated logic, such as logical positivism and its transformations
(through Popper, Lakatos and Kuhn). In the context of both British
analytical philosophy and American pragmatism, a philosophy of science
developed with which scientists felt more or less comfortable. They
thought that it reflected both their methods and aims. Since this analytical
approach has virtually no implications for the actual practice of science,
scientists could usually ignore philosophy, or at least not feel compelled to
investigate alternative philosophical approaches.

• Post-structuralism (deconstruction) is often presented in anti-scientific
terminology that stresses the proliferation of meaning, the breaking down
of existing hierarchies, the shortcomings of logic, and the failures of
analytical approaches. This subversive attitude is experienced as
destructive, as throwing away all forms of rationality and thereby denying
the very foundations of science. One cannot blame scientists for being
sceptical about an approach that is (to my mind, incorrectly) presented in
this way.

 
The first problem mentioned above results from a set of philosophical
differences between analytical and continental philosophy. They should be
addressed on the level of meaningful interaction between the two traditions.
The second problem is the result of the style of thinking and writing prevalent
in post-structural theory. In order to attract more serious attention from
scientists, over-zealous post-structuralists (especially literary theorists) will have
to transform their rhetoric into something cooler and clearer, something that can
be argued with. Some post-structuralists may claim that such an approach is
just not possible within ‘true’ post-structuralism, but that is a cop-out. My
argument is that post-structuralism is not merely a subversive form of discourse
analysis, but a style of thinking that is sensitive to the complexity of the
phenomena under consideration. Since science can benefit from such an
approach, the relevant ideas must be made accessible to scientists. Benefits
would include the following:  
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• The narrow focus and reductionist tendency of the analytical approach can
be impoverishing. The principle of falsification provides only a mechanism
for getting rid of ideas. Post-structuralism, in contrast, is an inclusive
approach that would actively encourage the generation of novel ideas,
especially through trans-disciplinary interaction. Models from different
disciplines can be transformed and incorporated, thereby increasing the
options available in the pursuit of solutions to a specific problem.

• A post-structuralist approach would lead a philosophy of science to focus
more on practical results—and the implications of these results—and less
on the generation of an abstract meta-narrative that has to legitimate
scientific knowledge.

• The general scientific ‘method’ can be replaced by something more
sensitive to the contingencies of the issue at hand. In order to deal with
observational and experimental data, often in vast quantities, science has
traditionally placed great emphasis on following the correct method.
Experiments are ‘designed’ in order to control the amount of variables and
to restrict the possible interpretations of the results. Although this step can
often not be avoided, it means that some of the possible results are
eliminated a priori. Choosing a method is a pre-emptive move towards a
specific set of solutions. Following a strict method has certainly provided
marvellous results, but it often resulted in the choice of method receiving
insufficient attention, and, moreover, has led to interpretation of
experimental results in general terms, instead of within the framework of
the appropriate method. Post-structuralism has a more ‘playful’ approach,
but this attitude has nothing childish or frivolous about it. When dealing
with complex phenomena, no single method will yield the whole truth.
Approaching a complex system playfully allows for different avenues of
advance, different viewpoints, and, perhaps, a better understanding of its
characteristics.

 
Although I will emphasise the affinities between post-structuralism and a
connectionist approach to complexity, none of the main arguments depends on
first assuming a post-structural position. For that reason the subject matter of
each chapter will be introduced and discussed without explicit reference to
post-structuralism, even though those familiar with it should recognise the
general strategy. For those unfamiliar with post-structural theory, an
introduction to some of the relevant aspects of Derrida’s thinking is provided in
Chapter 3. Towards the end of each chapter the philosophical implications of
the points made in that chapter will be discussed briefly. The final chapter will
do so in detail.

MODELLING COMPLEXITY

In this chapter we have looked at some of the characteristics of complex
systems in order to develop a sensitivity for the nature of complexity. This
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sensitivity is necessary when modelling complex systems, even if the model is a
very limited one. The main points can be summarised in the following way:
 
• A closer look at the characteristics of complex systems clearly shows the

limitations of the analytical method when dealing with complexity. There is
nothing wrong with an analytical approach as such, but the ‘analysis’ of
complex systems will always impose serious distortions by ‘cutting out’
part of the system.

• Algorithmic and information-theoretical approaches to complexity fail in
their attempts to reveal the true nature of complexity, but provide us with
one very valuable insight, namely that complexity is ‘incompressible’. A
complex system cannot be ‘reduced’ to a simple one unless it was not
really complex to start with. A model of a complex system will have to
‘conserve’ the complexity of the system itself. Since the model will have to
be as complex as the system it models, it cannot reveal the ‘true nature’ of
the system in terms of a few logical principles.

• Complex systems have special relationships with their environment as far
as the manner of processing information, and the developing and changing
of internal structure, are concerned.

• Computer technology has opened up new possibilities for the modelling of
complex systems. The conventional approach is to model the system in
terms of a set of logical rules driving a formal symbol system. I have
presented connectionist models as an alternative, and discussed different
aspects of the two approaches.

• It was suggested that there are interesting links between connectionist
models and post-structural theory. These links will be explored throughout
this study.

 
In conclusion, I would like to motivate the choice of connectionist models of
complexity again. A number of characteristics of complex systems were pointed
out at the start of the chapter. Models of complex systems will have to capture
them. In models based on formal symbol systems, these characteristics will
have to be modelled explicitly. High levels of interconnectivity, recurrency,
distributedness, etc., will have to be described algorithmically. In connectionist
models these characteristics are already implicitly part of the structure of the
model. The connectionist model consists of a large number of units, richly
interconnected with feedback loops, but responding only to local information.
In order to substantiate this claim, a slightly more technical introduction to
neural networks will be given in the next chapter.
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I argue that the traditional rule-based and analytical approaches to complex
systems are flawed, and that insights from postmodern and post-structural
theory can help us to find novel ways of looking at complexity. The argument,
however, does not remain on a purely theoretical level. There is also an attempt
to show that these insights can influence our models of complex systems. The
suggestion is that ‘distributed’ methods of modelling share some of the
characteristics of complex systems, and that they therefore hold more promise
than rule-based models, models which incorporate a strong theory of
representation.

Neural networks, or connectionist models (as cognitive scientists like to refer
to them), do not constitute the only ‘distributed’ modelling technique. Genetic
algorithms and even cellular automata have similar characteristics. It is perhaps
true that neural nets are particularly suitable because of their great flexibility,
and this consideration has influenced the choice to use them as a paradigm
example of distributed models.

Neural networks have important implications for a number of disciplines. In
cognitive science, for example, connectionism caused a disturbance that some
(Horgan and Tienson 1987:97) would interpret as signs of a Kuhnian crisis. The
wider philosophical implications of connectionism are underscored by the
challenge it provides to some of the basic assumptions of artificial intelligence
(AI) research, and in general to our understanding of the relationships between
brain, mind and language. The importance of this modelling technique for the
understanding of complex systems can be summarised in the following way:
 
• Neural networks conserve the complexity of the systems they model

because they have complex structures themselves.
• Neural networks encode information about their environment in a

distributed form. The notion of distributed representation undermines our
understanding of conventional theories of representation.

• Neural networks have the capacity to self-organise their internal structure.
 
The latter two points will be dealt with in detail in Chapters 5 and 6. In this
chapter I want to provide a general introduction to connectionism as well as
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situate the approach within a philosophical framework. A connectionist
system that models certain linguistic capabilities is used as an example. The
central part of the chapter examines an important critique of connectionism
from an analytical perspective (Fodor and Pylyshyn 1988). The main
concern in discussing the critique will be the role played by rules in
linguistic and mental activities. The possibility of viewing connectionist
models from a postmodern perspective will only be mentioned briefly, as it
will be treated in more detail in the next chapter, where post-structuralism is
introduced.

THEORETICAL BACKGROUND

Connectionism is a method of information-processing inspired by our
understanding of the brain. Functionally the nervous system consists only of
neurons. These cells are richly interconnected by means of synapses. The
synapses convey the stimulation generated in a previous neuron to the dendrites
of the next neuron in line. If this stimulation exceeds a certain threshold, the
neuron is triggered and an impulse is sent down the axon of the neuron. This
impulse in turn provides the synaptic input to a number of other neurons. The
information passed from one neuron to the next is modified by the transfer
characteristics of the synapses, as well as by the physical structure of the
dendrites of the receiving neuron. Any single neuron receives inputs from, and
provides inputs to, many others. Complex patterns of neural excitation seem to
be the basic feature of brain activity.

A simple mathematical model of a neuron can be constructed. A neural unit
uses the sum of its inputs to decide what output to generate. Each input is,
however, first multiplied with a certain value or ‘weight’. This weight
determines the connection strength between two specific units, and models the
characteristics of the synapses in the nervous system. The output response of
any specific neuron (let us call it A) is therefore calculated in the following
way: the outputs of all the neurons connected to A are—after having been
multiplied in each case by the weight associated with the connection between
that specific neuron and A—added together. This sum is multiplied with A’s
transfer function to generate A’s output. This output becomes one of the inputs
to the next neuron in the network, after it has in turn been adjusted by the value
of the weight in that pathway. The value of the weight can be positive or
negative. The transfer function is (in all but the most trivial cases) a non-linear
function. Neurons form part of large networks with complex connection
patterns, and since the weights determine the influence of one neuron on
another, the characteristics of a network are mainly determined by the values of
these weights.1

In a network, each neuron is continuously calculating its output in parallel
with all the others, and patterns of activity, determined by the values of the
weights, flow through the network. The topology of the network, i.e. the way
in which the neurons are interconnected, is also important. A network can be
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sparsely connected, richly connected or fully connected. A fully
interconnected network is one where every neuron is connected to every other
neuron. This configuration is known as a recurrent net. Recurrent nets are
extremely powerful, but difficult to work with. Practical neural networks are
structured more simply, usually in ‘layers’ of neurons. A simple neural net is
shown in Figure 2.1. This is an example of what is usually referred to as a
multi-layer perceptron. Information is presented to the input layer and the
result of the network’s computations can be found at the output layer.
Between these two layers are one or more ‘hidden’ layers. They have no links
with the outside world, but have to form the associations between the input
and the output.

In this network information flows only from the input side to the output
side, and the neurons are arranged in layers. Each neuron is connected to
every neuron in the next layer. Weights are not explicitly shown, but each line
has an associated weight. In this simple example, there are no connections
between neurons in the same layer, and there are no feedback loops.
However, the activity of any specific neuron is influenced by many others,
and it in turn has an effect on many others. Information is therefore not
localised in any specific place in the network, but is distributed over a large
amount of units. The characteristics of the network are determined by the two
layers of weights.

We can now show how such a network, simple though it may be, is
capable of processing information. If the neurons in the input layer are
activated in a certain way, a certain pattern will be generated by the output
layer as the input values are multiplied through the two layers of weights. The
input and the output can, of course, mean something. In the example we will
look at later, the input represents the present tense of English verbs, and the
output their past tense, as calculated by the network. If the network is

Figure 2.1 A simple feedforward neural network
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presented with a verb, the pattern of weights will generate an output that
represents (according to the network) its past tense. The crucial question at
this point is the following: where do these weights, or at least, the value of
each weight, come from? They could be predetermined by the designer of the
network, but such predetermination is possible only in the case of the most
simple problems and simple networks. However, it is not necessary for us to
know the values of the weights beforehand. This is so because a network
provided with enough examples of the problem it has to solve will generate
the values of the weights by itself. A neural network is trained. It ‘evolves’ in
the direction of a solution.

How is this done? By presenting the network with both the input pattern
and the correct output, it can be made to adjust its weights in such a way as to
match the two patterns closer. If sufficient examples are provided for long
enough, and the network is complex enough to cope with the problem, a set
of weights will be generated automatically that will produce the appropriate
output for each input. After the network has been trained, it will not only
recognise those examples it has been taught, but will take an educated guess
in the case of unknown inputs as well. Because of the high degree of
feedback, recurrent nets are not trained easily. For layered feedforward
networks (simpler in structure, but still computationally powerful) there is a
procedure, based on reducing the local error at each neuron, that guarantees
convergence towards a solution (should there be one), provided that the
network’s structure has enough capacity to find it (i.e. that the network
consists of enough neurons, particularly in the hidden layer). This is known as
the back-propagation procedure.

Let me summarise the basic theory of connectionist models by pointing
to a few crucial features. A neural network consists of large numbers of
simple neurons that are richly interconnected. The weights associated with
the connections between neurons determine the characteristics of the
network. During a training period, the network adjusts the values of the
interconnecting weights. The value of any specific weight has no
significance; it is the patterns of weight values in the whole system that bear
information. Since these patterns are complex, and are generated by the
network itself (by means of a general learning strategy applicable to the
whole network), there is no abstract procedure available to describe the
process used by the network to solve the problem. There are only complex
patterns of relationships.

A few more examples of how neural networks perform some general, but
fairly complex tasks, will illustrate various aspects of their capacities.
 
• Even simple networks, as the one in Figure 2.1, can perform classification

tasks. Consider a number of different classes, each with its own members.
The output neurons of a network can each be taken to stand for a specific
class. During the training phase, different examples of each class are
presented as input to the network. With every particular input the output
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neuron associated with the appropriate class is switched on. In this way the
network learns to associate all the members of a class with a specific
output. If the training examples are representative of the various classes,
the network will be able to do a reliable classification, even of examples
that did not form part of the training set.

Classification tasks like these are often called ‘pattern recognition’. An
example of the latter would be a network that can recognise different types
of vehicles by the noise they make. By training the network with, for
example, the noise-spectrum produced by a group of motorbikes,
motorcars and trucks, the network will learn to distinguish between them.
If the training examples were representative of each class, the network will
afterwards be able to classify a specific type of motorcar as motorcar, even
if it has not encountered that specific type before. The network does not
develop a specific algorithm for performing the recognition task; it merely
multiplies the input information through the network. The correct
configuration of weights, developed during the training phase, produces the
required output. The same network can be retrained to perform a
completely different task.

• A network can perform a mapping. A certain input configuration can be
transformed into a certain output configuration. This is a generalisation of
the classification capabilities. In this case the output of the network does
not consist of only one active neuron, indicating a specific class, but a
pattern of activity spread over the whole output layer. The nature of the
mapping is constrained only by the complexity of the network. If the
network is complex enough, an arbitrary mapping can be performed
(Hornick et al. 1989). An example of such a mapping is the network that
transforms present tense verbs into their past tense form, discussed in more
detail below.

• A network can perform curve-fitting. Consider a function of the following
form: y=f(x1, x2, x3 . . . xn). If the input neurons are provided with the values
of x1 to xn, an output neuron can provide an approximation of y, provided
that the network is complex enough to approximate the function f. The
network is taught with correct values of y for given values of x. If the
training examples are representative, the network will accurately ‘fit’ a set
of input values to a curve that approximates f. Note that it is not necessary
to know what f is. Given a set of xs and the corresponding values for y, the
network will generate a set of weights that perform the curve-fitting
automatically. It should, however, come as no surprise that these networks
are better at interpolation than at extrapolation. These networks are often
used to perform control functions and also as predictors, e.g. in stock-
market analysis.

• Neural networks can perform automatic clustering. Given a two-
dimensional array of neurons, with each one receiving the same set of
input values, the network will cluster input vectors (x1, x2 . . . xn) that are
close together by activating neurons that are close together. This is
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achieved through a process of internal competition that causes the network
to self-organise its internal structure. This capability of neural networks is
analysed in detail in Chapter 6.

 
The way in which neural networks solve problems has some philosophical
importance. In order to make this more apparent, I will place connectionism in
a more general theoretical framework. Two paradigms can be identified, each
one associated with the name of a famous linguist—the one Noam Chomsky,
the other Ferdinand de Saussure. Such a dichotomy is always somewhat
artificial and simplistic, but it is useful in linking styles of information-
processing with certain intellectual traditions. The link between connectionism
and contemporary continental theory is an especially fruitful one since it allows
us to engage with postmodern theories from a different perspective. The two
paradigms are summarised in Table 2.1.

The way the Chomskian paradigm sticks together is well known. The formal
grammars of production rules Chomsky employs to describe language are
identical to the mathematical models developed by Alan Turing. These models,
known as Turing machines,2 also provide the mathematical foundation for the
description of digital computers. Hilary Putnam proposed that the Turing
machine is an adequate model of the brain (a theory that has become known as
functionalism, and which Putnam [1988] no longer supports), and Jerry Fodor
(1975) extended Chomsky’s rationalist programme by linking the rule-based
system of language with the functional working of the mind, irrespective of the
hardware in which it is implemented. This is the paradigm that formed the basis
for cognitive science and artificial intelligence (AI) research. It is only to be
expected that within such a paradigm intelligent behaviour should be described
as rule-following, and hence we have the rule-based AI simulations known as
expert systems.

The paradigm identified with the name of Saussure is not often associated
with computational theory. One reason may be the fact that cognitive science in
general, and connectionism in particular, is practised in a context where

Table 2.1 Two paradigms of information-processing
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Saussurian principles are unfamiliar. Part of the aim of this book is to establish
the sensibility of such a paradigm. There are relationships between Saussure’s
description of language (where each element of a language only has meaning in
terms of the degrees to which it differs from all the other elements of a
language), and the way the brain works, especially when the way Saussurian
theory was elaborated and criticised by post-structural thinkers like Jacques
Derrida (discussed in more detail in Chapter 3) is taken into account. One could
possibly use neural network theory to provide a mathematical description of
Saussurian linguistics, equivalent to the way in which formal grammars provide
the mathematical description of Chomskian linguistics. Here I am primarily
concerned with connectionism as a general model for complex systems and I
will also attempt to show that there are important differences between
connectionist and conventional models. These differences hinge to a large
extent on the role and status of the rule, especially as far as language is
concerned.

THE RULES OF LANGUAGE

As part of their seminal connectionist research programme, David Rumelhart
and James McClelland developed a neural network that generates the past tense
of the present tense English verbs it is presented with (Rumelhart and
McClelland 1986, Vol. 2:216–271). They did not develop a large-scale
linguistic system, but chose an area of language that was confined enough to be
manageable, yet rich enough to allow them to argue their position. The
generation of past tense forms of verbs is usually described by a fair number of
rules, and a fair number of irregularities are also present.

The network they employed was a simple feedforward network similar to the
one described above. The input and output layers each consisted of 460 neurons
(239). During the learning phase the network was presented with phonological
representations of the present tense of English verbs at the input layer, and the
representation of the past tense at the output layer. At each presentation the
weights of the network were adjusted using a process known as the ‘perceptron
convergence procedure’ (225), also known as backpropagation. The output
generated by the network for each input was constantly monitored throughout
the learning phase. It was found that the network captured most of the features
of both regular and irregular verbs in the same collection of weights, and that
the network could respond appropriately to verbs it had not encountered before.
Furthermore, during the training phase the network performed in ways similar
to the way in which children acquire the past tense (219, 240). A child at first
knows only the small number of past tense verbs that are often used. Most of
these are irregular, but are used correctly. In a second phase certain patterns are
noticed, and a process of over-regularisation takes place. More verbs are used,
but irregular verbs, previously used correctly, are now regularised. In a third
phase the differences are noticed, and regular and irregular forms are allowed to
co-exist. These three phases were mimicked by Rumelhart and McClelland’s
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network. This kind of performance by a network that only employs patterns of
association led them to the following conclusion:
 

We have, we believe, provided a distinct alternative to the view that children
learn the rules of English past-tense formation in any explicit sense. We have
shown that a reasonable account of the acquisition of past tense can be
provided without recourse to the notion of a ‘rule’ as anything more than a
description of the language.

(267)
 
That is, even though rules may be useful to describe linguistic phenomena,
explicit rules need not be employed when language is acquired or when it is
used. These unorthodox claims were sure to generate a response from the
Chomskian camp. In what follows we take a look at how Jerry Fodor and
Zenon Pylyshyn dismissed connectionism as a model for cognition and
language.

The context in which Fodor and Pylyshyn (1988) enter the discussion is one
in which connectionist systems are contrasted with symbol systems. In a
symbol system information is represented by discrete symbols that are
structured and manipulated by means of rules. The nature of a symbol system is
determined by that which the symbols represent, and not by the way in which
the system is implemented. If a biological system and a digital computer
manipulate the same symbols in the same way, they are functionally equivalent.

Fodor and Pylyshyn identify two major traditions in ‘modern theorizing
about the mind’. They call the one ‘Representationalist’ and the other
‘Eliminativist’.
 

Representationalists hold that postulating representational (or ‘intentional’ or
‘semantic’) states is essential to a theory of cognition; according to
Representationalists, there are states of the mind which function to encode
states of the world. Eliminativists, by contrast, think that psychological
theories can dispense with such semantic notions as representation.
According to Eliminativists the appropriate vocabulary for psychological
theorizing is neurological or, perhaps behavioural, or perhaps syntactic; in
any event, not a vocabulary that characterizes mental states in terms of what
they represent.

(Fodor and Pylyshyn 1988:7)
 
Strangely enough, they then claim that ‘connectionist modelling is consistently
Representationalist’ (8), and therefore on the same side of the divide as
‘classical’ cognitive theory, the position they defend. The only difference
between them, on this issue, is that classicists assign semantic content to
‘expressions’, and that connectionists assign it to nodes in a network. They
therefore claim that ‘representation’ is not part of the dispute. What then are the
issues? This is how they summarise it:  
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Classical and Connectionist theories disagree about the nature of mental
representation; for the former, but not for the latter, mental representations
characteristically exhibit a combinatorial constituent structure and a
combinatorial semantics. Classical and Connectionist theories also disagree
about the nature of mental processes; for the former, but not for the latter,
mental processes are characteristically sensitive to the combinatorial
structure of the representations on which they operate.

(32)
 
What do these two differences amount to? A representational system works
with symbols. For symbols to be meaningful, they firstly have to be structured,
and, secondly, it must be possible to manipulate them. Unrelated collections of
symbols are meaningless. Connectionist systems are representational, but
because they merely ‘associate’ representations, and have no rules to
manipulate them with, they cannot model the mind.
 

What’s deeply wrong with Connectionist architecture is this: Because it
acknowledges neither syntactic nor semantic structure in mental
representations, it perforce treats them not as a generated set but as a list.
But lists, qua lists, have no structure; any collection of items is a possible
list. And, correspondingly, on Connectionist principles, any collection of
(causally connected) representational states is a possible mind. So, as far as
Connectionist architecture is concerned, there is nothing to prevent minds
that are arbitrarily unsystematic. But that result is preposterous. Cognitive
capacities come in structurally related clusters; their system-aticity is
pervasive.

(49)
 
Their objections certainly hold water if one is committed to a system built up
out of atomic representations. They are, however, gravely mistaken in
thinking that Connectionist systems fit that description. By insisting that
information is represented in the nodes of a network (12), they miss the real
significance of the distributed representations in neural networks, a point also
made by Smolensky (1987:137), Derthick (1990:255, 257) and Bechtel
(1987:22). The example with which Fodor and Pylyshyn choose to
demonstrate a Connectionist network is not a neural network at all. It is a
semantic network, a well-known technique from traditional AI that merely
depicts a few relationships between a number of atomic representations.3

They acknowledge the existence of distributed representations, but for them it
is merely local representations ‘sliced thinner’. The point, however, is the
following: in a full-blown neural network no node has any specific
significance. As explained earlier, the significance lies in the values of the
weights; not, and this is crucial, in the value of any specific weight or even
group of weights, but in the way they are related and activated each time.
Information is not stored in—or rather, represented by—a symbol and
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recalled when necessary (as in traditional cognitive models), but is
reconstructed each time that that part of the network is activated (Bechtel
1987:22).

Smolensky (1987) would argue that distributed representation is
representation of some form, but so different to the classical models that they
cannot be placed under the same heading. The differences between the two
systems are far more radical than Fodor and Pylyshyn would admit, and the
argument has to be taken up on a different level. For now, one can say that in
terms of the limited networks currently used to demonstrate connectionist
principles or to solve specific problems, Smolensky is correct. These networks
address well-specified problems, in other words, problems that are well framed.
As models they do represent their problem areas, even if it is in some
unconventional way. When we move to large systems where the frame is less
apparent, I am convinced that the concept of mental representation has to be
dropped altogether. In a certain sense the meaning of the word ‘representation’
breaks down if used in the context of a ‘distributed representation’. Objects in
the world are not ‘represented’ in the brain, just as a word in a natural language
does not ‘represent’ a specific meaning. This claim will be argued for in
Chapter 5.

Despite the problem of representation, one could of course pose the
question as to whether the connectionist approach and rule-based one exclude
each other; whether the one cannot be reduced to the other. Fodor and
Pylyshyn (1988:64) acknowledge the biological plausibility of connectionist
architectures, and the fact that neural nets can be used to implement a Turing
machine. They suggest this as a possible option, and then urge connectionists
to direct their research at achieving good implementations of ‘classical’
architectures.4 This strategy, however, denies the important differences
between local representations and fully distributed systems. Smolensky
(1987:137–143) suggests five possible ways of dealing with the ‘soft’
connectionist option, on the one hand, and the ‘hard’ symbol system, on the
other:
 
• Deny one and continue only with the other. The denial of the ‘soft’ is also

known as ‘rationalism’. Denial of the ‘hard’ leads (according to
Smolensky) to the ‘intuitive’ approaches of for example Dreyfus and
Dreyfus (1986).

• Allow the two systems to ‘cohabitate’ as two separate ‘processors’ next to
each other. In a way this is an extreme formulation of the split brain theory.

• Soften the ‘hard’ approach by means of fuzzy logic. This merely blurs the
edges, and softness becomes degrees of hardness.

• Make the system which is ‘hard’ at bottom complex enough that softness
will emerge. This is a sophisticated approach, but the ‘brittleness’ of expert
systems with many rules remains discouraging.

• Make a system which is ‘soft’ at bottom complex enough that hardness
will sometimes appear when viewed at a higher level.  
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I find the last suggestion most intriguing. It postulates a system that does not
function on the basis of rules, but where certain systematic properties can be
described by means of rules if they prove to be useful. I cannot see why this
suggestion should not satisfy those who like to look for structures and patterns.5

They can make interesting and useful classifications without claiming to have
discovered essential components that can be elevated to Final Truths. I suspect,
however, that this will be a problematic position for the True Scientist, for
whom, like Fodor and Pylyshyn (1988:64), ‘truth is more important than
respectability’.6

CONNECTIONISM AND POSTMODERN SCIENCE

The relationships between science, postmodern theory and connectionist
models of complex systems will be examined in the final chapter. However,
there are a few remarks to be made here, in the context of cognitive science.

In many areas of science, both theoretical and applied, there is a growing
discontent with analytical and deterministic methods and descriptions. One of
the first responses to this unease was a rapid growth in statistical approaches,
not only in the interpretation of experiments, but in the explanation of the
results as well. However, as in the case of fuzzy logic, statistical methods do
not imply a break with deterministic methods. It remains a tool in the process
of establishing the true mechanisms of the phenomena being investigated. The
heavy price paid in the process—that of averaging out the complex internal
detail—is usually glossed over.

To think in terms of relationships, rather than in terms of deterministic
rules, is not a novelty for science, but it has always been seen as part of
qualitative descriptions and not as part of the quantitative descriptions and
calculations deemed necessary ever since Kepler’s insistence that ‘to measure
is to know’. Many phenomena, especially in the life-sciences, but also in
physics and mathematics, simply cannot be understood properly in terms of
deterministic, rule-based or statistical processes. Quantum-mechanical
descriptions of sub-atomic processes are essentially relational, and even on a
more macroscopic level, relations determine the nature of matter. The carbon
atoms in my body can all be interchanged with carbon atoms from the wood
of my desktop, and there will be no noticeable difference (Penrose 1989:32).
The significance of each atom is therefore not determined by its basic nature,
but is a result of a large number of relationships between itself and other
atoms.

In the light of these examples, it is certainly strange that when it comes to
descriptions of the functioning of the brain, an obviously relational structure,
there is still such a strong adherence to atomic representation and
deterministic algorithms. One of the reasons for this must surely be that
cognitive science inherited its methodological framework from a
deterministic, analytical tradition. Post-structural theory, I claim, assists us in
revising this position.
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The interaction between post-structuralism and cognitive science could have
mutual benefits. On a methodological level, a post-structural approach could
affirm the non-algorithmic nature of cognition. It could help to suppress the
desire to find complete and deterministic models by arguing that models based
on a system of relationships are less restrictive, and just as useful. It can also
help to legitimise activities that aspire not to fill in the ‘big picture’, but only to
be of local use. One can also argue for a number of interesting similarities
between connectionism and Derrida’s model of language (as will be done in the
next chapter). If post-structural arguments can help us to implement better
models of complex systems, it will help to dispel the delivered opinion that
post-structural concepts are confined to the realm of theory and have no
practical value.



3 Post-structuralism, connectionism
and complexity

The primary aim of this chapter is to introduce post-structuralism in order
to point out its relevance for the study of complex systems. This will be
done by means of a discussion of the theory of language proposed by
Saussure (1974), as criticised and developed by Derrida (1976). Those
familiar with this body of thought may like to proceed to the latter sections
of the chapter where the links with complexity theory and connectionist
networks are discussed.

Saussure’s ‘structural’ model of language remains a landmark in the study
of complex systems. His primary insight—that meaning is generated through
a system of differences—remains an excellent way of conceptualising the
relationships in a complex system. His model is somewhat ‘rigid’, but
Derrida’s transformation of the system by means of a sophisticated
description of how the relationships interact in time (using the notion of
différance) provides us with an excellent way of conceptualising the dynamics
of complex systems from a philosophical perspective. Moreover, I wish to
argue that recurrent connectionist networks can be used to model this general
conceptualisation.

The central argument of the book can therefore be summarised in the
following way:
 
• Complexity is best characterised as arising through large-scale, non-linear

interaction.
• Since it is based on a system of relationships, the post-structural inquiry

into the nature of language helps us to theorise about the dynamics of the
interaction in complex systems. In other words, the dynamics that
generates meaning in language can be used to describe the dynamics of
complex systems in general.

• Connectionist networks share the characteristics of complex systems,
including those aspects described by a post-structural theory of language. It
should therefore be possible to use them (or other distributed modelling
techniques with similar capabilities) as general models for complex
systems. These models can be physically implemented or simulated
computationally.  
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In order to give substance to this argument, I will first introduce the post-
structural conceptualisation of language.

SAUSSURE’S MODEL OF LANGUAGE

Most models of language, but specifically the Chomskian one, focus on the
structure of language. In his Course in General Linguistics, Saussure’s main
concern was the meaning of language. How do words acquire meaning? He did
argue that language consists of a number of discrete units, which he called
signs, but rather than ascribing characteristics to the signs themselves, he
concentrated on the relationships between them.1

For Saussure the sign consists of two components: the signifier and the
signified. The signifier is the linguistic unit and the signified is the concept it
represents. The signifier and the signified, however, are not separable entities.
‘The linguistic sign is a two-sided psychological entity that…unites not a thing
and a name, but a concept and a sound-image’ (Saussure 1974:66). For
example, the word ‘tree’ would be a signifier in the English language and the
concept of a tree would be the signified. Together they form the sign for tree.
Language is a system of such signs.

The sign also has, according to Saussure (1974:67), two ‘primordial’
characteristics. The first is the most important: there is no natural link
between a signifier and a signified. The relationship between the concept of a
tree and the word ‘tree’ is not given outside language, it is purely arbitrary.
This does not mean that the individual speaker can choose the word for a
concept, but rather that the relationship is ‘unmotivated’ (69), i.e. it exists
merely as a convention in language. The second characteristic Saussure
mentions is that the sign unfolds linearly in time. This characteristic does not
seem to be important for his theory as a whole, but it does underline his
insistence on the spoken form of language as primary—an issue we will
return to later.

How is it possible for signs to have meaning if their nature is
conventional, but, at the same time, not by choice or by the definition of a
collection of individual speakers? By being part of a system. ‘Where there
are signs there is system’ (Culler 1976:91). The system of language is
constituted not by individual speech acts, but by a system of relationships
that transcends the individual user. This system is what Saussure calls
‘langue’, as opposed to language in use, ‘parole’ (Saussure 1974:13, 14).
Because the signifier-signified relationship is arbitrary, the sign does not
have a natural identity, but has to derive its significance from the
relationships within the system.

To explain the way in which these relationships work, Saussure uses the
example of a train, say the ‘8.25 Geneva-to-Paris’ (108). Although the train
itself, its personnel and its passengers are different every day, the ‘8.25
Geneva-to-Paris’ maintains its identity by its relationships to the ‘8.40
Geneva-to-Dijon’, the ‘12.00 Geneva-to-Paris’, or the ‘0.38 Bombay-to-
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Madras’, for that matter, irrespective of whether it leaves at 8.25 exactly, or
reaches Paris in the same state as when it left. The train does not have any
identity by itself; its identity is determined relationally. Similarly, a linguistic
sign derives its meaning from its relationships to other signs. The signifier
‘brown’ does not have a meaning because it can be identified with a concept
that unambiguously contains the essence of ‘brownness’, but because it can
be differentiated from the signifiers ‘black’, ‘blue’, ‘grey’, ‘hard’, ‘train’, etc.
The sign is determined by the way in which it differs from all the other signs
in the system—‘in language there are only differences without positive terms’
(120). The sign is a node in a network of relationships. The relationships are
not determined by the sign; rather, the sign is the result of interacting
relationships.

Saussure does acknowledge that the relationships between signifiers change
and therefore he distinguishes between the diachronic and synchronic study of
language. A synchronic study would look at the system as it is at a given point
in time, while a diachronic study will try to show how a certain state of the
system was arrived at historically. Change, however, is highly controlled.
Saussure emphasises this in two (seemingly contradictory) ways. On the one
hand, he insists on the immutability of the sign:
 

The signifier, though to all appearances freely chosen with respect to the
idea that it represents, is fixed, not free, with respect to the linguistic
community that uses it. The masses have no voice in the matter and the
signifier chosen by language could be replaced by no other. This fact,
which seems to embody a contradiction, might be called colloquially ‘the
stacked deck’. No individual, even if he willed it, could modify in any way
at all the choice that has been made; and what is more, the community
itself cannot control so much as a single word; it is bound to the existing
language.

(71)
 
The system of language transcends the choices of any individual user, and
therefore has stability. Because the users of language have to operate within the
system of language they inherited, and because their understanding of language
is constituted by that system, they cannot break out of it. The system
perpetuates itself in a way that guarantees its integrity. That is what Saussure
means when referring to language as ‘the stacked deck’. On the other hand, he
also insists on the mutability of the sign:
 

Time, which insures the continuity of language, wields another influence
apparently contradictory to the first: the more or less rapid change of
linguistic signs. In a certain sense, therefore, we can speak of both the
immutability and the mutability of the sign. In the last analysis, the two facts
are interdependent: the sign is exposed to alter-ation because it perpetuates
itself. What predominates in all change is the persistence of the old
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substance; disregard for the past is only relative. That is why the principle of
change is based on the principle of continuity.

(74)
 
This apparent contradiction is a result of the arbitrary nature of the sign. If the
sign had a natural or essential meaning, it would always remain exactly the
same. If it was up to an individual speaker to reallocate the meaning, the
meaning would change instantaneously when the signifier becomes associated
with another signified. Neither of these two possibilities reflects the way
language works. Because the relationship is arbitrary, and only has significance
in terms of the system, there is no ‘essence’, nor is there instantaneous change
of isolated signs. ‘Regardless of what the forces of change are, whether in
isolation or in combination, they always result in a shift in the relationship
between the signified and the signifier’ (75). Change can only be traced in
terms of the difference that is produced between a previous and a new set of
relationships, and this is the result of an evolutionary process. Saussure has the
following to say about the evolution of language:
 

Nothing could be more complex. As it is a product of both the social force
and time, no one can change anything in it, and on the other hand, the
arbitrariness of its signs theoretically entails the freedom of establishing just
any relationship between phonetic substance and ideas. The result is that
each of the two elements united in the sign maintains its own life to a degree
unknown elsewhere, and that language changes, or rather evolves, under the
influence of all the forces which can affect either sounds or meanings. The
evolution is inevitable; there is no example of a single language that resists
it. After a certain period of time, some obvious shifts can always be
recorded.

(76)
 
Saussure’s argument is that language, even an artificial language like
Esperanto, can only be controlled as long as it is not in circulation. As soon
as it is used by a community, it will adapt and change. Saussure also insists
that the system as a whole is never modified directly, but only elements of the
system (84). The changed elements, however, interact with the rest of the
system, and in such a way the whole system is eventually changed. The result
is not a new, completely different system, but rather a transformation of the
old system (85). There is also no external telos that provides a direction for
change; change is the result of contingencies arising in the context where
language is used. This context, Saussure (77, 78) stresses quite explicitly, is
the social context provided by the community of speakers who use the
language. In terms of a general theory of complex systems, one would say
that these dynamics of the system of language are a result of the way in
which the system self-organises in order to meet the needs of the community
(see Chapter 6).
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Despite his description of the linguistic domain as a system of
differences in which the elements are constituted only by their relationships,
Saussure insists on a number of general distinctions within that domain.
Apart from the distinction between signifier and signified, there are
distinctions between the synchronic and the diachronic, the morphological
and the phonological,  and the syntagmatic and the paradigmatic.
Syntagmatic relations are those which concern the specific sequence in
which a number of linguistic signs are used to form a sentence.
Paradigmatic relations are those which apply between a sign and all the
other signs that could replace it. It is as if the system of relations does not
satisfy his need to describe language. He has to add a set of general
distinctions to provide a stronger structure, even though he realises that
none of these distinctions functions on its own. There is always a dialectical
relationship between the opposites (Culler 1976:50).

A further unexpected element of Saussure’s description of language is his
insistence on the primacy of spoken language over written language. For
Saussure (1974:24–25), writing is but an image of the signs which find their
true manifestation in the spoken form. It is an image that obscures the true
nature of the sign to such an extent that he refers to it as ‘the tyranny of
writing’ (31). If one adds to this insistence on the importance of spoken
language his original definition of the sign as a ‘psychological entity’ (66),
language acquires a personal, subjective nature that is opposed to his
description of it as a transpersonal system. It is as if Saussure on the one hand
denies that a sign has an essential nature, but on the other hand insists that the
individual speaker somehow gets it right. This tension will be examined
further in the next section where we look at the way in which Derrida argues
for the primacy of writing. Saussure’s insistence on the priority of spoken
language results in giving priority to the mental state of the speaker, to the
concept she/he has in mind, and therefore to the signified. The signifier
becomes the token of the signified, its representation. However, with an
insistence on the primacy of writing, this process is reversed: now the
signified has no special status, it becomes another signifier whose meaning is
not present when it is used, but has to be traced through the whole system of
interacting signifiers.

LANGUAGE AS A SYSTEM OF SIGNIFIERS ONLY

Saussure introduced a system of language in which linguistic components are
not assigned identity by means of rules, but derive their meaning from their
relationships with all the other components. At first glance this appears to entail
a fairly radical shift. However, if one considers Saussure’s insistence on both
the stability of the system and the evolution of the system in a linear temporal
dimension, it becomes clear that the mechanisms of the system can be given a
fairly conventional description. Harland (1987:136) describes it as a
‘simultaneous system’ in the following way:  
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…all words together stand still and stable in a total simultaneous system.
Simultaneous, in that the system only balances if words push against
each other at exactly the same time; total, in that the system only
balances if there are no internal gaps to give words room for falling, and
no surrounding void to give words room for dispersing. For a state of
perfect equilibrium, words need to be packed tightly up together within a
closed space.

 
Ultimately, Saussure understands language as a system in which every word has
its place, and, consequently, its meaning. The system does evolve, but it
remains in a state near equilibrium. However, complex systems, like language,
do not operate near equilibrium, and the relationships between the components
of the system are non-linear and dynamic. Words, or signs, do not have fixed
positions. The relationships between signs are not stable enough for each sign
to be determined exactly. In a way, interaction is only possible if there is some
‘space’ between signs. There are always more possibilities than can be
actualised (Luhmann 1985:25). The meaning of a sign is the result of the ‘play’
in the space between signs. Signs in a complex system always have an excess of
meaning, with only some of the potential meaning realised in specific
situations.

How do we talk about systems with characteristics like these? How do we
describe the dynamics of interaction if the components are not fixed in a
‘simultaneous system’? In an attempt to answer these questions, a look at
Derrida’s deconstruction of Saussure might be helpful.

Derrida’s critique of Saussure’s description of the sign is related to his
critique of a tendency in the whole tradition of Western philosophy, which he
calls the ‘metaphysics of presence’. In the case of Saussure, the metaphysics
of presence is affirmed by his insistence that the sign has two components,
the signifier and the signified, of which one, the signified, is mental or
psychological (Saussure 1974:66). This would imply that the meaning of a
sign is present to the speaker when he uses it, in defiance of the fact that
meaning is constituted by a system of differences. That is also why Saussure
insists on the primacy of speaking. As soon as language is written down, a
distance between the subject and his words is created, causing meaning to
become unanchored.

Derrida, however, argues that Saussure has no reason to be anxious about
this state of affairs. He insists that the distance between the subject and his
words exists in any case; that the meaning of the sign is always unanchored,
even when we speak. Thus, the signified (or ‘mental’ component) never has any
immediate self-present meaning. It is itself only a sign that derives its meaning
from other signs. Such a viewpoint entails that the sign is, in a sense, stripped
of its ‘signified’ component. Since the signified is also constituted through a
system of relationships, it functions just like a signifier. The signified is nothing
but another signifier that has to take its position in the endless interaction
between signifiers. Meaning is never simply present and therefore we cannot
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escape the process of interpretation, even when the speaker is in front of us.
That is why Derrida chooses writing—the ‘signifier of the signifier’ (Derrida
1976:7), that which always already has distance—as a model of the linguistic
system:
 

Now from the moment that one considers the totality of determined signs,
spoken, and a fortiori, written, as unmotivated institutions, one must exclude
any relationship of natural subordination, any natural hierarchy among
signifiers or orders of signifiers. If ‘writing’ signifies inscription and
especially the durable institution of a sign (and that is the only irreducible
kernel of the concept of writing), writing in general covers the entire field of
linguistic signs.

(Derrida 1976:44)
 
The deconstruction of the sign, i.e. the removal of its mental component, is
closely linked to the deconstruction of the subject and of consciousness. In both
cases the deconstruction resists the notion of presence. If there is no signified
whose content is immediately present to consciousness, but only signifiers
whose meaning is unstable and excessive, then the content of consciousness
becomes excessive; it cannot be made complete. The subject is no longer in
control of meaning that can be made present, but is itself constituted by the
play of signifiers.

Put in the language of systems theory, Saussure still understands language as
a closed system, whereas Derrida wants to argue for language as an open
system. In denying the metaphysics of presence, the distinction between
‘inside’ and ‘outside’ is also problematised. There is no place outside of
language from where meaning can be generated. Where there is meaning, there
is already language. We cannot separate language from the world it describes.
‘The outside bears with the inside a relationship that is, as usual, anything but
simple exteriority. The meaning of the outside was always present within the
inside, imprisoned outside the outside, and vice versa’ (Derrida 1976:35). Only
when the distinction between inside and outside is ruptured, can the system
become an open one.

If the system of language is as open as Derrida suggests, if the relationships
are always playfully changing in an unpredictable way, how is it possible to say
anything about these relationships? In some sense we cannot say anything
permanent and specific about them that would apply to language in general.
The play of signifiers does, however, create ‘pockets of stability’ (Stofberg
1988:224), otherwise communication could not get started. Within these
pockets a more rigorous analysis of relationships is possible, as long as it is
understood that the stability is not permanent or complete, that meaning
remains a result of the process of interaction between signifiers. This interaction
is explained by Derrida in terms of, amongst others, two concepts: ‘trace’ and
‘différance’. He stresses that they are actually neither concepts nor words
(Derrida 1982:7), that they cannot be given a full meaning. Perhaps Derrida is
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complicating matters unnecessarily, but his intention seems to be to prevent
these two terms from acquiring fixed meanings. It is by their very instability
that they allow us to say something more general about language. I will attempt
to describe these terms in a meaningful way.

Saussure defines the meaning of a sign in terms of the relationships it has
with all the other signs in the system. For example, the meaning of the sign
‘brown’ is determined not only by the way in which it differs from the signs
‘blue’, ‘green’ and ‘red’, but also by the way it differs from signs like ‘dog’,
‘spring’ and ‘unwieldy’. The sign has no component that belongs to itself only;
it is merely a collection of the traces of every other sign running through it.
This is emphasised by Derrida. The sign is an entity without any positive
content. Because it is constituted by nothing more than relationships, it consists
only of traces. The implication is clearly that the traces constituting a specific
sign do not emanate from other signs that are self-sufficient and therefore have
some positive content to bestow. On the contrary, all signs are constituted by
the system of differences.
 

The play of differences involves syntheses and referrals that prevent there
from being at any moment or in any way a simple element that is present
in and of itself and refers only to itself. Whether in written or in spoken
discourse, no element can function as a sign without relating to another
element which itself is not simply present. This linkage means that each
‘element’—phoneme or grapheme—is constituted with reference to the
trace in it of the other elements of the sequence or system. This linkage,
this weaving, is the text, which is produced only through the
transformation of another text. Nothing, either in the elements or in the
system, is anywhere simply present or absent. There are only, everywhere,
differences and traces of traces.

(Derrida 1981:26)
 
There are no fixed reference-points from where traces emanate, neither spatially
nor temporally. It is not possible to trace the origin of the trace synchronically
or diachronically. One can attempt to track down the various routes of the trace,
but one will never arrive at a starting-place or an origin which is not already
divided by difference.2

It is one thing to describe the sign as consisting only of traces, but it should
also be possible to say something about the ‘mechanism’ of interaction of the
trace. Here our understanding of the dynamics of complex systems can be
enhanced by Derrida’s notion of ‘différance’. This a complex notion with
several layers of meaning. It refers in the first place to the description of
language as a system of differences. Traces are traces of difference. In the play
of differences meaning is generated. However, as this play is always in
progress, meaning is never produced finally, but continuously deferred. As soon
as a certain meaning is generated for a sign, it reverberates through the system.
Through the various loops and pathways, this disturbance in the traces is
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reflected back on the sign in question, shifting its ‘original’ meaning, even if
only imperceptibly. Because no trace is in a privileged position, the word
‘defer’ can be read not only in the temporal sense, but also in the sense of
‘submitting to’. Each trace is not only delayed, but also subjugated by every
other trace.

The mechanism of interaction between traces entails still more than
differing/deferring. The mechanism is not a passive characteristic of the
system, nor the result of a positive act. The process of différance remains
suspended somewhere between active and passive. The sign is produced by
the system, but is at the same time also involved in the production of the
system. The characteristics of the system emerge as a result of the différance
of traces, not as a result of essential characteristics of specific components of
the system.3

An element of différance that is not apparent from its polysemia is that of
‘spacing’. In order for signs to interact by means of traces and différance, they
cannot, as we have seen above, be stacked tightly against each other. Space is
required as a site of action. The suspension between active and passive is
apparent here as well: différance can only take place if there is a certain space,
a space maintained through the dynamics of différance. Différance thus has
both spatial and temporal characteristics (see Derrida 1982:13).

Both concepts, trace and différance, are employed to say something about
the inner workings of language, or rather—since language becomes the model
of any system of interacting signs—of all complex systems. In what follows I
will argue for specific links between the post-structural theory and network
models of complexity.

NETWORKS AND SYSTEMS

At about the same time that Saussure developed his theory of language
(around the turn of the century), Freud proposed a model for the functioning
of the brain. This early work, known as the Project for a Scientific
Psychology—published posthumously (Freud 1950)—is not as well known as
his mature works, but it remains indispensable for a full understanding of
Freud. What is more, as far as the functioning of the brain is concerned, it is
largely compatible with contemporary neurological theory (see Pribram and
Gill 1976).

Freud’s model consists of neurons that interact through pathways which
channel the energy in the brain. This energy comes both from outside the
body (perception), and from internal sources. Pathways resist the flow of
energy, unless it is used often (here we have one of the earliest formulations
of the ‘use-principle’, or Hebb’s rule). The characteristics of the brain are
determined by the various patterns of energy flowing through it. Two
important aspects of this model deserve attention. In the first place the role of
memory should be underscored. ‘Memory’ refers here to the physical
condition of the brain: which pathways are breached (‘facilitated’) and which
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are not. Memory is not a cognitive function performed by a conscious subject,
but an unconscious characteristic of the brain (which is an organ, part of the
body). Memory is the substrate that sets up the conditions for all the
functions of the brain.

The second important characteristic of Freud’s model concerns the role of
the neurons. No neuron is significant by itself. Memory does not reside in any
neuron, but in the relationship between neurons. This relationship, Freud
(1950:300) declares, is one of differences. What we have, therefore, is a model
structurally equivalent to Saussure’s model of language: a system of
differences.4 Taking Derrida’s reading of both Freud and Saussure as a cue, we
can develop a description of the dynamics of networks of interacting neurons,
using the theoretical equipment developed in the post-structural approach to
language.

Derrida uses the concept of ‘trace’ to point to the influence that each
component in the system of language has on every other component. The notion
of trace is intimately linked with the notion of memory—memory in the material,
non-subjective sense described above. In a neural network the function of
memory is performed by the weights of the relationships between neurons.
Because of the ‘distributed’ nature of these relationships, a specific weight has no
ideational content, but only gains significance in large patterns of interaction. It
therefore seems fruitful to suggest that the two terms—‘weight’ and ‘trace’—can
in this context be used to describe each other. To think of weights in a neural
network as traces (in Derrida’s sense) helps to understand how meaningful
patterns in a network result primarily from the condition of the weights. To think
of traces in language as weights helps us to conceive of them not as something
ephemeral, but as something actual, albeit an actuality that is sparse.

Similarly, Derrida’s concept of différance can be used to describe the
dynamics of complex neural networks. The analogy works in the following
way. If an ensemble of neurons (whether real or artificial) generates a pattern of
activity, traces of the activity reverberate through the network. When there are
loops in the network, these traces are reflected back after a certain propagation
delay (deferral), and alter (make different) the activity that produced them in
the first place. Since complex systems always contain loops and feedback,
delayed self-altering will be one of the network’s characteristics. This
characteristic has much in common with the notion of différance—a concept
that indicates difference and deference, that is suspended between the passive
and active modes, and that has both spatial and temporal components (Derrida
1982:1–27). According to the post-structural ‘logic’ of trace and différance, no
word in language (or neuron in the brain) has any significance by itself.
Meaning is determined by the dynamic relationships between the components
of the system. In the same way, no node in a neural network has any
significance by itself—this is the central implication of the notion of distributed
representation. Significance is derived from patterns of activity involving many
units, patterns that result from a dynamic interaction between large numbers of
weights.
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Turning to practical neural networks being used at present to solve problems
(mainly in the field of pattern recognition), some qualifications have to be
made. Practical networks are generally designed to perform specific tasks. They
have a limited number of neurons and usually a limited pattern of
interconnections. Limits are also placed on the values of the weights and the
transfer functions of the neurons. Furthermore, a network is designed for a
specific problem, and the weights are usually only altered during a learning
phase. They are, generally speaking, not flexible enough to address wide-
ranging problems. In this sense, neural networks are structural rather than post-
structural, and can be described quite adequately in Saussurian terms. Post-
structural concepts do become important, however, should we want to stretch
the capabilities of present networks, especially in the context of AI. Networks
more successful at mimicking human behaviour will have to be much more
flexible. They should be able to innovate under novel conditions, i.e. they will
have to be able to move beyond predetermined limits. Towards these ends,
insights gained from post-structuralism may contribute enormously.

A detailed analysis of self-organisation and of the representation of
information in complex systems will follow. Before that, as a kind of interlude,
I will briefly look at the arguments of someone who is incapable of seeing
anything useful in the post-structural approach: John Searle.



4 John Searle befuddles

Before we continue our development of a postmodern perspective on
complexity, I will examine the arguments of a thinker who explicitly rejects
such an approach. John Searle is perhaps not purely an analytical philosopher,
but it will become clear from his arguments that he follows a strictly rule-based
approach to complex systems like language and the brain. From within such a
framework it is possible, he believes, to dismiss Derrida on the one hand, and
demolish the project of artificial intelligence on the other.

In 1980 Searle published an article in the prestigious journal Behavioral
and Brain Sciences, under the title ‘Minds, Brains, and Programs’. Intending
to supply a knock-down argument against any position which assumes that a
computer running a program can ever be said to think, the article triggered a
debate that has continued unabated ever since. As the journal practises ‘open
peer commentary’, the original article was accompanied by twenty-eight
critiques, followed by more in subsequent issues, all answered by Searle with
great confidence (Searle 1982, 1985). The debate was not only continued in
other journals (P.M.Churchland and P.S.Churchland 1990; Denning 1990;
Harnad 1989; Rapaport 1986) and books (Bierwisch 1990; Münch 1990;
Penrose 1989), but the original article was included in many anthologies of
articles important for cognitive science and artificial intelligence (Haugeland
1981; Hofstadter and Dennett 1982). After a series of lectures on the BBC,
published as Minds, Brains and Science (Searle 1984), the debate spilled over
into the popular press, where it still surfaces regularly. Despite countless
telling counter-arguments, Searle maintains his position with serene
confidence (Searle 1990).

Why has this text received so much attention? The subject of intelligent
computers—or artificial intelligence (AI)—is certainly generating a great deal
of interest. Apart from being a strong and well-supported scientific research
programme, it has caught public attention mainly as a result of a few good
popular books (Hofstadter 1980; Penrose 1989—the first ‘for’, the second
‘against’). AI also has a great deal of philosophical interest. Its failure or
success has important implications for our understanding of complex systems
(including human beings) and how they work. It also fits into a general
philosophical tradition and strategy—one that goes by the generic name of
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‘analytical’. The status of a large number of theories, especially ones
concerning brains and minds, would be influenced radically should a conclusive
answer to the problem of AI be found. Searle’s paper thus deals with a
contentious and exciting issue.

But why should this specific paper, in a field already swamped with
publications, generate so much interest? For all the wrong reasons. Searle does
not provide a particularly clear argument, and the subsequent debate does not
really illuminate the problem to any greater degree. It is blindly accepted by
everyone who wants to dismiss AI, and viciously opposed by AI supporters. My
suspicions are awakened by the ease with which the confrontation takes place.
This fifteen-year-old saga of accusations and counter-claims has the distinct
flavour of a family feud. In my analysis of his position I will attempt to show
that Searle is not a major opponent of the artificial intelligentsia, but, rather,
that he is one of the clan.

THE CHINESE ROOM

Searle’s argument against any strong form of AI takes the form of a
Gedankenexperiment (Searle 1980:417–418). He asks us to imagine an
English-speaking man who knows absolutely no Chinese, sitting in a room.
He is given a bunch of Chinese symbols along with a rule-book that
formally describes the Chinese syntax. To him the symbols are meaningless
squiggles, but by following the rules he can manipulate them. If he is given
a set of symbols from outside, he can generate a new set and give it back.
From outside the room it appears as if the person inside can speak Chinese
since he responds appropriately to prompts and questions, yet the person
inside does not understand a word of Chinese in the way that he does
understand English. He is just following a set of formal rules. Since that is
exactly what a computer does—follow a set of rules—no computer will
have an ‘understanding’ of what it is doing, and can therefore not be said to
think.

The scenario sketched here is one quite familiar to the AI community. It
closely resembles the test proposed by the computing pioneer Alan Turing
(1950) for establishing whether a machine is intelligent. Basically, the test
consists of having an extended conversation with a hidden computer via a
terminal. If at the end of the conversation you cannot say whether you talked
to a person or a machine, the computer is said to have passed the Turing test.
Although the prominence given to linguistic capabilities has been questioned
by some—like Harnad (1989), who would like to introduce a robotic version
called the Total Turing Test—the Turing test remains a generally accepted
benchmark for machine intelligence. Searle claims to have shown
conclusively that a computer can pass the Turing test for understanding
Chinese, yet it cannot really understand or think. By implication this result
discredits the Turing test as an adequate test for intelligence (Searle
1980:419).
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Up to this point Searle seems to provide a clear and concise argument that
could provide the starting-point for an interesting discussion. However, he
immediately anticipates a number of critical replies, and defends his
conclusions against them. This leads him into troubled waters, a fact that
becomes apparent when we examine some of these replies, and Searle’s
responses, closely:
 
• The systems reply (419): Saying that the man doing the manipulation

cannot be said to understand Chinese is like saying the central processor
of a computer cannot understand. This ignores the all-important rule-book
(or program). The whole system together—man, rule-book and symbols—
can be said to understand Chinese, and therefore a computer plus its
program can also. To this Searle responds by claiming that there is
nothing that prevents the man from memorising the rule-book. He will
then contain the whole system, yet still not understand what he is doing
by following the rules.

• The robot reply (420): Suppose the Chinese program forms part of a system
controlling a robot that not only gives appropriate answers, but also
performs the appropriate actions. Such a robot would have genuine
understanding. Searle responds by saying that the controlling program
makes no distinction between inputs coming from the robot’s various
‘perceptual apparatus’. To the program, all information consists merely of
symbols that are manipulated formally, and this does not imply any
understanding.

• The brain simulator reply (420–421): Suppose the working of a brain (that
can speak Chinese) is simulated to such detail that all the functional
processes going on inside it are reflected. Such a simulation must be able to
understand Chinese, otherwise one would be forced to deny that the original
Chinese speaker, the one whose brain is being simulated, understands
anything he says. Searle remains undaunted. This simulation, he claims, can
be implemented by someone operating an elaborate system of pipes and
valves, where the pipes and valves represent the structure of the brain, right
down to the level of neurons and synapses. He continues:  

 
Now where is the understanding in this system? It takes Chinese as input,
it simulates the formal structure of the synapses of the Chinese brain, and
it gives Chinese as output. But the man certainly doesn’t understand
Chinese, and neither do the water pipes, and if we are tempted to adopt
what I think is the absurd view that somehow the conjunction of man and
water pipes understands, remember that in principle the man can
internalize the formal structure of the water pipes and do all the ‘neuron
firings’ in his imagination. The problem with the brain simulator is that it
is simulating the wrong things about the brain. As long as it simulates only
the formal structure of the sequence of neuron firings at the synapses, it
won’t have simulated what matters about the brain, namely its causal



John Searle befuddles 51

properties, its ability to produce intentional states. And that the formal
properties are not sufficient for the causal properties is shown by the water
pipe example: we can have all the formal properties carved off from the
relevant neuro-biological causal properties.

(421; my emphases)
 
In the reaction to Searle’s article, there are a large number of other critiques,
but he uses the answers to these three (the systems reply, the robot reply and
the brain simulator reply) to form the basis of his defence against them all.
Most counter-arguments are reduced to one of these types, and then his
canned answer to that type of reply is offered as refutation. The ease with
which it is done is a result of the fact that Searle’s claims are tautologous, and
that they can therefore be used to counter any claim whatsoever, or to bolster
any argument against strong AI. The tautologies become clear in the final
pages of Searle’s text. He concludes his argument by asking what it is that
brains have that enable them to understand and think? How do they differ
from programs? Searle’s answer is that they have Intentionality: ‘[C]ertain
brain processes are sufficient for intentionality. Instantiating a computer
program is never by itself a sufficient condition for intentionality’ (417).
What, may one ask, is ‘Intentionality’? In the Chinese Room article he
provides no definition, but in his book entitled Intentionality (Searle 1983),
where, incidentally, the word is always capitalised, one finds this:
‘Intentionality is that property of mental states and events by which they are
directed at or about or of objects and states of affairs in the world’ (1). His
formulation in the following passage is revealing:
 

Intentionality is not an ontological problem at all. What, for example, is a
belief really?…

A belief is a prepositional content in a certain psychological mode, its
mode determines a mind-to-world direction of fit, and its prepositional
content determines a set of conditions of satisfaction. Intentional states have
to be characterized in Intentional terms if we are not to lose sight of their
intrinsic Intentionality. But if the question is ‘What is the mode of existence
of belief and other Intentional states?’ then from everything we currently
know about how the world works the answer is: Intentional states are both
caused by and realized in the structure of the brain.

(14, 15)
 
‘Intentional states have to be characterized in Intentional terms if we are not to
lose sight of their intrinsic Intentionality.’ This claim is either tautologous, or
just plain nonsense. I cannot see in what sense a computer program that has to
open, say, a valve under certain conditions is less ‘about’ something in the
world than a belief in the brain is, unless there is something mystic to the
substance of the brain. Such a hypothesis would seem to be substantiated by the
following statement from the Chinese Room paper: ‘Stones, toilet paper, wind,
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and water pipes [all materials from which computing devices could be
constructed] are the wrong kind of stuff to have intentionality in the first
place—only something that has the same causal powers as the brain can have
intentionality’ (Searle 1980:423). If you cut out the metaphysics, you end up
with a gross circularity: brains differ from programs because brains have
Intentionality and programs do not. What is Intentionality? Intentionality is that
which distinguishes brains from programs.

This is not the end of the circles and contradictions. On the last page of
the Chinese Room paper we find the following:’ “Could a machine think?”
My own view is that only machines could think, and indeed only very
special kinds of machines, namely brains and machines that had the same
causal powers as brains’ (424). What are these ‘causal powers’, and where
do they come from? Searle gives us no clues, but continues: ‘Of course the
brain is a digital computer. Since everything is a digital computer, brains are
too’ (424). That after claiming in the ‘brain simulator reply’ (420) that no
matter how accurately a brain is simulated, the simulation remains a formal
system, and is therefore incapable of Intentionality! I give up. The most
plausible conclusion to be drawn from all this seems to be that only digital
computers can understand Chinese, and that any person who has learnt it
cannot.1

Why, then, has this flapdoodle sustained a lively debate for nearly two
decades? Because, I claim, Searle is a closet member of the AI fraternity. He
comes up with an argument in such familiar terms that they can all have a jolly
good time in shooting it down. The confrontation takes place with such ease
because they all share a set of basic premises. These premises are what should
be scrutinised closely.

THE FRAMEWORK OF THE CHINESE ROOM

Before analysing Searle’s implicit assumptions, I want to return to the claim
that his argument has a metaphysical flavour. In his discussion of Searle’s
argument, Richard Rorty brings the whole issue into an interesting perspective
(Searle 1980:445–446). Searle, he says, goes about his argument in exactly the
same way as would a fundamentalist Catholic defending transubstantiation:
 

Suppose a demythologizing Tillichian theologian urges that we think of the
Eucharist not in terms of substantial change, but rather in terms of
significance in the lives of the faithful. The defender of orthodoxy will reply
that the ‘natural/supernatural distinction cannot be just in the eye of the
beholder but must be intrinsic; otherwise it would be up to any beholder to
treat anything as supernatural.’

(445)
 
Just as the orthodox theologian knows in advance what would distinguish
natural from supernatural, and what the special ‘causal powers’ of the
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supernatural are, Searle knows in advance that a computational process cannot
be a cognitive state because it cannot have the same ‘causal powers’.

In his reply to Rorty, Searle (453) rejects the parallel as ‘totally
irrelevant’, since Rorty merely supplies an argument with similar form. The
truth of the argument depends on the truth of the premises, and Searle then
immediately states what he takes to be his own premises: They are such
things as that people have mental states such as beliefs, desires and visual
experiences, that they also have brains, and that their mental states are
causally the products of the operation of their brains’ (453). I assume that
these premises are supposed to be taken as ‘common sense’, and that
nobody in their right mind would dispute them, because Searle does not
argue for them at all. Staying within the framework of his argument, one
could claim that mixing these premises with a few dollops of fresh
Intentionality would produce all Searle’s claims in a trivial way, but perhaps
it is time to question the frame itself. These ‘common sense’ premises—
whether we accept them or not—obscure another set of premises. These are
never stated explicitly, but are central to the whole Gedankenexperiment.
They concern the nature of language.

The object in the Chinese Room on which Searle’s whole argument turns is
the book containing the rules for manipulating the symbols. Although some
commentators do comment on the probable size and complexity of such a rule-
book, there does not seem to be much concern about the possibility of such a
book. Searle, not daunted by practicalities, blankly states its existence. This
statement points to at least three important assumptions implicit in Searle’s
theory of language.

In the first place, he assumes that a formal grammar for a natural language
can be constructed and presented in the form of a lookup table. The second
assumption, closely linked to the first, presupposes a clean split between syntax
and semantics. This point Searle states explicitly: The rules specify the
manipulation of the symbols purely formally, in terms of their syntax not their
semantics’ (Searle 1984:32). Searle’s concept of ‘rule’ therefore appears to be
identical to the way in which Chomsky uses it in his early formulations, namely
in the sense of production rule (Chomsky 1957).

Searle’s third assumption concerns the nature of meaning. In Speech Acts
he rejects the notion of ‘meaning is use’ as too vague (Searle 1969:146). This
is replaced by a theory of ‘meaning as Intention’ (Searle 1983:160). We have
already encountered the vagueness of his notion of intention. How would it
support a theory of meaning? Searle’s position is the following:
‘Intentionality is precisely that feature of mental states, human or otherwise
[sic], that enables those states to represent other things’ (Searle 1979:197).
Searle supports a representational theory of meaning. This was already
apparent in his early works (cf. Searle 1969: Chapter 4), and has been
maintained more recently: ‘mental states are “symbolic” at least in the sense
that they represent objects and states of affairs in the world’ (Searle
1985:743).2
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What we now see is a conflation of notions concerning language and mind.
Neither Searle nor I would object to that. We agree that these issues are
inextricably intertwined. However, Searle should be more sensitive to the
complexities involved. To reduce the linguistic activity of answering a question
to the simple action of ‘replace squiggle-squiggle with squoggle-squoggle’
(Searle 1984:32) is a very threadbare way of arguing about what brains and
computers can and cannot do. To my mind there is also a contradiction involved
in denying dualism—something he accuses his AI adversaries of (Searle
1980:423)—but maintaining that there is a clean split between syntax and
semantics, and that after you have claimed that semantics is a characteristic
peculiar to the brain, a result of Intentionality.3

The most acrimonious confrontations are those between protagonists from
the same faction. It should therefore be clear why Searle picked this particular
fight, and why the response is so fervent. Both he and his adversaries share a
belief in a formal, rule-based theory of language in which the structure of
language can be described by pure syntax, and in which meaning is the result
of representation. There is no reason why they should not share the same theory
of mind. His adversaries have rubbed his nose in this fact time and time again,
but he stubbornly refuses to relinquish his idea of Intentionality. By Searle’s
own lights, Intentionality will remain a metaphysical concept as long as he
refuses the possibility of giving it a formal description. If you do not accept his
basic characterisation of language, and I do not, the whole Gedankenexperiment
never even gets going.

Let me state my position regarding the Chinese Room argument clearly:
apart from all its internal contradictions and blind spots, the whole argument is
irrelevant because it is based on a theory of language that ignores the
complexity of language. Searle blandly accepts that complex systems are, on a
philosophical level, no different from simple ones. ‘Replace squiggle-squiggle
with squoggle-squoggle’ contains, for him, the basic principles necessary to
manipulate language. The rest is mere detail. I am of the opinion that any
conclusions drawn from such a simplistic theory will be of little or no help in
saying things about the brain or machines.

After looking at Searle’s Chinese Room, it should come as no surprise that
he is contemptuously dismissive of post-structuralism.

SEARLE’S REJECTION OF POST-STRUCTURALISM

As Searle perceives himself to be the reigning champion of speech-act theory,
he saw it as his duty to take Derrida to task when the latter performed a
deconstructive reading of Austin. Searle, of course, knew what Austin actually
meant, and could therefore rectify Derrida’s mistakes. In the altercation that
developed between the two, it was again apparent that Searle is prone to
oversimplification.

One of the contributions made by Austin (1980) in his development of
speech-act theory was to argue that the meaning of an utterance depends on the
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context in which the speech act is performed, where ‘context’ includes the
social conventions pertaining to the act. There existed, however, a need to find
some measure of the success, or felicity, of a speech act. The generally
accepted solution is to suggest that the success of the act is determined by the
congruence of the intentions of the speaker and the given circumstances or
context. If they are properly matched, the correct meaning, or illocutionary
force, is conveyed, resulting in a successful speech act.

In an important essay entitled ‘Signature Event Context’, Derrida comes to
grips with exactly this point.4 For him, neither the intention of the speaker, nor
the context, is fixed enough to determine the correct meaning of any form of
communication. Because any utterance becomes untethered from its origin as
soon as the ‘tokens’ of which it consists—whether these tokens are the sounds
uttered by a speaker or words written down—are let loose, so to speak, the
intention cannot ‘accompany’ the linguistic act to control its interpretation. The
act of communication is always one of ‘dissemination’ (Derrida 1988:2). The
context, on the other hand, is also not given objectively. Derrida tries to show
‘why a context is never absolutely determinable, or rather, why its
determination can never be entirely certain or saturated’ (3).

The structural necessity that a sign be repeatable, i.e. that one should be
able to use it again and again, in different circumstances, is responsible for
the fact that a sign can operate in the radical absence of both sender and
receiver (7). Derrida calls this the iterability of the sign. This is also part of
the reason why Derrida claims that ‘writing’, rather than ‘speaking’, is a more
appropriate metaphor to use when discussing the basic nature of language.
The break with the speaker as ‘origin’ of meaning, and the absence of any
predeterminable receiver, preclude a ‘continuous modification of presence’ in
the process of communication. The sender, the receiver and the message can
never be ‘present’ to each other in order to guarantee the felicity of the
speech act. When we interpret a message, we have to do exactly that—
interpret. For a sign to be interpretable, it has to be recognisable as that
particular sign, and not any other. However, the meaning of what is repeated
is never identical. A sign has a history, and this history influences its
meaning. Each time the sign is used, it interacts with the other members of
the linguistic system, whereby its meaning is shifted, sometimes
imperceptibly, sometimes significantly. The notion of iterability describes
both the stability of the sign and the dynamics of its meaning, and is closely
linked to the notions of trace and différance.

Derrida’s analysis of language has important implications for our discussion
of complexity: it results in ‘the disruption, in the last analysis, of the authority
of the code as a finite system of rules’, as well as ‘the radical destruction of any
context as the protocol of the code’ (8). In sum, it argues against the possibility
of a rule-based description of language.

Searle (1977) reacted to Derrida’s paper, arguing that Derrida has
completely misrepresented Austin’s position, that he has confused iterability
with a general citationality, and that speech acts remain ‘datable singular events
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in particular historical contexts’ (208). Speakers and hearers can understand
new things because they are ‘masters of the sets of rules we call the rules of
language’ (208).

To this Derrida responded with a lengthy reply in which he not only argued
for his position, but, above all, demonstrated it. He showed how, despite his
best efforts, Searle cannot prevent his words from shifting their meaning. This
was demonstrated by merely quoting (i.e. iterating) Searle’s words under
circumstances where the context is not determinable. Linking Searle’s claims to
be the true interpreter of Austin’s work with the copyright claim Searle places
at the start of his article, Derrida implies that Searle tries to run a closed shop—
hence the title Limited Inc. He also makes a mocking of the copyright claim
accompanying the article by quoting every word of Searle’s reply somewhere in
his article, including the copyright claim. Through this series of
misrepresentations Derrida seems to suggest that no real communication has
taken place between them, that the confrontation cannot even be said to have
commenced.

The Derrida-Searle altercation has important implications for the Chinese
Room argument specifically, and for our discussion of complexity in general. In
the first place, it denies that ‘Intentionality’ can act as a final point of reference
for either the meaning of language or the fundamental characteristics of
consciousness. Not that Derrida denies the existence of intentionality: ‘the
category of intention will not disappear; it will have its place, but from that
place it will no longer be able to govern the entire scene and system of
utterance’ (Derrida 1988:18). The notion of Intentionality, which for Searle
clearly has metaphysical dimensions, can therefore not be used as a ready-made
explanation for the emergent properties of a complex system. The discussion
thus confirms Searle’s insensitivity to complexity, something of which Derrida
is quite aware: ‘One shouldn’t complicate things for the pleasure of
complicating,’ he says, ‘but one should also never simplify or pretend to be
sure of such simplicity where there is none. If things were simple, word would
have gotten around’ (119).

Should the Chinese Room have any effect on our deliberations? Not much,
I think. Continued attacks on, or defences of, Searle’s argument will not be of
real benefit to anybody. For that the Chinese Room is just too insubstantial.
Furthermore, there are fundamental difficulties involved in approaching
complex systems with formal models based on production rules. We have no
knock-down argument proving either the possibility or the impossibility of
machines that can think. That depends on our future success in modelling
complex systems—a contingent matter on which the jury is still out.
However, I do want to argue that it is unlikely that machines based only on
systems of production rules will be able to cope with, for example, natural
language. It is, of course, the argument of this book that connectionist
networks hold a certain promise in this regard. Patricia and Paul Churchland
(1990) feel that these networks are powerful enough to overcome Searle’s
objections (assuming it still needs to be done), but Searle (1990) sees nothing
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new in connectionism—a conclusion to be expected, given his old arguments
against brain simulations.

Most supporters of connectionism, including the Churchlands, defend their
position within the context of theories presently dominant in AI research. The
most important of these is a representational theory of meaning. For the
Churchlands at least, neural networks still represent the information in a
traditional way. I am not suggesting that the connectionist model in its present
form is a panacea for all our modelling woes. A lot of work still needs to be
done. I do suggest, however, that in the process of doing it, meaningful insights
can be gained from the theory of post-structuralism.

I want to conclude with a final objection to Searle’s argument and to the way
in which he presents it.5 It is only too easy to make Intentionality the kingpin of
all your arguments, but when asked what it is, you find it sufficient to say that it
is merely the ‘aboutness’ of the brain. It is equally facile to reduce language to
‘replace squiggle-squiggle with squoggle-squoggle’. Complex issues demand
complex descriptions, and a certain humility. Searle fails to acknowledge any
intellectual indebtedness and lacks a historical perspective. In a book with the
title Intentionality he mentions the name of Husserl only once in passing
(Searle 1983:65). Ideas are usually presented as if they have sprung perfect and
complete from his forehead. This complacency is also evident from the way he
sometimes responds to criticism. When Derrida’s two essays discussed above
were anthologised (Derrida 1988), Searle refused that his own article be
included. When he was recently presented with a volume of critical essays
(Burkhardt 1990) after he had promised to react to them, all that the editor
received was the ‘laconic “Hm” of the “famous man”’ (26). To Derrida’s
(1988:29) question ‘Where is Searle? Do I know him?’ we can perhaps reply:
would it make any difference?



5 Problems with representation

Models of complex systems will have to be as complex as the systems
themselves. They will also have to emulate these systems’ capacity to encode
and remember information pertaining to their environment and how to cope
with that environment. We have suggested that classical theories of
representation do not provide an adequate description of this process. What are
the problems presented by representation and why are they important for theory
and practice? What are the implications of different methods of representation
for our models of complex systems and how do they influence the design and
performance of these models? These questions form the framework of this
chapter.

A theory of representation is essentially a theory of meaning. It is an attempt
to explain how the words of our language or the structures in our brain become
meaningful, by trying to define relationships between these words or structures
and the world. The theory must, however, also explain how these relationships
come about. We can use mathematics as an example. The symbols of
mathematics have no meaning by themselves. They are provided meaning by
means of a definition (e.g. let x stand for the temperature of the water). The
symbol is then said to ‘represent’ that which it stands for. In well-defined
problems the relationships between symbols and that which they represent can
be specified unambiguously and it is easy to interpret the results. For example,
given the laws of Newton, and taking care to use correct representations, the
problems of classical mechanics can be solved with great accuracy. If a series
of calculations provides you with the answer t=10.9, you only have to know
what t represents (a matter of a priori definition) in order to interpret the
results.

Unfortunately, the ease with which symbols can be made to represent
something vanishes when we deal with complex problems, problems for
which clear definitions and well-defined borders are less easily found. From
the perspective of traditional mathematics, these problems were seen as
intractable, but the phenomenal rise in the power of computers has turned
attention back to complex issues such as the modelling of natural language,
the modelling of human sensory capabilities (e.g. pattern recognition,
computer vision), the simulation of higher cognitive processes (reasoning,
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decision-making) and sophisticated motoric behaviour (robotics). In these
cases the process of representation is far from straightforward. How does a
word in a language represent something? How do experts represent their
knowledge? Does a pattern contain certain explicit features that can be
represented in a pattern-recognition machine? The issue is compounded by
the fact that with many of these systems, especially living systems, it is not
possible to grant an important role to an external designer without very
serious metaphysical implications. To make some transcendental principle
(like God or Universal Ideas) the first premise of your theory of
representation begs too many questions. It is therefore also necessary to
explain the process by which the relationships between symbols and the
world are established. These are the problems faced by those who wish to
develop computational models of complex systems, and they are not new.
They form part of a long tradition of philosophical reflection on the
relationships between language, the mind and the world.

In the context of the computational modeller, it seems as if the problem of
representation can be addressed, broadly speaking, in two ways. In the first
place we have the rule-based approach of classical computer science and AI.
Here there is a basic acceptance of the adequacy of logical calculus—a kind
of rationalist approach. In the second place we have the connectionist or
neural network approach, which has a more empirical flavour. For both these
approaches the problem of representation is the central one (Brooks
1991:139; Guenthner et al. 1986:39). In the case of neural networks, the
problem of representation translates into the following questions: What is the
relationship between the structure of the network (‘structure’ usually refers to
the values and connection patterns of the weights) and the phenomena that
caused it? How does a network represent the information of the domain it
models? Is it possible to analyse the structure of a successful network in order
to determine how it solved the problem? How do you use a priori knowledge
to predetermine the structure of a network, should such information be
available? Are rule-based representations and network representations
reducible to each other?

These are all issues that have practical significance for the designer and user
of neural networks. This chapter will attempt to address them by clarifying
those all-important pre-mathematical considerations that determine the
framework for any specific model. It will take the form of a critique of the
classical notion of representation. This will be followed by an analysis of the
notion of distributed representation—as found in connectionist networks. It will
be argued that this approach puts the whole notion of representation under
pressure. If it can be argued convincingly that connectionism does not rely on a
strong theory of representation, this will further emphasise the importance of
post-structural theory for our understanding of complex systems. The technical
discussion of the problem of representation will therefore be followed by a look
at the way in which some postmodern philosophers (specifically Baudrillard
and Derrida) deal with it.
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TRUE REPRESENTATION  

There is only one language suitable for representing information—whether
declarative or procedural—and that is first-order predicate logic. There is
only one intelligent way to process information—and that is by applying
deductive inference methods.  

This statement by Kowalski (quoted in Guenthner et al. 1986:41) epitomises the
computer science attitude to the problem of representation. Perhaps one should
admire the bravery involved in making such a bold statement, but such blind
faith in logic is simplistic. Yet, despite a number of qualifications and
reservations, most researchers involved in the modelling of complex systems
will implicitly or explicitly support Kowalski’s credo. I do not wish to
underestimate the importance of logic, but it is also important to realise its
limitations. I will attempt to bring these limitations to the fore by analysing a
theory of representation that roughly accepts this credo. Such a critique will
hopefully provide support for the connectionist approach, an approach that does
not take deductive inference and first-order logic as its point of departure.

Functionalism

Two complex systems—the human brain and natural language—are of
particular interest. Since they seem to solve (or bypass) the problem of
representation, they provide the existence proof that a solution is possible. If
these two systems can be modelled successfully, the problem should largely
have been solved. Moreover, these two systems seem to be inextricably
intertwined—a successful model of one would imply a successful model of the
other. That is why most models of the mind are based on—or incorporate—a
theory of language. The one we are about to turn to is no exception.

The prevalent theory of the mind in the world of computational modelling is
called functionalism. Although not a member of the faith any more, one of the
founders of functionalism was Hilary Putnam.
 

I may have been the first philosopher to advance the thesis that the computer
is the right model for the mind. I gave my form of this doctrine the name
‘functionalism’, and under this name it has become the dominant view—
some say the orthodoxy—in contemporary philosophy of mind.

(Putnam 1988: xi)
 
The computer metaphor for the mind functions in the following way: a working
computer has two components, the machine itself (the hardware) and the
programs that are run on the machine (software). The software (which operates
on a different logical level) can be transported from one piece of hardware to
another and still perform in exactly the same way. A similar relationship is said
to hold between the mind and the brain. The brain constitutes the ‘hardware’
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which can run different programs. These programs produce the effects of
‘mind’. Just as computer software is not restricted to a specific machine, the
mind can likewise be implemented on other pieces of hardware, on condition
that they have adequate computing power. This last point needs elaboration.

According to functionalism, a certain physical state of the machine (the
brain) realises a certain functional state. This provides us with two independent
descriptions of the same event: one on the physical level, and one on the mental
level (Sterelny 1990:5).. The mind is implemented in the brain, but can in
principle also be implemented on other machines with adequate computing
power. The digital computer, or to be more specific, the Turing machine,
functionalists claim, could have adequate power.

Granting the basic premises of functionalism, the theory raises two questions.
The first one concerns the adequacy of a physical system to implement functional
states. Does a bucket of water qualify? It is certainly complex enough to
implement a myriad of states. In order to disqualify systems like these, Sterelny
(1990:10) provides two criteria for adequate physical systems:
 
• They are designed.
• They have a teleological explanation.
 
Sterelny side-steps the first criterion by opting for evolution as the designer, but
forgets that evolution also produced the spider-web and countless other
‘mindless’ systems. I think the statement has to be taken at face value:
accepting the theory of functionalism implies the existence of an independent
external designer. I will return to this point. The second criterion is also
problematic. Sterelny does not really explain what he means by it, except to
state that something like a bucket of water or the solar system does not have a
telos, while the brain and the body do. I suspect the concept he omits here is
that of ‘intention’, the same concept used by John Searle (1980) to save his
Chinese Room argument. You cannot say what it is, but you recognise it when
you find it. Both criteria have a metaphysical flavour that should be
acknowledged by the proponents of functionalism.

The second question that functionalism raises concerns the relationship
between the two independent descriptions of the same physical event. What
gives a certain physical state a certain meaning? This question will be addressed
in the next section.

The language of thought

The functional states of a physical system can only be given meaning if they
stand for something. Functionalism is meaningless without representation. The
grammatical structure of language represents semantic content and the
neurological states of the brain represent certain mental states. In both
examples, representation is responsible for establishing a link between the
states of the system and conceptual meaning.  
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There can be no informational sensitivity without representation. There can
be no flexible and adaptive response to the world without representation. To
learn about the world, and to use what we learn to act in new ways, we must
be able to represent the world, our goals and options. Furthermore we must
make appropriate inferences from these representations.

(Sterelny 1990:21)
 
Representation is the process whereby the two levels of description—the
symbol and its meaning—are related. How this happens, and how the different
representations interact, have to be spelt out by a theory of representation.
Although there are a number of variations on it, the core of a generally
accepted theory of representation has been worked out by Jerry Fodor (1975,
1981), building on the linguistic theories of Noam Chomsky (1957, 1972) and
their psychological implications (e.g. Chomsky 1980). I will return to some of
the variations, but first we have to summarise the basic characteristics of
representation à la Fodor.

The fundamental proposition of Fodor’s model is that we think in a special
inner language, often referred to as ‘mentalese’ (Fodor 1975). Mentalese is not
an equivalent of the language we speak (e.g. French or German), but prior to it.
Our capacity for mentalese is not something we acquire or learn, it is an innate
capacity of our brains. Like other languages, mentalese is medium-independent.
Thus, there are no written or spoken words in our heads; the language is
implemented in our neural structure.

Thoughts share two important characteristics with language. In the first
place, language is productive—the length of any sentence can be increased
without the meaning of the sentence collapsing. In the second place, language
is structured—it has a grammar that allows us to make inferences about
linguistic elements previously unrelated. If A and B share a specific relationship
to C, language allows us to infer a relationship between A and B without
empirical verification. Similarly, thoughts can be concatenated indefinitely and
they can be used to make systematic inferences. From this it follows, claims
Fodor, that mentalese must share with language that one thing that best explains
productivity and structure: a formal syntax.1 This conclusion is summarised by
Sterelny (1990:26) in the following way:
 

For this model, and any based on it, requires an agent to represent the world
as it is and as it might be, and to draw appropriate inferences from that
representation. Fodor argues that the agent must have a languagelike symbol
system, for she can represent indefinitely many and indefinitely complex
actual and possible states of her environment. She could not have this
capacity without an appropriate means of representation, a language of
thought.

 
This rough outline of the language-of-thought hypothesis will gain some depth
if we look at a more formal explication proposed by Cummins (see Cummins
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1991; Morris 1991, 1992). It is once again a computational model of cognition,
‘very much in the mould of classical AI’ (Morris 1991:2). The model is
summarised in what Cummins calls ‘the Tower Bridge picture’ (see Figure 5.1).
In this picture, the lower arrow indicates the implementation level and the
higher one the interpretation of that level. The symbols would then mean the
following: i and o are respectively the input and output states of the physical
system; g represents a function that corresponds to some causal law that
transforms i into o at the implementation level; I is the interpretation function
whereby i and o are assigned ‘content’; and f is a function that transforms input
content to output content. According to Morris (1991:3, 4) this model works if
and only if the following holds:
 

(i) The inputs and outputs have content. This condition stipulates that
there must be representation. The states of the system, i and o must
stand for something.

(ii) At the interpretation level there is an intelligible rule which takes one
from input content to output content. This condition specifies the
nature of f. By stipulating that f must be ‘an intelligible rule’ the kinds
of explanation that will be accepted at the ‘mental’ level are confined
to rule-based explanations that can be spelt out. Morris (1991:4)
claims that this is the basic condition since ‘we don’t qualify as having
isolated a single process until we have formulated a rule or function
that takes us from one kind of content to another’. The model cannot
work without representation since the top level cannot be abandoned.

(iii) At the implementation level the inputs and outputs are individuated
non-semantically (without reference to content), and

(iv) there is a non-semantic causal law which explains how those outputs
are generated from those inputs in that system.  

Figure 5.1 The Tower Bridge picture
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Condition (iv) specifies the nature of g—a causal law—and together with
condition (iii) confirms the complete independence of the implementation
(syntactic) and interpretation (semantic) levels. This implies that I cannot be an
effect of the physical system itself.

Two further characteristics of this model have to be mentioned. In the first
place the model works synchronically. It is committed to an ahistorical notion
of representation (Morris 1991:6). In the second place, the semantic level is
logically prior to the syntactic level. A definition of what would constitute a
‘proper’ semantic interpretation (Morris 1991:7) claims that
 

g(x)=y if and only if f [I(x)]=I(y).
 

The claim made by this definition is that the implementation is a
simulation of the true process that happens at the semantic level. These two
characteristics, I feel, are particularly revealing of the embedded
metaphysical loyalties of the theory, not only to a kind of Cartesian
dualism, but also to an abstract, ahistorical idealism. Morris (1991:17–19)
argues that this formalisation is an adequate description of Fodor’s theory
of representation.

This concludes the thumbnail sketch of the classical theory of
representation. One could perhaps add that the theory is thoroughly modernist
in its claim that symbols have abstract, non-contingent meaning. My
evaluation and critique of it will emerge in the discussion of connectionist
models. The classical theory of representation supplies us with a well-
constructed and coherent model for implementing formal systems (i.e.
systems that can be given a complete description in terms of predicate logic)
computationally, but it is inadequate for the description of complex systems
such as natural language and the human brain. Before turning to the
connectionist model, I will examine a number of objections to the classical
theory of representation coming from one of its first exponents: Hilary
Putnam.

Putnam’s critique of classical representation

In Representation and Reality, Hilary Putnam (1988) argues against his original
functionalist position. The main problem he identifies is the role of
representation:
 

…given the fact that the key ideas of Chomsky’s theorizing are (1) the idea
of Linguistic Universals, (2) the Innateness Hypothesis, and (3) the recent
idea of modularity, the form that one can expect a Chomskian theory of the
semantic level to take is relatively clear (and Fodor’s theory does take the
expected form), even if the details can take various shapes. A Chomskian
theory of the semantic level will say that there are ‘semantic representations’
in the mind/brain; that these are innate and universal; and that all our
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concepts are decomposable into such semantic representations. This is the
theory I hope to destroy.

(5)
 
The Fodor/Chomsky model of representation is what Putnam calls the most
recent form of ‘mentalism’. The appeal of the theory lies in the way in
which it simply identifies belief-desire psychology (or folk psychology)
with computational modelling. Mentalism, he says, ‘is just the latest form
taken by a more general tendency in the history of thought, the tendency to
think of concepts as scientifically describable (“psychological real”) entities
in the mind or brain’ (7). Putnam claims that the tendency is entirely
misguided.

Although he does not really provide useful alternative suggestions (as
Goodman [1991] points out), Putnam does have three strong arguments against
mentalism, to which I will add a fourth.

(i) Meaning is holistic. The first argument against mentalist representation
claims that there is not only one relationship between a symbol and the
thing it refers to, but many. Meaning is generated by the activity of an
ensemble, not by a soloist. The term ‘holistic’ does not carry a lot of
baggage here (it has nothing to do with organically grown alfalfa sprouts);
it merely points to the fact that we are faced with a network of relationships
when dealing with meaning. Such a holistic approach has to counter two
theoretical tendencies.

In the first place, holism is opposed to positivism. A positivistic tendency
would want to reduce meaning to definitions formulated in an
‘epistemologically more primitive’ language (Putnam 1988:8), whose
components can be given meaning in an unambiguous way (in sensational, or at
least observable, terms). In the second place, holism counters the tendency to
fix the meaning of terms by means of definition since ‘most terms cannot be
defined—or, at least, cannot be defined if by a “definition” one means
something that is fixed once and for all, something that absolutely captures the
meaning of the term’ (9).

The argument from holism argues against representation in the first place not
because it is an abstraction, but because it is an oversimplification. It embodies
a kind of idealistic optimism that we will get things right in the end without
getting our hands dirty in the complex struggles and interactions of
contingency.

(ii) Meaning is in part a normative notion. The argument followed here is not
the post-structural one that claims meaning is both produced and distorted by
complex relationships—which would include relations of power. Putnam’s
claim is simply that since the meaning of a term cannot be defined in terms of
some basic or physicalist concept that has bottomed out, there are always
elements of belief involved. Most of us have not seen an electron, either
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directly or indirectly, and even those who claim to have evidence of its
existence have to submit their claims within a certain theoretical framework.
Our understanding of what an electron is, is based on a system of shared
beliefs, and since we do not all have the same degree of knowledge concerning
electrons, these beliefs differ.

If the symbols in a system had only one correct and complete meaning,
communication would break down if that essence was missed. In normal,
successful communication, we do not have to insist on essences, but rather
give each other the benefit of the doubt. This is sometimes known as the
‘principle of charity’. All interpretation depends on charity, because ‘we
always have to discount at least some differences in belief when we
interpret’ (13).

(iii) Meaning depends on the environment. This argument is primarily aimed
at Fodor’s Innateness Hypothesis and claims that our environment has
produced notions which could not have been foreseen by evolution 30,000
years ago (15). Moreover, our complex interactions with the environment
must play a role in the establishment of meaning, and changing our
different environments would affect the generation of meaning, irrespective
of any hypothesis of innateness. We are not coherent, abstract subjects
experiencing our world; we are produced by our world, we change it and we
are changed by it.

(iv) Meaning is a historical concept. Although Putnam does not include the
temporal aspects of meaning as a separate argument, it forms part of all three of
the above arguments. At this stage it bears repetition that the states of a
complex system are determined not only by external circumstances, but also by
the history of the system. These aspects interact in a non-linear, recursive way
that can by no stretch of the imagination be described in terms of first-order
predicate logic.

Putnam does not really indicate how these objections can be overcome, but they
will have to be taken seriously. It is clear that ‘classical’ representation is not an
adequate model for explaining how a complex system stores and uses
information. If an alternative is to be suggested, it will have to take into account
the four characteristics of meaning discussed above. In what follows it will be
argued that a certain interpretation of connectionism may fare somewhat better
in this respect.

CONNECTIONISM

Basic connectionist theory will not be repeated here (see Chapter 2 for an
introduction), but let us briefly summarise the most important characteristics of
neural networks before we turn to how they ‘represent’ information.
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Neural network characteristics

A neural network consists of a large collection of interconnected nodes or
‘neurons’. Each neuron receives inputs from many others. Every connection
has a certain ‘strength’ associated with it, called the ‘weight’ of that
connection. These weights have real values that can be either positive
(excitatory), negative (inhibitory) or zero (implying that the two respective
neurons are not connected). The neurons themselves are very simple
computational units. They calculate the sum of their weighted inputs and pass
this value through a non-linear transfer function. This function usually has a
sigmoidal shape.

Some of the neurons in the network serve as input units that receive
information from outside. Similarly, some neurons serve as output units where
the result of the network’s calculations can be found. In simple network
structures, like the multi-layer perceptron or back-propagation network, the
neurons are arranged in layers. One would then have an input layer, some in-
between layers (usually called ‘hidden layers’) and an output layer. If an input
is presented to the network, it will percolate through the network and generate
an output. Since the neurons themselves are all essentially similar, the
transformation performed by the network is determined by the values of the
weights.

How are these weights determined? The network is basically trained to
perform certain tasks by showing it examples. If the network has to perform a
classification task, e.g. classifying trees, it is shown examples of trees and of
things that can be confused with trees. During a learning phase each
presentation (which takes the form of an array of numerical values, say the
intensities of each co-ordinate on a retina, or the pixel values of each
coordinate on a screen or photograph) is accompanied by the correct output
value for that input. The network then automatically adjusts the values of the
weights to minimise the discrepancy between the input and the output. These
presentations are continued until the network converges on a set of weight
values that enables the network to distinguish between the various examples
of trees and non-trees. If the training examples were adequate, the network
should also be able to generalise its classification to examples of trees it has
not seen before.

The neural network most often applied in practice—the multi-layer
perceptron trained with the back-propagation algorithm—is a simple network
which has all the basic characteristics mentioned above.

Storage and manipulation of data in neural networks

From the discussion above it should be clear that the difference between any
two networks would mainly be determined by the values of the weights.2 The
characteristics of any specific network is a result of the distribution of these
values. How these weights encode information from the external world
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depends, for one thing, on the relationship between the number of weights and
the type and amount of information the network is presented with. This is an
important issue which will be discussed in more detail by looking at three kinds
of networks.

The first network to be considered is one in which the nodes of the
network stand for specific concepts and the weights for the relationships
between them. A simple example would be to make particular nodes stand for
members of a group of people. If two people are related, the connection
between them is positive, if not, negative. Here we have an automatic relative-
recogniser. Activate any node, and all nodes representing relatives will
become active. This kind of network is quite well known from traditional AI
and is called a semantic network. Nodes and connections have specific
interpretations, and since they ‘stand for’ something, the traditional theory of
local representation is used.

The second kind of network is one in which the necessity of a relationship
between a certain node and a specific concept is rejected. The example in this
case can be a fairly simple pattern-recognition network like a multi-layer
perceptron that has to recognise trees. Such a network will have a large amount
of neurons in the hidden layer—at least of the same order of magnitude as the
input layer—of which each one is connected to every input node. The
information fed into the network is therefore distributed over all the hidden
neurons with the result that none of the neurons stand for anything specific.
This also follows from the fact that the amount of hidden neurons necessary to
solve a certain problem can vary quite considerably. If a network with 120
hidden neurons has a performance comparable to a network with 100, it does
not mean that 20 specific aspects of the problem are not considered by the
smaller network, it merely means that the information is now spread over 20
fewer units, with perhaps a slight degradation in the performance of the
network.

In this kind of network neither the nodes nor the weights have specific
interpretations. The encoded information is not representations of coherent
concepts. The representation is often referred to as being ‘sub-symbolic’ or as
encoding ‘micro-features’ (e.g. Rumelhart and McClelland 1986). No weight
has any meaning on its own. Furthermore, all the weights participate each time
the network is presented with a pattern. This process of encoding is called
‘distributed representation’. The characteristics and importance of distributed
representation, as well as the ways in which it links with post-modern theory,
will be discussed in some detail later in the chapter, but before that is done, a
third kind of network has to be introduced.

For the third alternative, consider the multi-layer perceptron from the last
but one paragraph, but reduce the number of hidden neurons to the absolute
minimum that will still be able to recognise all the training patterns. This
network now develops two interesting characteristics. In the first place,
when looking at the distribution of weight values, it becomes apparent that
the weights tend towards having either highly positive or highly negative
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values. In the second place, when any input pattern is presented, the hidden
nodes tend to switch either hard on or hard off. In these networks (to which
I refer as ‘minimal networks’), the hidden nodes begin to encode specific
features of the input pattern; they begin to stand for something specific.
Since the weights are either strongly excitatory (‘yes’) or strongly
inhibitory (‘no’), they begin to encode logical relationships between nodes
representing specific concepts. The implications are clear: despite the fact
that we are working with a neural network that is trained in the normal way,
we are forcing it to use a kind of local representation by removing all the
redundancy in the network.

It is of course not possible to define clear boundaries between these
different kinds of networks, since the amount of distributedness will depend
on the complexity of the problem. For one problem 50 hidden nodes may
implement a high level of distributedness, whereas for a more complex
problem, it may only constitute a minimal network. The important point to
grasp at this stage is that one cannot talk about distributed representation
when using a small network that only encodes logical relationships between
units that are either on or off. On the other hand, there is also a serious
problem with networks that have too many neurons. When a network is too
powerful, it overfits the training data and then generalises poorly. This
problem will be tackled when we examine some practical implications of
these ideas, but first we should give a closer characterisation of distributed
representation.

Distributed representation

In this section I wish to deal with three characteristics of neural networks that
are directly related to their distributedness, as well as with three critiques of
distributed representation. These should serve to clarify our understanding of
the concept.

The first important characteristic is the way in which distributed
networks implicitly deal with complexity. In the process of solving a
complex problem by using a network, it is not necessary to have an explicit
theory about the structure of the problem. In conventional computational
problem-solving such a theory is explicitly required in order to construct an
algorithm that can be programmed. The construction of a theory therefore
precedes all other activities. When dealing with complex systems, however,
it can be extremely difficult, if not impossible, to construct such a theory
since a large number of factors can interact in complex, non-linear ways.
Theory construction under such circumstances involves large-scale
reduction of complexity with a high risk of ending up with an abstraction
that provides an inadequate model of the system. Since a neural network
implicitly encodes the relationships between large amounts of factors in a
non-linear, distributed way, the need for a complete and explicit theory falls
away. When a network is large enough, it will have enough redundancy to
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be able to encode all these factors simultaneously. Under practical
circumstances the problem is reduced to finding an adequate way of
presenting the information to the network (an aspect which will receive
attention in the next section).

This leads us to an extremely important point: the network used as model
for a complex system will have to have the same level of complexity as the
system itself. It will therefore be just as difficult to construct a theory of
what the network is doing as it would be to construct a theory of what the
system is doing. If certain general principles exist that can assist in
describing the behaviour of the system, they could possibly be found by
analysing the behaviour of the network. However, if the system is truly
complex, a network of equal complexity may be the simplest adequate
model of such a system, which means that it would be just as difficult to
analyse as the system itself. This has serious methodological implications
for scientists working with complex systems. A model which reduces the
complexity may be easier to implement, and may even provide a number of
economical descriptions of the system, but the price paid for this should be
considered carefully.

The second characteristic of distributed networks concerns their ability to
generalise their solutions. After they have been trained to perform a specific
task, they should also be able to deal with new inputs that are related to, but not
identical to, the training examples. Since the new inputs will share some, but
not all, of the features of the training examples, the training examples cannot be
encoded in a fixed or fully constrained representation using specific nodes in
the network. In a truly distributed representation, all the nodes, with their
associated weights, participate in all the examples. This means that at all times,
the maximum amount of information is available at all nodes. Since a local
representation is only possible after a process of abstraction—irrespective of
whether this abstraction is the result of an a priori theory or of the constrained
working of a minimal network—the ability of such representations to generalise
will decrease as the level of abstraction increases. If only a few explicit features
can be considered at any time, any example that does not share these features
cannot be considered. For effective classification of complex examples—where
a large number of micro-features have to be considered—an adequate
distributed representation is a prerequisite.

A third important characteristic of distributed representation concerns the
robustness of this approach. When a specific concept or feature is encoded by a
specific neuron, that concept or feature would be lost should that specific
neuron be damaged. However, when the representation is distributed, no
specific feature of the network is tied to any specific neuron. Should neurons be
damaged, it would degrade the overall operation of the network only slightly.
The more distributed the network, the more graceful the degradation.3

Robustness may be less important to a system that has to deal with idealised
abstractions, but it is vital for a system that has to deal with the contingencies
of the real world.
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Connectionism has received much criticism, especially from the
proponents of folk psychology and classical representation. These critiques
are often flawed, specifically because the notion of distributed
representation is either ignored or misunderstood. Fodor and Pylyshyn
(1988) use a semantic net as their example of a neural network, and Clapin
(1991) equates a neural network with the CPU in a classical Von Neumann
machine! In the following paragraphs I will discuss a number of criticisms
which are at least sensitive to the nature of distributed representation. They
are taken from Sterelny (1990:187–189), who is defending a ‘language of
thought’ kind of representational theory. If one shifts the theoretical
perspective, many of the critiques against distributed representation actually
point to advantages.4

A first criticism concerns the status of the weights. For Sterelny, the
‘relationship between distributed representations and the micro-features that
compose them is deeply problematic’ (188). When we define a concept in terms
of a cluster of sub-concepts—e.g. when we define ‘lemon’ by the cluster {fruit,
tart, yellow, …}—‘we have returned to a theory of the componential analysis of
concepts, …a theory that has desperate and unsolved problems’ (188). Coupled
to this, Sterelny has problems with the functions of the weights:
 

There is no distinction drawable, even in principle, between functional and
non-functional connections. A positive linkage between two nodes in a
distributed network might mean a constitutive link (e.g. catlike, in a
network for tiger); a nomic one (carnivore, in the same network); an
accidental, inductive one (asian, in the same network), or a merely
associative one (in my case, a particular football team that play in black
and orange).

(189)
 
It is clear that the notion of ‘micro-feature’ becomes misleading here. The
weights are given specific interpretations with ideational content. In principle,
Sterelny is still working with a semantic network. In a truly distributed
representation, the informational content of any specific weight is the result of
such a dispersed process that it cannot be said to constitute anything specific.
There are definitely not different kinds of weights (nomic, constitutive,
inductive, etc.).

It is also a misunderstanding of the nature of distributed representation to
think that it implements concepts or features by using clusters of components.
That would merely be a refinement of a system of local representation. Instead
of having one set of symbols with specific semantic interpretations, you now
have another, perhaps with more symbols. Distributed representation allows you
to discard this whole theoretical framework. Instead of working with concepts
or clusters of concepts, you work with a system of relationships at a sub-
conceptual level that cannot be given, or rather, is not in need of a semantic
interpretation at all. I will return to this below.
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A second critique concerns the coherence and stability of the representation.
‘Distributed representation does not give you an invariant, context-independent
representation’ (187). Since the initial state of two systems may vary, they will
never be able to represent exactly the same concept. This is of course only a
problem if you think that invariant, context-independent representations are
necessary or should exist. Postmodern or post-structural theories of meaning
deny this by claiming that both synchronic and diachronic contexts are not only
necessary, but constitutive of meaning. Since there are no theoretical limitations
on the amount of information that can be fed into a network (given that the
network has sufficient capacity), one can include as much of the context as one
wishes. Moreover, since the information is distributed, no explicit distinction
between concept and context has to be made—they are encoded together;
context is always already part of the representation.

The final critique of distributed representation drives our analysis to the
limit. Sterelny claims:  

it is not clear that a distributed representation is a representation for the
connectionist system at all…. Given that the influence of node on node is
local, given that there is no processor that looks at groups of nodes as a
whole, it seems that seeing a distributed representation in a network is just
an outsider’s perspective on the system.

(188)

While this causes Sterelny some distress—‘I demand to be told why I should
regard distributed representation as states of the system at all’ (188)—we can
breathe a sigh of relief. Adding up the characteristics of distributed
representation we have now worked through, it becomes clear that the very
notion of representation has been undermined. A distributed representation is
not a representation in the conventional sense of the word. It dispenses with all
the components of a representational system. There are no symbols that ‘stand
for’ something, there are no grammatical relationships between them, and the
system itself has no need of a semantic level of interpretation at all. We need
neither a central processor nor an outside observer. I will return to the
philosophical importance of this conclusion in the final section of this chapter,
but I first want to take a brief look at two attempts to develop connectionist
models that do not discard the notion of representation.

Two attempts to save representation

Connectionism has made enough of an impact on cognitive science to elicit a
varied number of responses ranging from outright hostility (Fodor and Pylyshyn
1988) to a very warm welcome (P.M.Churchland 1989). In this section I want to
look at two responses that claim to be sympathetic to connectionism. The first, by
Lloyd (1989), tries to reconcile connectionism with traditional representational
theory, and the second, by the Churchlands, finds in connectionism a natural ally
for the theory of eliminativism.
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Lloyd selects the problem of representation as the central one that has to be
solved in order to understand the mind. He wants to develop a theory of
representation that is both analytic—‘understanding the parts precedes
understanding the whole’ (Lloyd 1989:8)—and reductive—‘a theory that
explains how representations are made out of non-representational parts’ (11).
This kind of theory is already at odds with our understanding of connectionism.
Furthermore, Lloyd seems to have a limited understanding of the nature of
distributed representation. This is most obvious when he describes the meta-
theory that forms the framework of his proposals (11–22). His meta-theory
consists of a number of constraints applicable to any theory of representation. I
wish to argue that these constraints bias his interpretations strongly towards a
traditional theory of representation and thereby occlude the more radical
implications of distributed representation. Let us examine these constraints
briefly.
 

(i) Representation has to be accurate. It must be possible to identify the
objects being represented (13).

(ii) Representation must be focused, i.e. it must have a capacity for
specificity. It must pick out some objects and sail past others (13–15).

(iii) Representation must be ‘articulated’. Meaningful representations are
composed out of independently meaningful parts. ‘In sum, atomicity
and articulation interlace; representational systems are chunky, with
minimal chunks that can be linked to form bigger chunks’ (16–17).

(iv) Representation is asymmetrical. A drawing of a tree represents the
tree; the tree does not represent the drawing (17).

(v) Representation has to have a cognitive role, i.e. it must be able to fulfil
the intentional function (17).

(vi) Representation has to come about through evolutionary processes, i.e.
processes that can develop through natural selection (18).

(vii) Representation must be explained through a reductive theory (19).
 
Except for constraint number (vi), which is neutral to the argument, and (v),
which seems to entail much more than merely a characteristic of representation,
none of these constraints are compatible with a truly distributed representation.
Since he defines all representations in analytic, atomistic terms, Lloyd’s
constraints, like Sterelny’s critiques discussed in the previous section, prevent
him from seeing that distributed representation is really not representation at
all, and that this is good news.

The Churchlands, on the other hand, have no problem with the elimination
of the semantic level. For them, connectionist models are a godsend. They do,
however, cling to representation in the sense that distributed representation
still forms representations. For them the network constitutes ‘an organised
“library” of internal representation of various prototypical perceptual
situations’ (P.M.Churchland 1989:207), or ‘smart look-up tables’ operating in
high-dimensional spaces (P.S.Churchland and Sejnowksi 1992:138). What is
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more, the neurons of the internal layers are seen as ‘complex feature
detectors’ (P.M.Churchland 1989:123). Although this is a popular
interpretation of the role of the hidden layer when neural networks are
applied to well-defined problems, it belies an acceptance of the cluster theory
of representation discussed in the previous section. The Churchlands are
careful to avoid the return to a theory of local representation and argue
strongly for the advantages of what they call ‘vector coding’ (P.S. Churchland
and Sejnowski 1992:163–174), but they stop short of accepting that a fully
distributed representation is no longer a representation in any traditional sense
of the word.

The situation is also compounded by the prevalent use of state-space
descriptions in their analyses. Defining the state of a network by a specific
point in state-space creates the impression that the point is somehow unique.
The state-space description unfortunately does not indicate the relationships
between various parameters, nor does it indicate any relationships between
sub-spaces. Furthermore, our geometrical intuition fails when we have to
visualise high-dimensional spaces. As is the case with interpreting hidden
neurons as feature detectors, state-space descriptions of well-defined
dynamical systems can be a useful tool. When we try to describe real
complexity, however, state-space diagrams tend to exacerbate a prevalent
tendency towards atomism.

Despite their insistence on representation, the Churchlands constitute one of
the first voices in the theoretical domain that take connectionism seriously to
the extent of making it a central component of their models, and in that respect
they deserve some support. However, no stretch of the imagination would make
it possible to call their approach ‘postmodern’.

In what follows I wish to examine the implications of distributed
representation at two levels. On the one hand, I wish to show that thinking
about representation in this way has implications for the way in which we use
neural networks in practical situations (as classifiers or for pattern
recognition). This discussion will focus more on technical issues, but it is
included in order to show—not just state—that postmodern approaches do
have practical consequences, even where mundane applications are
concerned. If you believe this already, and feel that engineering examples
may not be interesting enough, you could skip the next section and move on
to the discussion of some of the philosophical implications of distributed
representation.5

THE IMPORTANCE OF DISTRIBUTED REPRESENTATION IN
PRACTICAL MODELLING

Before turning specifically to neural networks, something should be said
about traditional AI methods like expert systems.6 Since they work with
formal symbols in logical relationships, they employ the conventional
methods of local representation. This does not mean that there is anything
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wrong with them per se, it just means that you need a very good formal
model of the domain you are describing. Adequate models often employ
many ad hoc rules to cope with exceptions. The more ad hoc rules there are,
the more ‘distributed’ the model becomes. Minimal neural networks, on the
other hand, begin to look more like expert systems. There are therefore a
range of options between fully local and fully distributed representation. The
choice made between the two will, however, strongly influence your approach
to the problem, and if my analysis is correct, will also have an effect on the
results.

Degrees of distributedness

When we use neural networks, not only the structure of the network, but also
the way in which data are presented to the network, affects the degree of
distributedness. If the data are algorithmically pre-processed in order to
extract or emphasise certain features, specific interpretations are forced on to
the data, and the freedom of the network is constrained. This may be
inevitable under most circumstances since raw data are often just too
cumbersome to handle. But by doing a large amount of data-reduction and
pre-processing in order to present a neural net with a handful of features
selected by the pre-processing algorithm, one is not using the capabilities of
neurocomputing effectively. Once you have a number of features, any
classical classification technique would be able to perform the necessary task.
A further result of heavy pre-processing is that minimal networks are then
often sufficient to do the final classification. These are usually trained to a
level where the activation levels of the various neurons are either high or low,
i.e. on or off, and the weights in the network tend towards their extreme
positive or negative values. The result is that the network eventually consists
of a number of logical gates making yes-no decisions, with the equivalent
reduction in distributedness.

Unfortunately, small networks solving toy problems are widely used to
analyse network behaviour. The reason normally given is that only small
networks allow detailed analysis. From our perspective, this argument is a self-
fulfilling prophecy: only small nets are analysed because only small nets can be
analysed; avoid nets with distributed representation because they do not fit into
our scheme.7 A related problem concerns the questionable practice of using
simulated data and then handcrafting networks to operate successfully on the
data. This does not really advance our knowledge of the capabilities and
limitations of neural networks—something that can be done better by
examining networks to which the notion of distributed representation applies in
a meaningful way.

Since distributedness is not an absolute parameter, but depends on the
context and the complexity of the problem, it is not possible to provide
objective, quantitative criteria for it. In the absence of quantitative definitions
of distributedness, a few qualitative considerations may help us. In the first
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place, the fuller the interconnections, the closer the network is to being
distributed. In this sense, the normal back-propagation network—with full
interconnection between layers—would qualify, provided that there are
enough neurons in total. A second consideration concerns the number of
nodes in the network. Since this would once again be determined by the
complexity of the problem being addressed, general principles cannot be
given. However, I would suggest that a trained network can be analysed in
order to determine whether a large percentage of neurons have moved to a
yes-no condition. In such a case the network is probably too small. Since
there is an intimate relationship between the input data and the values of the
weights, the input also has some bearing on the matter. The third
consideration thus has to do with the number of training examples. Using
only four input vectors to train a network that has two output conditions8 will
certainly not result in true distributedness. The amount of training examples
that would be adequate for a certain problem will be determined by the
complexity of that problem. If the problem is very simple, a neural network
should not be used.

Generalisation in multi-layer perceptions

The ability of neural networks to operate successfully on inputs that did not
form part of the training set is one of their most important characteristics.
Networks are capable of finding common elements in all the training examples
belonging to the same class, and will then respond appropriately when these
elements are encountered again. Optimising this capability is an important
consideration when designing a network.

As far as back-propagation networks are concerned, everybody that has
worked with them will confirm the following strategy: do not use a network
that is larger than necessary to solve the problem, and do not overtrain it. Under
such circumstances the network will build up such an accurate representation of
the training set that it will disregard examples in the test set that differ only
slightly from the training examples. The consideration to keep the network as
small as possible is borne out in practice, but there is clearly a tension here
between the conditions for good generalisation and the conditions for
distributed representation. This needs careful analysis.

The issue of the size of neural networks is beginning to receive more and
more attention.9 Hirose et al. (1991) deal with the amount of hidden units in a
network. They assume that the amount of input and output units are fixed, and
then develop an algorithm that automatically varies the amount of hidden units.
This has to alleviate two problems: the first concerns getting stuck in local
minima, and the second concerns not knowing the correct amount of hidden
units in advance.

Hirose et al.’s algorithm is the following: during the training process the
total mean-square error E of the network is monitored. If after an epoch of 100
weight updates E has not decreased by more than 1 per cent, it is assumed that
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the network either has difficulty in converging, or is stuck in a local minimum,
and an extra hidden unit is added. Once the network converges, the process is
reversed, and hidden units are removed until the network does not want to
converge anymore. The network one-before-last is then selected. (This method
is reminiscent of parking your car by going until you hear a crunch, and then
six inches less.) The algorithm was tested by looking at the XOR problem (see
note 7), and at a network learning to recognise 36 characters, consisting of 8×8
pixels that can only assume the values 0 or 1.

I consider this an example of a blind approach to neurocomputing that
must be avoided. At this stage of our knowledge, the difficulties networks run
into should be highlighted, not obscured by ‘automatic’ procedures that
embrace all the principles I have argued against in the previous section. At the
end of the article (66) Hirose et al. state that the issue of generalisation was
not considered at all, and although they acknowledge that they ran into
difficulties when hidden units were not removed in the correct order (64),
they do not reflect on the implications this may have for the way they think
about the problem.

Generalisation is certainly the concern of the article by Sietsma and Dow
(1991). They started off by accepting the delivered wisdom that there must
be as few hidden units as possible. By adding another bit of
neurocomputing folklore—that networks with more layers may generalise
better—they suggested that long, narrow networks may improve
generalisation. This hypothesis was tested by training networks to classify a
number of sine waves into three frequency classes. To this they added a
fourth class, a default that represented everything not in the first three. With
an input layer consisting of 64 units, these networks come much closer to
being ‘distributed’ than the networks—consisting of five neurons—used to
solve the XOR problem.

The procedure followed was to train networks and then to prune them of all
‘redundant’ hidden units in order to create minimal networks. Extra layers
could then be inserted, and the various options could be tested for
generalisation. The effects of adding noise to the test set as well as to the
training examples were also investigated. Their observations are significant:
 
• Long, narrow networks generalised poorly. These networks not only

generalised worse than their ‘parent’ networks, but also gave a high error
rate when noisy inputs were used (Sietsma and Dow 1991:75). This result
can be understood in the light of our discussions of distributed
representation. The concatenation of minimal layers making ‘logical’
distinctions will move the network even more towards a rule-based
framework and thereby drastically decrease the level of ‘distributedness’.
The more ‘iconical’ the representation in the network, the poorer the
generalisation.

• Adding noise to the training set improved generalisation. Providing some
‘smear’ to the input vectors would certainly ‘distribute’ them more, but
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the effect of adding noise had another important result: networks trained
with noisy inputs could not be pruned to the same extent. Units
previously thought not to contribute to the solution now proved to do so
(Sietsma and Dow 1991:73). This serves to underline the central
characteristic of distributed representation, i.e. that the values of specific
nodes are not significant, but that the information lies in the pattern of
weights distributed over the whole network. An increase in the amount of
hidden units can therefore lead to improved generalisation (Sietsma and
Dow 1991:68, 78).

 
The outcome of this investigation of long, narrow networks also has
implications for pre-processing. In such networks, the first layers actually
perform a kind of feature-extracting similar to many forms of preprocessing.
This does not imply that all forms of pre-processing should be avoided; data
reduction is often essential. It does, however, force one to consider the effects
of pre-processing carefully. It should not remove information that can
contribute to a good distributed representation, bearing in mind that such
information may not be what we would identify as important when viewing the
data from the analytical, algorithmic framework scientists habitually employ.

Improving generalisation

Can the observations made above lead to an improvement in the way neural
networks are employed in practice? I argue that changing the general
theoretical approach, i.e. seeing distributedness as an advantage, not a liability,
could affect network performance. Here are some practical considerations
following from this line of thought:
 

(i) Do not overtrain. Overtraining results in a specific representation of
the test set, and not in a distributed representation of the problem area.
Overtraining can be prevented by interrupting the training process and
monitoring the performance of the network on a separate test set.
Alternatively, an adjustment can be made of the criteria for deciding
whether a network has converged.

(ii) Add noise to the training set. The effects of noise addition have been
discussed, but it should be kept in mind that the addition of noise does
not increase the information content of the input data, it just shakes it
around a little bit. Adding noise may be helpful under circumstances
where the amount of input vectors are limited, otherwise the next
consideration is much more important.

(iii) Increase the range of input examples. Input vectors should be as
representative as possible. Outliers should most definitely be included.
They do not only have the same effect as the addition of noise, but
also provide significant information that may enable the network better
to partition the feature space.
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(iv) Increase the number of output classes. This consideration may be the
most important of all. Just as in Saussure’s system of language,
classification categories can be defined closer by providing examples
of what they are not. The more classes there are that the network can
reject, the greater the confidence in the final classification. The
addition of one, or even better, a few default classes not only
improves generalisation, but also makes the system more robust
against variations in environmental conditions (level of background
noise, presence or absence of 50 or 60 Hz noise, dynamic range,
sensor variations, round-off errors, etc.). The clever selection of
default classes (background noise, false classes, system noise,
elements common to all examples, etc.) allows you to fine-tune your
network without fiddling with its insides. For instance, providing a
separate class for an element common to all examples (e.g.
background noise) not only provides the network with an extra
option, but since it has to build a separate representation of the
common element, and distinguish it from the true classes, the
representations for the true classes become more robust. An inventive
selection of output classes also allows you to do different things with
the same data.

(v) Use real data. Apart from the fact that the use of simulated data often
results in self-answering questions, the use of real data results in the
incorporation of several important elements of distributed
representation automatically. Noise and variation come for free, and
there is less of a temptation to insert a ‘grand theory’ between the
problem and the solution.

(vi) Consider pre- and post-processing carefully. Do not pre-process the
life out of the data. Rather analyse the output of the network for trends
and errors.

 
Post-processing is an aspect of neural networks that has not received enough
attention, and I will therefore conclude this section with a few remarks on the
subject. If the input to the network and the network itself are made to be as
‘distributed’ as possible, this will also affect the nature of the outputs. In the
first place, there may now be more output neurons than required for a specified
solution. Secondly, less pre-processing, especially less averaging of the input
vectors, means that a large number of inputs with a greater distribution have to
be processed. Though this may increase the instantaneous error rate at the
output, with appropriate post-processing, the network will perform better on
average.

Appropriate post-processing could include averaging or filtering of the
outputs, finding better criteria for a ‘good’ classification, or the use of the
outputs as inputs in a following processing stage. The general maxim seems to
be that you should not do at the input of the network what can be done at the
output.



80 Problems with representation

REPRESENTATION DECONSTRUCTED

In this section I will turn to some of the philosophical implications of our
discussion on representation, specifically to the relationship between a
distributed way of thinking and aspects of post-structural theory.10 Post-
structuralism is an important and exciting theoretical approach that
challenges many of the central assumptions of conventional approaches to
language and science. I wish to argue that a distributed approach to the
modelling of complex systems has many affinities with post-structuralism,
and that post-structuralism can inform our scientific and technological
praxis on vitally important issues. Conversely, practical results achieved in
making use of the post-structural approach should testify against the
perception that post-structuralism is merely a philosophical diversion with
destructive tendencies.

One of the important characteristics of post-structural thought, especially
in the work of Jacques Derrida, is the denial of the transparency of
language. The idea that the meaning of a word is ‘present’ when the word
presents itself creates the illusion of determinate meaning. This
identification of a word with a specific meaning is an instance of what
Derrida calls the ‘metaphysics of presence’. He argues that there is not a
one-to-one correspondence between a word and its meaning. Meaning is the
result of an interplay between all the words (or, rather, all the signs) in the
system. It is an effect of the dynamics within the system, not of direct
relationships between components of the system and objects in the world.
This does not deny all relationships between the world and the system. To
the contrary, the success of the system depends largely on the effectiveness
of the interaction between the system and its environment. What it does
deny is that these relationships can be unpacked in determinate terms when
we deal with a complex system like language or the brain. Complexity
cannot be simplified into direct relationships without losing exactly those
capabilities of the system we are interested in—the capabilities that emerge
as a result of the non-linear, distributed relationships between the
constituents of the system.

Despite the fact that we cannot represent the essence of a complex system
in determinate terms, we cannot resist, or perhaps even avoid, the
construction of some kind of interpretation of the nature of the system at a
given moment. These interpretations, however, are in principle limited. We
are always constrained to taking snapshots of the system. These shots are
always taken from a certain angle and reveal some aspect of the system at
some moment. Nothing prevents us from attempting explanations of the
system—we can take as many pictures as we want—as long as we realise the
limitations of each particular one. Since a complex system is constantly
changing, i.e. not in equilibrium, it is also not possible to link a series of
pictures together like pieces in a puzzle that fit exactly into their true
positions. We can juxtapose, compare, make collages, combine them in
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sequences that develop a narrative, and thereby, in perhaps a more creative
way, develop our understanding of the system. The danger lies in falling
under the spell of a specific picture and claiming a privileged position for it.
Since it would not only deny the limitations of the specific angle, but also
prevent further explorations, this spell must be broken by relentlessly showing
the contradictions that result from fixing the boundaries from one perspective.
Pointing out the contradictions that follow from such a closure is an activity
that Derrida calls ‘deconstruction’.

The discussion so far has actually been a deconstruction of the concepts of
representation without slipping into the post-structural discourse. One
motivation for taking this approach was the desire to show that post-struc-
turalism is not only a form of discourse analysis, but that it constitutes a
theoretical stance that has practical implications for science and technology.
Another motivation was the need to resist the lure of the deconstructive
discourse as long as possible—to avoid slipping into it too easily—since there
is always the risk, often underestimated by philosophers, of trying to play the
game without knowing the field. However, since the notion of representation is
philosophically important, the ramifications of distributed representation should
be made explicit.

Distributed semiotics

Any theory of representation flows from a specific theory of the nature of the
sign. In most semiotic systems the sign acquires meaning by virtue of referring
to something—it represents the referent. Saussure (1974) presented us with a
system of distributed semiotics by arguing that the meaning of a sign is a
consequence of its relationships to all the other signs in the system. Meaning is
therefore not a specific characteristic of any discrete unit, but the result of a
system of differences. In order to generate the meaning of a sign, not only that
sign, but the whole system, is involved—the meaning is distributed. However,
since he maintains the distinction between signifier and signified, his system
remains representational. Although he implements the system in a distributed
way, he does not want to relinquish the upper level of the Tower Bridge picture.
It is exactly this point that Derrida targets in his assault on Saussurian
semiotics.

In a system of distributed semiotics the sign is constituted by the sum of
its relationships to other signs. Derrida calls the relationship between any
two signs, a ‘trace’. The trace itself, though, has no meaning, no ideational
content that can be made explicit. It operates at the level of the sign itself,
not at a meta-level above or below the sign. Understood in this way, a trace
is equivalent to a weight in a neural network. The significance of a node in
a network is not a result of some characteristic of the node itself; it is a
result of the pattern of weighted inputs and outputs that connects the node
to other nodes. The weight, just like the trace, does not stand for anything
specific.



82 Problems with representation

In supplanting a general theory of semiotics with a ‘science’ of grammatology,
Derrida explicitly denies a theory of representation. He deconstructs the Tower,
leaving us only the material bottom level. The system is no longer governed from
a metaphysical exterior, nor from an internal centre of command. It is constituted
only by the distributed interaction of traces in a network (Derrida 1982:3–27).
Furthermore, Derrida’s notion of différence, as presented in the citation referred
to here, manifests itself in connectionist models, specifically in recurrent neural
networks. This type of network has many feedback loops: the output of a certain
node can become the input to the same node, with or without passing through
other nodes in the process. The activity of a node is therefore not only determined
by its differences from other nodes, but also deferred until its own activity (and
those of others) has been reflected back upon it. In this complex pattern of
interaction it is impossible to say that a certain sign (or node) represents anything
specific. A strong theory of representation will always presuppose the
metaphysics of presence. It actually argues for two systems—the signs
themselves and, external to them, the meaning of the signs—which are made
present to each other through the process of representation. A distributed theory
of semiotics problematises this division. It again argues that there is nothing
outside the system of signs which could determine the trace, since the ‘outside’
itself does not escape the logic of the trace. Should you attempt to find the origin
of the trace outside, you would be confronted with the same fragmentations,
movements and erasures. Inside and outside refer to each other in a ‘generalised
reference’; we have here a distributed representation confined to the level of the
signifier. Derrida (1982:24) formulates it as follows:
 

Since the trace is not a presence but the simulacrum of a presence that
dislocates itself, displaces itself, refers itself, it properly has no site—erasure
belongs to its structure…. The paradox of such a structure, in the language
of metaphysics, is an inversion of metaphysical concepts, which produces
the following effect: the present becomes the sign of the sign, the trace of
the trace. It is no longer what every reference refers to in the last analysis. It
becomes a function in a structure of generalized reference. It is a trace, and a
trace of the erasure of the trace.

 
The ease with which we fall for a general theory of representation can perhaps
be explained by the importance of the image in our culture. ‘We give preference
to sensing “through the eyes” not only for taking action, but even when we
have no praxis in view’ (Derrida 1983:4). When we say that an image speaks a
thousand words—meaning that an image is somehow more powerful than
language—we fall prey to the metaphysics of presence. We believe that an
image bears its meaning on its face, that it escapes the play of referral described
by a distributed semiotics. A text may have to be interpreted, but an image
speaks directly, or so we believe. This notion is strongly resisted by post-
structural theory. An argument against representation is at the same time an
argument for the textual nature of the image itself (Derrida 1976:36).
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When we deny the possibility of a theory of representation, the question
concerning the relationship between the distributed system and the world does
not, however, disappear. An answer can be attempted from a connectionist
perspective. In a representational system, the representation and that which is
being represented operate at different logical levels; they belong to different
categories. This is not the case with a neural network. There is no difference in
kind between the sensory traces entering the network and the traces that interact
inside the network. In a certain sense we have the outside repeated, or
reiterated, on the inside, thereby deconstructing the distinction between outside
and inside. The gap between the two has collapsed.11

The theory of representation, combined with our love of the image, is
ultimately narcissistic. This narcissism is consummated in our attempt to
simulate human intelligence on a computer, through the use of abstract
rationality and a strong theory of representation.

The notion of the machine

We often think of machines as if they contain something dehumanising. At
best, they are seen as useful, even essential, tools; at worst, as destroyers of
the soul. It is this double relationship—dependence and abhorrence—that
lends such a strange flavour to the attempts to copy living intelligence on a
dead machine. For many this is the ultimate quest of modern science, the last
grail. For others it becomes the prime symbol of an instrumental
understanding of human beings, an approach that supposedly denies
important human values. In one sense these two sentiments are not so far
apart: the first group claims that what is essentially human can be represented
in a machine; the second group fears that when that happens there will be
nothing left to claim as the mark of being human. Both are mesmerised by the
idea of being reduced to a machine.

But what exactly is this thing called ‘human’ we want to simulate on a
machine? What is the original we desire a simulacrum for? If we wish to
represent a human, we must believe that we already possess a theory of what
it is to be human. Some of the colours of such a theory (in a representational
guise) are shown in the selection of the first attributes of the simulacrum—an
abstract, androgynous intelligence, explicitly called ‘artificial’. The project
remains one of representing inside the simulacrum something the true form of
which can be found only outside it. But the ‘logic’ of the trace disturbs both
the representation (inside) and the to-be-represented (outside). When the
closure of the inside is breached, we discover a different mimesis, one that is
constituted by a reflexive process of mutual definition (see Clark 1985). The
inside and the outside become intertwined. Once we let go of our nostalgia
for something really real, something that can be faithfully copied, we move
into what Baudrillard (1984) calls the ‘hyperreal’. When we say that the
inside and the outside are folded into each other, it has implications not only
for our understanding of the dynamics of a complex system, but also, as
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argued above, for our understanding of reality. Since ‘reality’ is primarily
made accessible in linguistic terms, our understanding of the world is
subjected to the logic of the trace. The world is no longer a simple origin of
meaning. This state of affairs is intensified by the way in which our
understanding of the world is increasingly mediated by technology
(computers) and the media (especially television). We are confronted no
longer by reality, but by a simulacrum of reality, a hyperreality. These notions
have been analysed, with specific reference to postmodern American culture,
by both Baudrillard and Umberto Eco (1987).

Baudrillard (1984:254) explains the move into the hyperreal as an effect of
the ‘liquidation of all referentials’. Our systems of signs are no longer
anchored in the real world; they float on our screens and multiply in our
computers and databases. There is no longer a ‘real’ and an ‘imaginary’ (the
interpreted meaning of the real); everything has collapsed into the level of
signs and their interactions—a ‘precession of simulacra’. This is how he
formulates it:
 

It is no longer a question of imitation, nor of reduplication, nor even of
paradox. It is rather a question of substituting signs of the real for the
real itself, that is, an operation to deter every real process by its
operational double, a metastable, programmatic, perfect descriptive
machine which provides all the signs of the real and shortcircuits all its
vicissitudes…. A hyperreal henceforth sheltered from the imaginary, and
from any distinction between the real and the imaginary, leaving room
only for the orbital recurrence of models and the simulated generation of
difference.

(254)
 
As replacement for the concept of representation, Baudrillard chooses the
notion of ‘simulation’. A simulation does not attempt to represent some
essential abstraction of something real; it rather attempts to repeat it, thereby
undermining the distinction between the real and the simulated.
 

Whereas representation tries to absorb simulation by interpreting it as false
representation, simulation envelops the whole edifice of representation as
itself a simulacrum. These would be the successive phases of the image:

• it is the reflection of a basic reality
• it masks and perverts a basic reality
• it masks the absence of a basic reality
• it bears no relation to any reality whatever: it is its own pure simulacrum.

(256)
 
Let me illustrate this with a practical example. Neural networks are
normally ‘simulated’ on a digital computer. The computer itself does not
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contain a network of interconnected nodes, but it can be made to behave as
if it does. Now connect a microphone to the computer by means of which
the ‘network’ can be provided with information, and use the output of the
computer to produce some effect, like switching on a motor. This system
can perform a task (e.g. open a gate when a car approaches) that is
associated with the special capabilities of a neural network (distinguishing
the sound of a car from other noises). It is now possible to ask whether we
are working with a simulation or not. The point is, however, that the answer
does not really matter. Since the system behaves as if a network is doing the
work, the distinction between a ‘real’ network and a ‘simulated’ one
evaporates.

These thoughts have important consequences for the issues now under
consideration—the distinction between human and machine and the quest for
machine intelligence. The quest may be failing as a result of the theory of
representation. This theory makes the metaphysical assumption that something
essentially human has to be represented in an abstract way, instead of realising
that, following the logic of the simulacrum, we have one machine that has to
repeat or reiterate another reflexively. The question shifts from ‘How do we
simulate a human on a machine?’ to ‘What kind of a machine is this thing
sometimes called human?’

This is the question that bothered Freud throughout his career, from the
early Project (1895, published posthumously in 1950) to the famous ‘Note
on the “Mystic Writing-Pad”’ (1925). He tried to conceive of the psyche in
terms of the metaphors of traces and machines (Bass 1984:77), without
resorting to the use of an abstract notion of cognition. The network model
of the Project, and the simple machine known as the Mystic Writing-Pad,
finally combine a certain understanding of ‘machine’ with a certain
understanding of ‘writing’. For Freud, however, the Mystic Writing-Pad
remains a metaphor; it ‘represents’ the working of the psyche. In his
reading of Freud, Derrida (1978:199) urges us not only to use the metaphor,
but to move beyond it:
 

Psychical content will be represented by a text whose essence is
irreducibly graphic. The structure of the psychical apparatus will be
represented by a writing machine. What questions will these
representations impose upon us? We shall not have to ask if a writing
apparatus—for example, the one described in the ‘Note on the Mystic
Writing-Pad’—is a good metaphor for representing the working of the
psyche, but rather what apparatus we must create in order to represent
psychical writing; and we shall have to ask what the imitation, projected
and liberated in a machine, of something like psychical writing might
mean. And not if the psyche is indeed a kind of text, but: what is a text,
and what must the psyche be if it can be represented by a text? For if there
is neither machine nor text without psychical origin, there is no domain of
the psychic without text. Finally, what must be the relationship between
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psyche, writing, and spacing for such a metaphoric transition to be
possible, not only, nor primarily, within theoretical discourse, but within
the history of psyche, text, and technology?

 
Derrida points here to Freud’s stopping short of ‘any examination of
representation itself or the implications of the “resemblance” between psyche
and machine’ (Clark 1985:310). This prevents him from realising that the
psyche is just a ‘writing machine’, nothing more and nothing less. The notion
of machine is important to Derrida (Bass 1984:77). After the removal of the
metaphysical dimension of both language and the brain, we are left with the
comparative leanness of the material machine.12 The machine is complex not
only in the sense of having a complicated structure and parts, but also in the
sense of undergoing endless repetitions, transformations and interactions in a
way that is truly distributed.

It bears repetition that an argument against representation is not anti-
scientific at all. It is merely an argument against a particular scientific strategy
that assumes complexity can be reduced to specific features and then
represented in a machine. Instead, it is an argument for the appreciation of the
nature of complexity, something that can perhaps be ‘repeated’ in a machine,
should the machine itself be complex enough to cope with the distributed
nature of complexity.

Whether our technology can manufacture such a machine remains an open
question. What is clear, however, is that the computer will continue to play a
paradoxical role in these developments. On the one hand, it has been the perfect
vehicle for attempts to implement the metaphysics of representation. On the
other hand, it may yet become the distributed writing machine that runs by
itself ‘as if on wheels’.

Let me reiterate the above argument as it is central to this book. Models
based on formal symbol systems have the classical theory of representation
built in. The main problem with representation lies in the relationship between
the symbols and their meaning. There are two ways of establishing this
relationship. One can either claim that the relationship is ‘natural’, determined
in some a priori fashion, or one has to settle for an external designer
determining this relationship. The first option is a strongly metaphysical one
since it claims that meaning is determined by some kind of fundamental, all-
embracing law. Such an approach has to be excluded here because the main
thrust of my argument is that an understanding of complexity should be
developed without recourse to metaphysical cornerstones. The second option—
where the relationships are the result of the decisions made by a designer—is
acceptable as long as an active, external agent can be assumed to be present.
When a well-framed system is being modelled on a computer by a well-
informed modeller, this could well be the case. However, when we deal with
autonomous, self-organising systems with a high degree of complexity, the
second option becomes metaphysical as well. As soon as we drop the notion of
representation, these metaphysical problems disappear.
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We can still have a machine capable of encoding information from its
environment and acting on the basis of it, without having to cluster its internal
mechanisms into representational blobs. That does not imply that the internal
structure of such a non-representational, distributed system will be one
continuous, homogeneous whole. It could well be differentiated into several
functional sub-structures, but they will then be functional units, not
representational units. Most of these units will probably have a distributed
structure and will have a high level of interconnection with other units. The
development of internal structure will be analysed in detail when we turn to the
process of self-organisation in the next chapter. At this point we should just add
that there is no guarantee that connectionist models will eventually simulate the
brain or natural language completely. However, with the rejection of
metaphysical cornerstones, the problem becomes a contingent one that cannot
be given an a priori answer.

The effects of representation on the relationship between science and theory

Before turning to self-organisation I will briefly discuss some consequences
of a distributed theory for the status of scientific theories. One of the central
values of science is that of objectivity. The principle of objective reason can
only function if it is assumed that the scientist can see things as they really
are. The search for objectivity, however, inevitably introduces a rift between
the scientist as knowing subject, on the one hand, and the object of study, as
represented in some purified form, on the other hand. In an essay on the
role and status of the university, Derrida (1983) analyses this issue in some
detail:
 

The modern dominance of the principle of reason had to go hand in hand
with the interpretation of the essence of beings as objects, an object present
as representation (Vorstellung), an object placed and positioned before a
subject. This latter, a man who says ‘I’, an ego certain of itself, thus ensures
his own technical mastery over the totality of what is. The ‘re-’ of
repraesentatio also expresses the movement that accounts for—‘renders
reason to’—a thing whose presence is encountered by rendering it present,
by bringing it to the subject of representation, to the knowing self…. But it
is true that a caricature of representational man, in the Heideggerian sense,
would readily endow him with hard eyes permanently open to a nature that
he is to dominate, to rape if necessary, by fixing it in front of himself, or by
swooping down on it like a bird of prey.

(9–10)
 
Relinquishing a theory of representation thus implies a deconstruction of rigid
borders between science and theory. If true objectivity is no longer possible,
theory spills over into all levels of scientific activity. This loss of clear
distinctions between theory and praxis has ramifications not only for science,
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but also for theory. Theory can no longer be practised for its own sake, as a
search for pure knowledge.

Derrida claims that it was possible, somewhere in the past, to believe in
‘pure’ science, unencumbered by pressures from the state and unhindered by
financial constraints. This is no longer possible, or, more accurately, actually
never was.
 

Within each of these fields [theoretical physics, astrophysics, chemistry,
molecular biology, and so forth]—and they are more interrelated than ever—
the so-called basic philosophical questions no longer simply take the form of
abstract, sometimes epistemological questions raised after the fact: they arise
at the very heart of scientific research in the widest variety of ways. One can
no longer distinguish between technology on the one hand and theory,
science and rationality on the other.

(12)
 
At the same time that science loses the clarity of this objectivity, philosophy
loses the luxury of avoiding the contingent. This will be a lasting characteristic
of postmodernity, namely that scientists and philosophers alike have lost their
innocence. Since a certain theory of representation implies a certain theory of
meaning—and meaning is what we live by—our choice of such a theory has
important ethical implications. I will return to these issues in the final chapter.



6 Self-organisation in complex systems

So far a lot of attention has been paid to the characteristics of the structure of
complex systems. In this chapter the focus will be on how that structure
comes about, develops and changes. The notion of ‘structure’ pertains to the
internal mechanism developed by the system to receive, encode, transform
and store information on the one hand, and to react to such information by
some form of output on the other. The main burden of the argument will be to
show that internal structure can evolve without the intervention of an external
designer or the presence of some centralised form of internal control. If the
capacities of the system satisfy a number of constraints, it can develop a
distributed form of internal structure through a process of self-organisation.
This process is such that structure is neither a passive reflection of the
outside, nor a result of active, pre-programmed internal factors, but the result
of a complex interaction between the environment, the present state of the
system and the history of the system.

Most philosophical positions throughout the Western intellectual tradition
have been sceptical about the spontaneous emergence of order and structure. In
the absence of a rational explanation for such emergence, some kind of
organising agent—God (as the ultimate designer) or some other a priori
principle—was usually postulated. Yet self-organisation is neither a mystic
process nor a random one, and should not be in conflict with any of our normal
sensibilities. That is what I hope to show in this chapter.

Several examples of self-organising systems will be discussed later, but
here a simple (and very limited) example will help to introduce the basic
ideas of self-organisation. Consider a school of fish in a dam, and assume
we can measure their general well-being by looking at the size of the
school. The condition of the fish would depend on a large number of
factors, including the availability of food, the temperature of the water, the
amount of available oxygen and light, the time of year, etc. As these
conditions vary, the size of the school of fish will adjust itself optimally to
suit prevailing conditions, despite the fact that each individual fish can only
look after its own interests. The system of the school as a whole organises
itself to ensure the best match between the system and its environment. This
organisation is also adaptive in the sense that the school will be sensitive to
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changing conditions in the light of past experience. There is no agent that
decides for the school what should happen, nor does each individual fish
understand the complexity of the situation. The organisation of the school
emerges as a result of the interaction between the various constituents of the
system and its environment.

A last introductory remark is perhaps necessary. The basic characteristics
and principles of self-organisation described below are fairly general, and will
of course overlap with the general characteristics of complex systems discussed
in Chapter 1. They have been abstracted from a number of examples quite
diverse in nature, therefore the full set of characteristics will not necessarily be
present in each of them. However, the more complex the system is, the more of
these characteristics will be apparent. The aim remains to provide an
understanding of the dynamics of self-organisation as a general property of
complex systems.

KEY ASPECTS

Towards a definition of self-organisation

Given the difficulty in defining complex phenomena, a working definition of
self-organisation will be provided, illuminated by a number of characteristics
and examples:
 

The capacity for self-organisation is a property of complex systems which
enables them to develop or change internal structure spontaneously and
adoptively in order to cope with, or manipulate, their environment.

 
The kind of system we are interested in is best exemplified by the brain. Within
certain given constraints—including physical, biological and genetic ones—the
brain has to develop an understanding of its environment, and be able to
operate effectively in that environment. Since it is implausible that the brain
contains, ab initio, a programme that can cope with all eventualities, we can
safely assume that the brain has to have the ability to learn. The necessary
changes in structure that enable the brain to remember what has been learnt
must therefore come about spontaneously.

Different systems that share the property of self-organisation will not
necessarily exhibit the same range of characteristics. A living cell can certainly
be classified as self-organising, but its internal structure will be more stable
than that of, say, the economic system of a country. An economic system is
self-organising in the sense that it changes its internal structure in response to a
large number of factors (money supply, growth rate, political stability, natural
disasters, etc.). Although the interaction of all these factors is too complex to
allow the construction of a deterministic model, large-scale intervention in the
internal structure of the system is possible (revaluation of the currency,
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adjustment of interest rates, etc.). The effects of these interventions, however,
are only predictable in the short term since the spontaneous adjustment of the
system involves the complex interaction of too many factors—many of which
cannot be controlled at all.

Another example of a self-organising system is that of language. In order to
enable communication, language must have a recognisable structure. To be able
to maintain its function in vastly different circumstances, the structure must be
able to adjust—especially as far as meaning is concerned. Because many
individuals are involved in using the same language, these adjustments cannot
merely take place at the level of individual decisions. Change results from the
interaction of large numbers of individuals.1 Systems of social interaction, i.e.
cultural systems, share many of the characteristics of linguistic systems. The
models of complex systems developed here have certain implications for theory
of language, as well as for a number of more general philosophical and ethical
issues. These will be discussed in the final chapter.

These examples show that self-organisation can work at different levels and
according to varying constraints. Despite differences between various instances
of complex systems, however, the process of self-organisation has a number of
general characteristics, to which we shall now turn.

ATTRIBUTES OF SELF-ORGANISING SYSTEMS

Despite important differences between various self-organising, complex
systems with different functions, there are shared attributes that conform to
the framework of the general model for complex systems. As we argued in
Chapter 1, a complex system is constituted by a large number of simple units
forming nodes in a network with a high level of non-linear interconnection.
The behaviour of a system is not determined primarily by the properties of
individual components of the system, but is the result of complex patterns of
interaction. General attributes of self-organising systems include the
following:
 

(i) The structure of the system is not the result of an a priori design, nor
is it determined directly by external conditions. It is a result of
interaction between the system and its environment.

(ii) The internal structure of the system can adapt dynamically to changes
in the environment, even if these changes are not regular.

(iii) Self-organisation is not merely the result of processes like feedback or
regulation that can be described linearly. It involves higher-order, non-
linear processes that cannot be modelled by sets of linear differential
equations. A thermostat that responds to its environment by switching
on and off is not an example of self-organisation.

(iv) Self-organisation is an emergent property of a system as a whole (or of
large enough sub-systems). The system’s individual components only
operate on local information and general principles. The macroscopic
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behaviour emerges from microscopic interactions that by themselves
have a very meagre information content (only traces). By confining
your analysis to the microscopic level, it becomes possible to explain
the behaviour of each element in terms of a number of simple
transformations. Simple, local interactions can result in complex
behaviour when viewed macroscopically.

(v) Self-organising systems increase in complexity. Since they have to
‘learn’ from experience, they have to ‘remember’ previously
encountered situations and compare them with new ones. If more
‘previous information’ can be stored, the system will be able to make
better comparisons. This increase in complexity implies a local
reversal of entropy, which necessitates a flow of energy or information
through the systems. The increase in complexity may also form part of
the explanation why self-organising systems tend to age. Since these
systems are bound by the finite constraints of the physical world, they
inevitably become saturated at some point.

(vi) Self-organisation is impossible without some form of memory, a
point closely related to the previous one. Without memory, the
system can do no better than merely mirror the environment. A self-
organising system therefore always has a history. This diachronic
component cannot be ignored in any description of the system since
previous conditions of the system form vital influences on present
behaviour. Memory, on the other hand, is impossible without some
form of selective forgetting. Just piling up information without some
form of integration renders it insignificant. Integration is not
‘performed’ through some form of decision-making within the
system. Information that is not used simply fades away. This process
not only creates space in memory, but, more importantly, it provides
a measure of the significance of the stored pattern. The more
something is used, the stronger its ‘representation’ in memory will
be. Use it or lose it. Self-organisation is only possible if the system
can remember and forget.

(vii) Since the self-organising process is not guided or determined by
specific goals, it is often difficult to talk about the function of such a
system. As soon as we introduce the notion of function, we run the
risk either of anthropomorphising, or of introducing an external
reason for the structure of the system, exactly those aspects we are
trying to avoid. When a system is described within the context of a
larger system, it is possible to talk of a function of the sub-system
only within that context. We can talk about the ‘function’ of the
endocrine system of a lion with reference to the lion, but then it is
difficult to simultaneously talk about the function of the lion itself.
We can talk about the ‘function’ of predators in an ecosystem, but
then not of the function of the ecosystem. The notion of function is
intimately linked to our descriptions of complex systems. The
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process of self-organisation cannot be driven by the attempt to
perform a function; it is rather the result of an evolutive process
whereby a system will simply not survive if it cannot adapt to more
complex circumstances.

(viii) Similarly, it is not possible to give crudely reductionistic descriptions
of self-organising systems. Since microscopic units do not ‘know’
about large-scale effects, while at the same time these effects manifest
themselves in collections that do not involve anything besides these
microscopic units, the various ‘levels’ of the system cannot be given
independent descriptions. The levels are in principle intertwined. The
resistance to using a reductionist discourse when describing emergent
properties does not, however, imply any resistance to materialist
principles.

 
In a nutshell, the process of self-organisation in complex systems works in
the following way. Clusters of information from the external world flow
into the system. This information will influence the interaction of some of
the components in the system—it will alter the values of the weights in the
network. Following Hebb’s rule (discussed in Chapter 1), if a certain cluster
is present regularly, the system will acquire a stable set of weights that
‘represents’ that cluster, i.e. a certain pattern of activity will be caused in
the system each time that specific cluster is present. If two clusters are
regularly present together, the system will automatically develop an
association between the two. For example, if a certain state of affairs
regularly causes harm to the system, the system will associate that condition
with harm without having to know beforehand that the condition is harmful.
As the system encounters different conditions in the environment, it will
generate new structures to ‘represent’ those conditions, within the
constraints determined by the amount of memory available to the system.
This process can be described mathematically (Grossberg 1987, 1988;
Kauffman 1993; Kohonen 1988), but it does not differ in principle from
Freud’s neurological model of how the brain develops its structure (Freud
1950).

What remains to be discussed now are the actual principles by which the
interactions within a system are adjusted.

Basic principles of self-organisation

Self-organisation can be modelled in more than one way, but most models
rest on a system of simple processing units that are interconnected in a
network. I will stick to the neural network model.2 To repeat briefly, a
neural network consists of a number of simple neurons, interconnected by
synapses. These synapses have different strengths, which means that the
neurons interact with each other in a complex, non-linear way. The system
is best visualised as a network of interconnected nodes where each
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interconnection has a certain strength or ‘weight’. Since the nodes are all
basically similar, the behaviour of the network is determined by the values
of the weights, values which can be adjusted. Adjustments are determined
by simple rules based only on information available locally at the nodes
involved. One such rule would be to increase the value of a weight if both
neurons interconnected by it are active (Hebb’s rule). In such a way, the
network can develop patterns of activity based on the dynamic structure of
the interconnections.

But how can the structure of a system also develop in response to
conditions in the environment around it? This is only possible if
information can enter  the system from outside.  At least  some
interconnections therefore have to terminate in sensors or transducers that
can sense aspects of  the environment and st imulate the system
accordingly.3 Some event in the environment will now cause some activity
inside the system, and this activity can be used to alter the structure of the
system, again only by means of information available locally at each
node—a global perspective is not necessary. On condition that the
information is not fed into a homogeneous network in a symmetrical way,
the nodes of the network will be activated irregularly. Certain groups of
neurons will be more active than others. By simply increasing the weights
associated with active nodes, and decreasing the rest, this pattern of
activity will be reinforced. If the external event does not occur again, this
pattern will eventually fade away (be forgotten) or be eroded by other
patterns. If the event is significant, in the sense that it occurs often, the
pattern will be reinforced each time the event occurs. In this way the
system develops a stable structure that enables it to recognise important
events through a process of self-organisation.

Since the most important aspect of self-organisation is the emergence of
structure through the activity of microscopic units that do not have access to
global patterns, the principles that determine the behaviours of weights and
nodes locally are very important. The following list provides a number of
preconditions for self-organisation in any system and they are fundamental to
the understanding thereof:4

 
(i) The system consists of a large number of microscopic elements or

units that are relatively undifferentiated initially, i.e. there is no need
for predefined structure.5 In neural network terms this means that the
network starts off with random values for all the weights.

(ii) The strengths of interconnections change as a result of local
information only. These changes are often self-maintaining (positive
feedback is involved), and cause the system to move away from the
undifferentiated state.

(iii) There is competition among the units. Competing for limited resources
is the basic driving force behind the development of structure. Stronger
units thrive at the expense of others. If resources were limitless, i.e. if
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growth could take place unrestricted, no meaningful structure would
evolve. Boundaries, limits and constraints are preconditions for
structure.

(iv) There is also co-operation among at least some units. If only single
units won, the resulting structure would be too simple for self-
organisation to evolve. Co-operation is also necessary to form
associations among patterns. Mutual reinforcement and co-operation
are preconditions for a rich, meaningful structure.

(v) The interactions among units have to be non-linear. Small changes
must be able to cause large effects, and the combination of patterns
should result in the formation of new ones, not merely in linear
combinations of the constituents.

(vi) An important secondary principle is symmetry-breaking. If the initial
state of the system is fully homogeneous, the evolving structure could
be too symmetrical. This will inhibit the development of complex
structure. Symmetry-breaking is usually achieved spontaneously by
means of missing or incorrect connections (or other happenings of
chance), as well as by the non-linearity of the system and the resulting
sensitivity to small fluctuations.

(vii) Another secondary principle is that of entrainment. Some patterns will
catch others in their wake in the sense that they will start appearing in
concert.6 This process increases the order in a system and facilitates
the formation of associations through resonance.

(viii) A last, and a most important, principle requires that the memory of
the system be stored in a distributed fashion. The importance of
memory has already been stated, and in neural networks the
connection strengths, or weights, perform the function of storing
information. Specific weights cannot stand for specific bits of
symbolic information since this would imply that the information
should be interpretable at the level of that weight. Since each weight
only has access to local levels of activity, it cannot perform the more
complex function of standing for a concept. Complex concepts
would involve a pattern of activity over several units. Weights store
information at a sub-symbolic level, as traces of memory. The fact
that information is distributed over many units not only increases the
robustness of the system, but makes the association of different
patterns an inherent characteristic of the system—they overlap in
principle. (The notion of distributedness received detailed attention
in Chapter 5.)

 
The way in which these basic principles enable the process of self-organisation
will be elucidated as we continue, especially when we discuss the ‘selection’
theories of brain development. In the following section an argument will be
presented that claims not only that complex systems will organise their
structure, but that they will tend to do so in an optimal way.
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SELF-ORGANISED CRITICALITY

When we are faced with unexpected occurrences, especially when they have
catastrophic results, we tend to ascribe their cause to a rare combination of
unlikely circumstances. When we have to explain the crash of the stock-market,
an earthquake, or the sudden outbreak of political violence, we try to find a
number of factors that combined to cause it, often with the hope of showing
that the chances of the same combination of factors occurring again are slim.
This kind of analysis, however, is the result of trying to explain the behaviour
of large, complex systems by extrapolating from the behaviour of small, simple
systems. Unfortunately this extrapolation fails. Complex systems—in which
many factors interact in an asynchronous way—display unexpected, often
unpredictable behaviour. Any analysis that ignores the possibility of self-
organising behaviour by a complex system will be seriously lacking in
explanatory power.

A very useful concept in the analysis of complex systems, introduced by Per
Bak, Kan Chen and colleagues (Bak and Chen 1991), is that of self-organised
criticality. This concept helps us to understand some of the global features of
systems consisting of large amounts of elements that interact locally.
 

…many composite systems naturally evolve to a critical state in which a
minor event starts a chain reaction that can affect any number of elements
in the system. Although composite systems produce more minor events
than catastrophes, chain reactions of all sizes are an integral part of the
dynamics. According to the theory, the mechanism that leads to minor
events is the same one that leads to major events. Furthermore, composite
systems never reach equilibrium but instead evolve from one meta-stable
state to the next.

Self-organized criticality is a holistic theory: the global features, such as
the relative number of large and small events, do not depend on the
microscopic mechanisms. Consequently, global features of the system
cannot be understood by analyzing the parts separately. To our knowledge,
self-organized criticality is the only model or mathematical description that
has led to a holistic theory for dynamic systems.

(Bak and Chen 1991:26)
 
A simple illustration will clarify the principles involved. If you pour grains of
sand onto a small disc, a pyramid of sand will form. The height of the
pyramid will depend mainly on the size of the disc and the characteristics of
the sand. Once the average height is more or less attained, the sand will start
to roll down. But how does it roll down? Consider a small heap that has
reached its ‘critical’ height and add more sand grain by grain. These grains do
not fall off one by one. They may stick to the pile, or cause little avalanches.
Two aspects of this simple model are important. In the first place, the heap
will maintain itself around its critical height. When it becomes too low, more
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grains will stick; when it is high, more will fall off. In the second place, any
individual grain of sand may cause an avalanche of any size: sometimes just a
few grains, sometimes a landslide. The changes will not always be the same,
depending on whether the heap is above or below the critical point, but the
effect of any single grain is never predictable. The vital point to note here is
the following: the system organises itself towards the critical point where
single events have the widest possible range of effects. Put differently, the
system tunes itself towards optimum sensitivity to external inputs.

A method often employed to visualise the behaviour of a system is to
describe it in state-space. State-space has a separate dimension for each
independent variable of the system. In the case of three variables, say
temperature, volume and pressure, the state-space will be three-dimensional. In
the case of a thousand variables, as one would have in a network with a
thousand nodes, the state-space will be thousand-dimensional. Every possible
state of the system will then be characterised by a unique point in state-space,
and the dynamics of the system will form trajectories through state-space.
When a number of trajectories lead towards a point (or area) in state-space, that
point (or area) is an ‘attractor’, and represents a stable state of the system.
When trajectories all lead away from a point, that point is unstable—a
‘repellor’. A point that has trajectories leading towards it as well as away from
it is known as ‘meta-stable’.7

A network of nodes has many degrees of freedom, and therefore a large
state-space. It is difficult or impossible to visualise such a state-space, but the
concept remains useful. In a very stable system there will be one, or only a
few strong attractors. The system will quickly come to rest in one of these,
and will not move to another one easily. The resulting behaviour of the
system is not very interesting. On the other hand, in a very unstable system,
there will be no strong attractors, and the system will just jump around
chaotically. The theory of self-organised criticality tells us the following. A
self-organising system will try to balance itself at a critical point between
rigid order and chaos. It will try to optimise the number of attractors without
becoming unstable. Why is this important? It is clear that a system that only
behaves chaotically is useless. On the other hand, a system that is too stable
is also handicapped. If each required state of the system has to be
represented by a strong, stable attractor, a lot of the resources of the system
will be tied up (limiting all the degrees of freedom at a certain point means
that many nodes must participate), and the capacity of the system for
adaptation will be badly impaired. Furthermore, movement from one stable
state to another will require very strong perturbations. For this reason the
system will respond sluggishly to changes in the environment. However,
with the system poised at the point of criticality, the number of stable states
will not only be optimised, but the system will also be able to change its
state with the least amount of effort.

It should be clear that the principle of competition is the driving force
behind this behaviour. Each node in the network will tend to dominate as large
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a portion of state-space as possible, and nodes therefore compete for the
available resources. Inputs to the system that do not have much variety will be
represented by a few strong attractors. As the inputs increase in variability, the
system will tend towards the critical point where it is optimised for flexibility. If
the information that the system has to cope with becomes more than the
inherent capability of the system, the system will be forced beyond the critical
point. It will not be able to produce any stable attractors and chaos will ensue.
For this reason, the resources of a self-organising system should be neither
over-extended, nor under-extended.

Another aspect of self-organisation that is illuminated by these
phenomena is the emergence of large-scale features when there are only
local interactions among units. In this regard, some interesting arguments
are put forward by Kauffman (1991). He demonstrates—in simple networks
where each node is either on or off, and can only have two inputs—the
formation of order through ‘cores’ of stability that form in the network.
This stability then ‘percolates’ through the network as adjacent nodes are
drawn into stability by the already stable group. The result is that the
network is ‘partitioned into an unchanging frozen core and islands of
changing elements’ (67). Fluctuating groups are thus isolated, and order is
imposed upon the network. The model can be made more complex networks
by imposing certain ‘biases’ on the nodes. These will suppress signals
below a certain threshold—another example of non-linear interaction. The
size of the bias has an important effect: if it is too high, the network will be
too stable, if it is too low, the network will be chaotic. The bias therefore
provides a mechanism through which the system can adjust itself to remain
at the critical level even when the complexity of the external world
fluctuates.

The tendency a system has to move towards criticality results in an
increase in complexity. What researchers like Kauffman and Bak are trying to
show is that this tendency is an intrinsic characteristic of complex systems.
Once a system has the capacity to self-organise, there is a ‘natural’ drive to
optimise the organisation. The drive towards a more complex structure is a
result of ‘economic’ reasons: resources cannot be wasted. In this respect there
is an observation to be made. The critical state of a system is often referred to
as being ‘on the edge of chaos’ (Lewin 1993). The word ‘chaos’ is then used
in the technical sense (deterministic chaos, the object of study of ‘chaos
theory’), and the argument is made that critical organisation is the result of
some ‘deep’ principle uncovered by chaos theory. To argue that self-organised
criticality can be explained through ‘economic’ principles, without relying on
any arguments from chaos theory, is both a weaker and more general claim.
This does not necessarily imply that chaos theory is mistaken. The claim is
merely made to reinforce the argument (made in the Preface) that
‘complexity’ is a much more general category than ‘chaos’. This will be
emphasised in the next section when we explore some of the evolutionary
aspects of self-organisation.
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ORGANISATION THROUGH SELECTION

Preceding sections focused mainly on the internal structure of complex systems.
Self-organisation was described in terms of general principles, with a focus on
the necessary internal relationships among the components of the system that
allow interesting dynamic behaviour. In this section I will examine the
application of the principle of selection—a notion borrowed from the theory of
evolution—to the development of structure in complex systems. Once again, the
brain will serve as a central example.

Complex systems are open systems—systems that interact with their
environment, not only in terms of energy, but also in terms of information.
These systems must be able to adapt to changes in the environment, and
therefore their internal structure must be influenced in some way by external
conditions. Often the very distinction between ‘inside’ and ‘outside’ the system
becomes problematic.

Which are the possible coping mechanisms open to a system faced with
changing external conditions? Two extreme positions can be identified. At
the one extreme, the structure of the system is fully defined a priori. This
would mean that the system is ‘hard-wired’, and that all possible
eventualities will have to be catered for in the fixed, internal structure of the
system. Apart from the loss in adaptivity, such systems may become too
cumbersome in complex situations. Under less complex conditions, ‘hard-
wired’ systems, operating on simple control principles, may be an adequate
solution, but this is not a plausible option for the kind of complex systems
we are interested in. At the other extreme we may have systems with no
independent internal structure at all, but where the structure is fully
determined by the conditions in the environment. A system which merely
mimics the environment directly will not be capable of acting in that
environment since it will be fully at its mercy. To be able to interpret its
environment, the system must have at least the following two attributes:
some form of resistance to change, and some mechanism for comparing
different conditions in order to determine whether there has been enough
change to warrant some response. Both these attributes merely translate into
the need for a form of memory—without resistance to change, memory is
impossible. If the self-organising capabilities of such a system are adequate,
it will then learn to cope with a changing environment.

We are of course not limited to the two extremes. When considering a
biological system, we encounter a number of constraints. Living systems
have to operate in extremely complex conditions, and therefore adaptivity is
of prime importance. To complicate matters, they are also subjected to
certain temporal constraints. The survival of an organism depends on
responding appropriately, and in time. Under certain critical conditions
there may not be enough time or margin for error to allow an adaptive
response, and predetermined ‘hard-wired’ reactions may be the only
solution (e.g. a new-born mammal cannot afford to first ‘learn’ how to use
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its intestines). This indicates a need for some form of balance between the
two extremes. But where does this balance lie? How much is genetically
encoded and how much can be ascribed to responses to the environment? In
the context of the brain, what we have here is a reformulation of the nature/
nurture dilemma.

Fortunately, the need to indicate precisely where the balance lies becomes
less pressing if we can show that the same mechanisms implement both the
predetermined and adaptive needs of the system.

Learning through selection

The theory of evolution attempts to explain how biological systems, from
generation to generation, develop certain capabilities that enhance their
survivability. This theory largely explains the predetermined side of biological
systems’ behaviour, and does not really say anything about the adaptive
behaviour of any specific organism. To ensure its survival, an organism must
not only learn to cope with its changing environment, but it must do so within
its own lifetime, in what is known as ‘somatic time’. If we can link the notion
of self-organisation to that of evolution, i.e. if we can develop a more general
understanding of the notion of selection, it would be possible to argue that the
distinction between predetermined and adaptive behaviour is not rigid.8 To an
extent, this synthesis has been attempted by two neuro-biologists, Jean-Pierre
Changeaux and Gerald Edelman. They have, in slightly different ways,
extended the notion of evolutionary selection to include the adaptive behaviour
found in networks of neurons. Edelman (1987) calls it ‘Neural Darwinism’.

How can a system respond to its environment? Changeaux et al. (1984)
mention two mechanisms similar to those referred to above:
 
• An instructive mechanism where the environment imposes order directly on

the structure of the system.
• A selective (Darwinian) mechanism where the increase in order is a result

of an interaction between the system and the environment. The
environment does not determine the structure of the system, but influences
the development, as well as the transformation, reinforcement and
stabilisation of patterns in the system.

 
In neural network terminology, the above distinction can be made in terms of
supervised and unsupervised learning. The meaning of these terms will
become clear in the process of analysing why both Changeaux and Edelman
reject the first option. The rejection results from a denial of the idea that the
world is pre-arranged in an informational fashion, i.e. of the idea that things
are categorised in an a priori fashion, and that these categories can be known
objectively. It is thus a rejection of that family of ideas that includes
Platonism and logical positivism—the same family that forms the theoretical
framework for classical AI.  
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One of the fundamental tasks of the nervous system is to carry on adaptive
perceptual categorization in an ‘unlabelled’ world—one in which the
macroscopic order and arrangement of objects and events (and even their
definition or discrimination) cannot be prefigured for an organism, despite
the fact that such objects and events obey the laws of physics.

(Edelman 1987:7)
 
Any form of learning in which the system (here the nervous system) reflects
the world directly implies some form of supervision—either by nature itself,
which has to supply the categories and their labels, or by a homunculus.
Edelman is explicit in rejecting these direct or ‘informational’ models,
especially since they still form the backbone of most theories in cognitive
science and artificial intelligence. It is worth quoting his analysis of these
models at some length:
 

According to information processing models, neural signals from the
periphery are encoded in a variety of ways and are subsequently transformed
by various nuclei and way stations; finally, they are retransformed in a
variety of ways by increasingly sophisticated relay systems culminating in
cortical processing and output. Perforce, this view puts a very strong
emphasis on strict rules for the generation of precise wiring during the
development of the brain…. This view also makes an assumption about the
nature of memory which it considers to occur by representation of events
through recording or replication of their informational details.

(38)
 
It should be clear that the ‘informational’ approach depends heavily on the
notion of predetermined structure—on abilities the system is ‘born’ with,
rather than on abilities the system could acquire. Furthermore, it assumes a
hierarchical, rule-based, representational model of the brain. This is not
merely an assumption about the inner workings of the nervous system, but in
fact a more basic ontological assumption about the fabric of the universe. It
enacts a nostalgia to reduce the world to logical relationships that can be
tracked down. It should come as no surprise that this approach is intimately
linked to the rule-based approach to the modelling of complex systems, and
Edelman is aware of that:
 

The notion of information processing tends to put a strong emphasis on the
ability of the central nervous system to calculate the relevant invariance of a
physical world. This view culminates in discussions of algorithms and
computations, on the assumption that the brain computes in an algorithmic
manner…. Categories of natural objects in the physical world are implicitly
assumed to fall into defined classes or typologies that are accessible to a
program. Pushing the notion even further, proponents of certain versions of
this model are disposed to consider that the rules and representation
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(Chomsky 1980) that appear to emerge in the realization of syntactical
structures and higher semantic functions of language arise from
corresponding structures at the neural level. If statistical variation enters at
all into such a view of the brain, it is considered in terms of noise in a signal,
which in information processing models is taken to be the main
manifestation of variation.

(38)
 
Edelman opposes the rule-based or informational view with ‘population
thinking’—his term for the distributed nature of complex systems. The next
section will examine his approach in more detail.

Neural group selection

Edelman (1987) wishes to give an explanation of the higher functions of the
brain, or more specifically, of how perceptual categorisation could occur,
without making the assumption ‘that the world is prearranged in an
informational fashion or that the brain contains a homunculus’ (4). His
argument is therefore not based on the notion of the brain as consisting mainly
of genetically predetermined structures, but rather of the brain as consisting of a
large population of simple, undifferentiated but interconnected neurons. These
neurons are dynamically organised into cellular groups with different structures
and functions. To a large extent the organisation takes place during a
development phase, but changes in this organisation do occur throughout the
lifespan of the brain. The process depends on three principles (5):
 
• The homogeneous population of neurons is epigenetically diversified into

structurally variant groups through a number of selective processes. A
group consists of several neurons that have a strong connectivity to each
other and a weak connectivity to other groups—connectivity being
determined by the synapses. These groups form what Edelman calls the
‘primary repertoire’.

• During the post-natal period the connections within and among groups are
epigenetically modified through various signals received as a result of the
interaction between the system and the environment. The structure of
groups is refined and, more important, interaction (competition and
cooperation) with other groups is brought about, leading to the
establishment of functional groups likely to be used in future. They form
the ‘secondary repertoire’.

• Once the primary and secondary repertoires are in place, various groups
interact by means of loops and feedback. This dynamic interaction is the
result of a correlation of various sensory and motor responses which causes
the formation of cortical maps that enable the brain to interpret conditions
in its environment and act upon them. Numerous groups participate in map
formation, and a specific group can be part of many maps.  
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We can summarise the model in the following general terms. The brain is pre-
structured in a way that is general and non-specific, but with enough
differentiation (i.e. enough asymmetry) to allow external influences a
‘foothold’. The ‘general’ structure is then modified through experience and
behaviour in order to reflect the specific circumstances encountered in the
history of the organism in question. The brain thus organises itself so as to cope
with its environment. Note that certain parts of the primary repertoire could be
permanently ‘hard-wired’, and will therefore not be changed by experience.
This enables the organism to transfer certain capabilities to its offspring
genetically. Such capabilities would include the control of vital bodily functions
necessary right from the start, as well as other capabilities the organism may
need but does not have sufficient time to learn by itself. The beauty of the
model is that both the hard-wired and the adaptive components are
implemented in exactly the same way (i.e. as groups of neurons), denying any
real distinction between the two.

Before turning to the process of map formation itself, two important
and closely related characteristics of the model need discussion. In the
first place, Edelman (1987) insists that the neural groups in the primary
repertoire have to be ‘degenerate’ (6). This means that within the primary
repertoire there are significant numbers of non-identical variant groups,
each of which could eventually be associated with a certain input. There
is nothing in the primary group that earmarks it for a specific function in
an a priori way. In the second place, groups are not hermetic units, but
are distributed over large overlapping areas (163).  The notion of
distributedness is an important one that, in the case of Edelman, is a direct
resul t  of  taking the  ‘populat ion’  approach.  Together  these  two
characteristics—degeneracy and distributedness—deny the localisation of
cortical function as well as the existence of hierarchical processing
structures in a narrow sense (162).

Edelman discusses three important aspects of cortical map formation that
elucidate the process of map formation and also incorporate some of the
general principles of self-organisation. They are group confinement, group
selection and group competition.
 

(i) Group confinement. If the cortex consisted only of a homogeneous
mass of neurons, it would have been impossible for any structure to
develop. On the other hand, neurons by themselves are incapable of
performing complex functions. Neural groups therefore have an
optimum size, but unfortunately it is not constant or known a priori.
The size has to be arrived at spontaneously and dynamically. In the
cortex this is achieved by means of locally inhibitory connections in
the horizontal plane, and locally excitatory connections vertically.
Since the cortex is a thin sheet of neurons (crumpled up to fit into the
cranium), activity is confined to groups orientated vertically, with less
dense interaction in the horizontal plane. This ties in well with the
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known structure of the cortex, best visualised as lots of closely packed
‘columns’ (see Mountcastle 1978).

(ii) Group selection. Group selection is mainly a function of the use-
principle (Hebb’s rule). The more a certain group is used, the more
active it becomes. The process basically works in the following way.
Bundles of nerves carrying impulses from some source (whether
internal or external) activate certain neural groups. When the messages
from more than one source overlap in a certain group, the correlation
leads to a high level of activity in that group, and the neurons in that
group will alter their synaptic strengths to become more sensitive to
this correlation. After repeated exposure to a certain correlation, the
group will respond to it strongly, and it is then said to be ‘selected’ for
this correlation. Once selected, a group may well become active even
if all the inputs are not present simultaneously. Consequently certain
associations can be made and remembered. If the correlation occurs
only irregularly, or is not strong enough, the synaptic modifications
will fade away, and the group will again be available for selection by
another process. To be able to forget remains a precondition for
memory.

(iii) Group competition. Once groups of the right size have been formed
and selected, their stability is determined by their competitive
interaction with other groups. Weak and small groups will be
eliminated, and oversized or cumbersome groups will be divided and
conquered by smaller, more vital groups—vitality being determined by
the frequency and quality of stimulation and activity. Competition is
also very sensitive to ‘historical effects’ (Edelman 1987:165). The
function of a group is determined by its history, and the functioning of
extant groups can strongly influence the formation of new groups. By
means of group competition, cortical maps are developed and
maintained in a stable but dynamic fashion. Unused or unnecessary
groups are eliminated, or ‘cleared’, without impairing the capacity for
the development of new ones.

 
From these principles it can be seen that map formation not only provides a
theory for the cognitive development of the brain, but also embodies the three
basic characteristics of all self-organising systems: co-operation, competition
and memory.

The relationship between the brain and the world

The basic characteristics of Edelman’s model of the brain can now be
summarised:
 
• Neural groups are formed in the network of the brain through a process of

self-organisation.
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• These groups are selected, altered and maintained in a dynamic way
through interaction with the environment.

• Impulses (of internal or external origin) cause activity in certain groups,
and through the activity of other related groups triggered in the process,
appropriate responses can be generated.

 
A question that arises now is the following: in what way does the brain
represent the necessary information about the environment? The purpose of
the previous chapter was to argue that classical representation is not the
appropriate mechanism, but here we have to say something more about the
relationships between the environment and the structure of the brain.

It is important to point out that information from the environment
influences the structure of the brain directly; it causes changes in the structure
of the brain. However, the effect of these influences are not direct in the sense
that the structure of the brain merely becomes a mirror of its environment.
There are two reasons for this. In the first place the effects are delayed; the
full impact of an external influence is not felt immediately. Since the system
must have some resistance to change, the effects of the influence are taken up
in a process, one that has always already begun and is never finally
completed. In the second place, different impulses are always mixed as a
result of the fact that the groups are embedded in a network. This means that
although perception, for example, is a direct process—a certain impulse
results in a direct response in the network—it does not remain unmediated.9

Previous impulses (memory) as well as impulses from other sources
cooperate in determining the nature of the response. The nature of the
interaction between the neural system and the environment as discussed here
can clearly be analysed in terms of Derrida’s notion of différance (see
Chapter 3).

A second aspect of interaction between the brain and its environment
concerns the role of motor behaviour (Edelman 1987:8, 45, 209–239). Map
formation is not the result of brain processes only, since the available
information is also determined by the way in which the organism actively
explores its environment. The structure of the brain is strongly influenced by
action. This supports the idea that intelligence is not an abstract process, but
one that is embedded in the world. Our brains are part of our bodies (and vice
versa).

The role of active motor behaviour forms the first half of the argument
against abstract, solipsistic intelligence. The second half concerns the role
of communication. The importance of communication, especially the use of
symbol systems (language), does not return us to the paradigm of objective
information-processing. Structures for communication remain embedded in
a neural structure, and therefore will always be subjected to the
complexities of network interaction. Our existence is both embodied and
contingent.
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PHILOSOPHICAL IMPLICATIONS OF SELF-ORGANISATION

Self-organisation is a specific characteristic of a number of real systems, i.e.
systems that operate successfully in the world around us. It can be analysed in
general terms and be given a mathematical description. The processes can
furthermore be modelled and simulated on a computer, and can be used for
solving problems. The insights gained in this way have important implications
for our understanding of the world and its inhabitants. In this section a number
of philosophical issues will be discussed.

The importance of relationships and patterns

Claiming that self-organisation is an important property of complex systems
is to argue against foundationalism. The dynamic nature of self-
organisation, where the structure of the system is continuously transformed
through the interaction of contingent, external factors and historical,
internal factors, cannot be explained by resorting to a single origin or to an
immutable principle. In point of fact, self-organisation provides the
mechanism whereby complex structure can evolve without having to
postulate first beginnings or transcendental interventions. It is exactly in
this sense that postmodern theory contributes to our understanding of
complex, self-organising systems.

For reasons similar to the above, self-organising systems are also anti-
reductionistic. As a result of the complex patterns of interaction, the
behaviour of a system cannot be explained solely in terms of its atomistic
components, despite the fact that the system does not consist of anything else
but the basic components and their interconnections. Complex characteristics
‘emerge’ through the process of interaction within the system. Garfinkel
(1987:202–203) discusses the relationships between parts and whole in a
biological context:
 

We have seen that modeling aggregation requires us to transcend the level of
the individual cells to describe the system by holistic variables. But in
classical reductionism, the behavior of holistic entities must ultimately be
explained by reference to the nature of their constituents, because those
entities ‘are just’ collections of the lower-level objects with their
interactions. Although it may be true in some sense that systems ‘are just’
collections of their elements, it does not follow that we can explain the
system’s behaviour by reference to its parts, together with a theory of their
connections. In particular, in dealing with systems of large numbers of
similar components, we must make recourse to holistic concepts that refer to
the behavior of the system as a whole. We have seen here, for example,
concepts such as entrainment, global attractors, waves of aggregation, and so
on. Although these system properties must ultimately be definable in terms
of the states of individuals, this fact does not make them ‘fictions’; they are
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causally efficacious (hence, real) and have definite causal relationships with
other system variables and even to the states of the individuals.

 
The relevance of self-organisation becomes clear upon the adoption of a
certain kind of systems thinking that attempts to incorporate and include
rather than to falsify and ignore. It is a kind of thinking that is not horrified
by contradictions and opposites but rather turns them into the forces that
vitalise the system. Variations of systems thinking have been with us since
the dawn of philosophy. The position of Heraclitus provides a good
example. For him, the basic principle of the universe was strife: war is
common to all and strife is justice, and all things come into being and pass
away through strife. Instead of privileging a specific element—as Thales did
with water and Anaximenes with air—Heraclitus placed everything in
mutual competition. In this dynamic tension ‘all things come into being and
pass away’. A kind of systems thinking also governs the medieval theories
concerning the four elements and their respective humours and principles
(Flanagan 1990:80–105; Wilden 1987:151–166). The ideal state of affairs
occurs when all the elements are in balance, when they co-operate. This
harmony was believed to be unobtainable in the fallen state of the world
and therefore constant adjustment is necessary. Modern examples of
systems thinking would include the linguistics of Saussure and Freudian
psychology. The postmodern denial of single meta-narratives, and its
emphasis on the importance of difference and opposition, is not normally
formulated in terms of ‘population thinking’ (to use the biological
expression for the kind of systems thinking referred to here), but the
similarities are undeniable.

Although strains of thought that value the importance of relationships—
and look for patterns rather than essences—can be found throughout the
intellectual history of the West, they have usually been trampled over by more
macho theories claiming to have found the Truth: Platonic idealism,
rationalism, Marxism, positivism. In our analysis of complex systems (like
the brain and language) we must avoid the trap of trying to find master keys.
Because of the mechanisms by which complex systems structure themselves,
single principles provide inadequate descriptions. We should rather be
sensitive to complex and self-organising interactions and appreciate the play
of patterns that perpetually transforms the system itself as well as the
environment in which it operates.

The role of history

The important role played by memory in self-organising systems has been
mentioned frequently, but the topic deserves another brief discussion in a
philosophical context.10 No complex system, whether biological or social, can
be understood without considering its history. Two similar systems placed in
identical conditions may respond in vastly different ways if they have
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different histories. To be more precise, the history of a system is not merely
important in the understanding of the system, it co-determines the structure
of the system.

The notion of history, however, should be used with care when analysing
a system. It should not be seen as providing a key to final descriptions of a
system. This is because the history of a system is not present in the system
in such a way that it can be reconstructed. The ‘effects’ of the history of the
system are important, but the history itself is continuously transformed
through self-organising processes in the system—only the traces of history
remain, distributed through the system. These traces, modelled in a neural
network by the interconnections and their ‘weights’, do not correspond to
facts, ideas or symbols, since they encode information at an extremely low
level. Global behaviour of the system is the result of ‘patterns of traces’—
the individual traces that constitute the pattern have no meaning by
themselves. Individual traces can belong to more than one pattern and the
same pattern is not always constituted by the same collection of traces.
Since the traces are perpetually transformed, it is not possible, strictly
speaking, to ever have exactly the ‘same’ pattern again. Any complex,
dynamic system is continuously transformed by both its environment and
itself.

The same arguments hold for memory in the context of the brain.
Memories are not stored in the brain as discrete units that can be recalled as
if from a filing cabinet. Memory traces are stored in a distributed fashion
and are continuously altered by experience. In a manner of speaking, even
though memory is the substrate for all the brain’s higher functions, there are
no ‘memories’. This follows from the notion of ‘distributed representation’.
The fact that information is ‘smeared’ over many units is a vital
characteristic of complex systems, not a mere alternative to iconic
representation.

Active and passive

Another philosophically important aspect of self-organisation is that the process
is somehow suspended between the active and passive modes.11 A self-
organising system reacts to the state of affairs in the environment, but
simultaneously transforms itself as a result of these affairs, often affecting the
environment in turn. Processes in the system are therefore neither simply
passive reflections of the outside, nor are they actively determined from the
inside. The very distinction between active and passive, as well as that between
inside and outside, comes under pressure. In a complex system, control does
not emanate from a single source. Should this happen, the system would
become degenerate, lose its adaptability and survive only as long as the
environment remained stable. These notions have implications for the way we
think about social systems, an issue that will be turned to towards the end of the
chapter.
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Another aspect of self-organisation, closely related to the suspension between
active and passive, is the reflexivity of the process. Self-organisation is a self-
transforming process; the system acts upon itself. Reflexivity disallows any static
description of the system since it is not possible to intercept the reflexive
moment. It also disallows a complete description of the system at a meta-level
(Lawson 1985:20, 21). A meta-level can always be constructed, but from such a
perspective only snapshots of the system as it exists at a given moment will be
possible, i.e. frozen moments that do not incorporate the residues of the past or
the shadows of the future. The temporal complexities produced by the reflexive
nature of self-organising systems cannot be represented.12

Our understanding of complex systems cannot ignore the role of reflexivity
or the mode of operation suspended between active and passive. These aspects
do, however, create serious difficulties when attempts are made to model
complex systems. The present limitations of formal models do not preclude the
possibility of constructing ‘machines’ that would incorporate the salient
characteristics of complex systems, but one should bear in mind that such
machines will be as complex as the systems they model and therefore they will
be equally difficult to analyse. A complex neural network may be an example
of such a ‘machine’.

Stability and prediction

In the discussion of self-organised criticality the necessity for a delicate balance
between order and disorder was underscored. Similar considerations hold when
analysing the stability of a system, or when trying to predict its behaviour.

The classical definition of stability states that in a stable system small causes
produce small effects. In a critically organised system this is not the case, and
by classical considerations it would have to be called unstable. Unfortunately,
as far as living complex systems are concerned, classical stability would
amount to stagnation and death. A reinterpretation of the notion of ‘stability’ is
thus called for.

The classical definition of instability, at least as used by Poincaré, is
probabilistic. Unstable events are defined as events that have no observable
cause (Pattee 1987:328). They are thus chance events, as opposed to
deterministic ones. In complex systems, however, novel, unpredicted behaviour
need not be a result of chance. It can be ‘caused’ by the complex interaction of
a large number of factors—factors that may not be logically compatible.
Complexity is not to be confused with randomness and chance, but cannot be
described in first-order logical terms either. ‘I find no alternative but to accept
multiple, formally incompatible descriptions as a satisfactory explanation of
many types of biological events’ (Pattee 1987:329). It is the interaction of
complex constraints that produces interesting behaviour—behaviour that cannot
be described as chance events or instabilities. A theory based on chance events,
including those of quantum theory, ‘serves only as an escape from classical
determinism: it is not a theory of self-organization’ (Pattee 1987:330).
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This brings us to the question of prediction. To be able to predict the
behaviour of a system is one of the classic criteria for a successful theory.
We are working with systems, however, that cannot be fully described by
means of a classical theory. Predicting their behaviour can be very
problematic. The problems involved are described by Krohn and Küppers
(1989:155, 156):
 

In the case of these ‘complex systems’ (Nicolis and Prigogine [1989]), or
‘non-trivial machines’ (von Foerster 1985), a functional analysis of
input-output correlations must be supplemented by the study of the
‘mechanisms’, i.e. by causal analysis. Due to the operational conditions
of complex systems it is almost impossible to make sense of the output
(in terms of functions or expected effects) without taking into account
the mechanisms by which it is produced. The output of the system
follows the ‘history’ of the system, which itself depends on its previous
output taken as input (operational closure). The system’s development is
determined by its mechanisms, but cannot be predicted, because no
reliable rule can be found in the output itself. Even more complicated are
systems in which the working mechanisms themselves can develop
according to recursive operations (learning of learning; invention of
invention, etc.).

 
With the help of a mapping of the major constraints pertaining to a system
and some knowledge about the history and environment of the system,
predictions can be attempted, but never with certainty. Considerations such as
these are of practical importance to many social systems forced to cope with
complex environments. Examples would include political groups in turbulent
times, research establishments that have to compete for limited funds, and
commercial organisations in a fluctuating economy. Since the certainty with
which the future can be predicted has been greatly reduced, any plan of
action has to be adapted continuously. If the plan is too rigid—too much
central control—the system will not be able to cope with unpredictable
changes. On the other hand, it will also be disastrous if the system tries to
adjust itself to every superficial change, since such changes may easily be
reversed without notice. The system will waste its resources in trying to
follow every fluctuation instead of adapting to higher-order trends. Being able
to discriminate between changes that should be followed and changes that
should be resisted is vital to the survival of any organisation (or organism).
This is achieved optimally when the control of the system is not rigid and
localised, but distributed over the system, ensuring that the positive dynamics
of self-organisation is utilised effectively.

Finally, we can consider some of the implications the process of self-
organisation has for ethics.
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The ethics of self-organisation

A traditional criticism of evolution, and by extension also of self-organisation,
is that it provides us with too mechanistic a view of human existence. Human
beings, this critique claims, cannot be understood merely in terms of a tooth-
and-claw existence. Our existence is also governed by values that give meaning
to life. Such a critique is of course only possible on the basis of some
metaphysical commitments—on the basis either of religion, or of some
universal, abstract (Kantian) principle—and is closely related to the position
that claims that there is no such thing as postmodern ethics.

Does a theory of self-organisation claim that it is possible to describe human
behaviour without recourse to a general system of values? If this question refers
to values that are separate from, or prior to, the contingency of our existence,
the answer has to be yes. There is, however, another understanding of values
which is not only compatible with a theory of self-organisation, but which can
be viewed as a result of it. In this view, values are understood as emergent
properties of the social system. I will give two examples.
 
• The modelling of evolutionary (or self-organising) systems has shown that

purely selfish behaviour by members of a system is detrimental not only to
the system, but ultimately also to the particular individuals. Altruistic
behaviour is therefore not a ‘value’ adopted by ‘nice’ individuals; it is a
characteristic necessary for the survival and flourishing of a system (see
Axelrod 1984).

• We have seen that distributed, decentralised control makes a system more
flexible, and therefore increases its survivability. If we apply this notion to
social systems, it would seem that we have an argument against rigid,
centralised control mechanisms in, for example, the management of a
company or the running of a state. Once again, this kind of critique against
autocratic management or a fascist government is based not on the idea
that these things are ‘bad’ per se, but rather on the knowledge that they will
ultimately lead to the degeneration of the system in question.

 
Do these properties imply an ethics of self-organisation? I would be very
hesitant to use the word ‘ethics’ here, unless it is an ethics in the sense of
‘principles that constitute a system’, closer to the way in which Levinas would
use the term. It is certainly quite far removed from the norms of public
morality. The significance of these notions will be explored in greater detail in
the final chapter.



7 Complexity and postmodernism

ACKNOWLEDGING COMPLEXITY

Whether or not we are happy with calling the times we live in
‘postmodern’, there is no denying that the world we live in is complex and
that we have to confront this complexity if we are to survive, and, perhaps,
even prosper. The traditional (or modern) way of confronting complexity
was to find a secure point of reference that could serve as foundation, a
passe-partout, a master key from which everything else could be derived.
Whatever that point of reference might be—a transcendental world of
perfect ideas, the radically sceptic mind, the phenomenological subject—my
claim is that following such a strategy constitutes an avoidance of
complexity. The obsession to find one essential truth blinds us to the
relationary nature of complexity, and especially to the continuous shifting
of those relationships. Any acknowledgement of complexity will have to
incorporate these shifts and changes, not as epiphenomena, but as
constitutive of complex systems.

In this study we have so far concerned ourselves with the development of an
understanding of complexity at a fairly technical level. In the process we have
continuously opposed two approaches—the formal, rule-based, representational
one and the distributed, self-organising, connectionist one. The general
conclusion has been that the rule-based approach is not sensitive enough to the
general characteristics of complex systems. It has been argued that
connectionist models fare somewhat better since they are implicitly sensitive to
the relational character of complex systems, perhaps as a result of the fact that
they are based on the best example of a complex system we know—the brain.
Even though their capabilities may at present be nowhere near those of the
mammalian brain, they at least incorporate some of the general characteristics
of complex systems.

In this chapter I wish to argue that an acknowledgement of complexity
can assist us when confronting a number of important philosophical issues,
including ethical and political ones. I will analyse the relationships between
relational models of complexity and postmodernism. An argument will be
presented against the view that a postmodern approach implies that
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‘anything goes’. Instead, the suggestion will be that the postmodern
approach is inherently sensitive to complexity, that it acknowledges the
importance of self-organisation whilst denying a conventional theory of
representation. The focus will be on a locus classicus of postmodern theory:
Jean-François Lyotard’s The Postmodern Condition. I will also look at some
of the implications this characterisation of complexity has for our
understanding of language, social theory, the status of our knowledge
claims, and ethics.

POSTMODERNISM

The word ‘postmodern’ has acquired so many different meanings that it has
become impossible to define it. Literature on postmodernism has proliferated
to such an extent that it has become difficult to know exactly what position it
is that one has to engage with. Sometimes the terms ‘postmodern’ and ‘post-
structural’ are conflated, at other times a clear distinction is made between
them; sometimes ‘postmodern’ is used as a rigorous theoretical term, at other
times it is used as a vague term describing the contemporary cultural scene.
In order to provide some focus, I will concentrate on a classical text in this
field, The Postmodern Condition (Lyotard 1984). The choice is motivated by
the fact that my interest here is in the status of postmodern knowledge, and
not in a general cultural survey. I also have no intention to provide an
apology for postmodernism, or some specific interpretation thereof, but rather
wish to analyse contemporary society and social theory in terms of our
conceptual models of complexity. I will argue that the proliferation of
discourses and meaning described in postmodern theory is not created by
wilful and disruptive theorists, but that it is an inescapable effect of the
complexities of our linguistic and social spaces. The proliferation of
information as well as the way in which the media collapse international
public space into local private space prevent us from coming up with
unifying, coherent descriptions of our world.

It is along these lines that Lyotard develops his description of
postmodernism. His aim is to study the conditions of knowledge in developed
societies (xxiii). Scientific knowledge, he claims, habitually legitimates itself by
appealing to a coherent metadiscourse that performs a general unifying
function. Should such a metadiscourse be found, it will be possible to
incorporate all forms of knowledge into one grand narrative. This is the dream
of modernism.
 

I will use the term modern to designate any science that legitimates itself
with reference to a metadiscourse of this kind making explicit appeal to
some grand narrative, such as the dialectics of the Spirit, the hermeneutics of
meaning, the emancipation of the rational or working subject, or the creation
of wealth.

(xxiii)
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Postmodernism is consequently defined as ‘incredulity towards metanarratives’
(xxiv). Instead of looking for a simple discourse that can unify all forms of
knowledge, we have to cope with a multiplicity of discourses, many different
language games—all of which are determined locally, not legitimated
externally. Different institutions and different contexts produce different
narratives which are not reducible to each other.
 

The narrative function is losing its functors, its great hero, its great voyages,
its great goal. It is being dispersed in clouds of narrative language
elements—narrative, but also denotative, prescriptive, descriptive, and so on.
Conveyed within each cloud are pragmatic valencies specific to its kind.
Each of us lives at the intersection of many of these. However, we do not
necessarily establish stable language combinations, and the properties of the
ones we do establish are not necessarily communicable.

(xxiv)
 
This description of knowledge as the outcome of a multiplicity of local
narratives, it must be stressed, is an argument not against scientific knowledge
as such, but against a certain understanding of such knowledge. Lyotard rejects
an interpretation of science as representing the totality of all true knowledge.
He argues for a narrative understanding of knowledge, portraying it as a
plurality of smaller stories that function well within the particular contexts
where they apply (7). Instead of claiming the impossibility of knowledge, ‘it
refines our sensitivity to differences and reinforces our ability to tolerate the
incommensurable. Its principle is not the expert’s homology, but the inventor’s
paralogy’ (xxv).1

Let me summarise Lyotard’s position. Different groups (institutions,
disciplines, communities) tell different stories about what they know and what
they do. Their knowledge does not take the form of a logically structured and
complete whole, but rather takes the form of narratives that are instrumental in
allowing them to achieve their goals and to make sense of what they are doing.
Since these narratives are all local, they cannot be linked together to form a
grand narrative which unifies all knowledge. The postmodern condition is
characterised by the co-existence of a multiplicity of heterogeneous
discourses—a state of affairs assessed differently by different parties. Those
who have a nostalgia for a unifying metanarrative—a dream central to the
history of Western metaphysics—experience the postmodern condition as
fragmented, full of anarchy and therefore ultimately meaningless. It leaves them
with a feeling of vertigo. On the other hand, those who embrace postmodernism
find it challenging, exciting and full of uncharted spaces. It fills them with a
sense of adventure. Which of these two evaluations apply is often determined
by whether one feels comfortable without fixed points of reference. The choice
between the two is determined by psychological just as much as theoretical
considerations. In the present study, however, I will confine myself to
theoretical issues.
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There is one important argument often used against postmodernism (see e.g.
Parushnikova 1992). It claims that if all narratives were to have only local
legitimation, the resulting fragmentation of the social fabric would relativise all
knowledge. Since there is no external ‘check’ on any discourse, no local
narratives can be seriously criticised. Each discourse will become independent
of all others, leading to the closure and isolation of discursive communities.
Ultimately it would imply that each individual has only herself as a point of
reference with no way of grounding any knowledge objectively. The outcome
would be a situation where ‘anything goes’—a position that is clearly
unacceptable, especially within the context of the philosophy of science.

The general argument against postmodernism—that the denial of fixed
points of reference implies that anything goes—is, to my mind at least,
fallacious. It is equivalent to saying that if the sun does not shine, it must be
dark. I wish to argue that, at least as far as Lyotard is concerned,
postmodernism need not entail a position of ‘anything goes’. The ‘anything
goes’ argument depends on a certain understanding of the role of the
individual, one that is explicitly rejected by Lyotard (1984:15).2

 
This breaking up of the grand Narratives…leads to what some authors
analyze in terms of the dissolution of the social bond and the disintegration
of social aggregates into a mass of individual atoms thrown into the
absurdity of Brownian motion. Nothing of the kind is happening: this point
of view, it seems to me, is haunted by the paradisaic representation of a lost
‘organic’ society.

 
To proponents of the ‘anything goes’ position, a rejection of an understanding
of the individual as an isolated, autonomous agent with a ‘natural’ role in an
‘organic’ whole is synonymous with an acceptance of a fragmented, atomistic
view of the individual. A careful reading of Lyotard shows that his
understanding of the individual is formulated in such a way as to counter the
idea of fragmentation and isolation that could result from a dismissal of the
grand narrative. The following quotation contains a number of important points
that will be analysed closely. It also illuminates the relationships between
Lyotard’s model of postmodern society and the connectionist model developed
in this study (including the characteristics of self-organisation and distributed
representation).
 

A self does not amount to much, but no self is an island; each exists in a
fabric of relations that is now more complex and mobile than ever before.
Young or old, man or woman, rich or poor, a person is always located at
‘nodal points’ of specific communication circuits, however tiny these may
be. Or better: one is always located at a post through which various kinds of
messages pass. No one, not even the least privileged among us, is ever
entirely powerless over the messages that traverse and position him at the
post of sender, addressee, or referent. One’s mobility in relation to these
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language game effects (language games, of course, are what this is all about)
is tolerable, at least within certain limits (and the limits are vague); it is even
solicited by regulatory mechanisms, and in particular by the self-adjustments
the system undertakes in order to improve its performance. It may even be
said that the system can and must encourage such movement to the extent
that it combats its own entropy; the novelty of an unexpected ‘move’, with
its correlative displacement of a partner or group of partners, can supply the
system with that increased performativity it forever demands and consumes.

(15)
 
The relevance of the connectionist model is clearly indicated by this passage.
The self is understood in terms of a ‘fabric of relations’, a node in a network,
and not in terms of atomistic units standing by and for themselves. Since it is
the relationships that are important, and not the node as such, ‘a self does not
amount to much’. Lyotard’s description of the postmodern condition is in fact a
description of the network of our society and of the manner in which it
produces and reproduces knowledge. His point is that this network has become
too complex for general or overarching descriptions. All the characteristics of a
complex system (as described in Chapter 1) can be found in it—something to
be discussed presently. The argument for a multiplicity of discourses is not a
wilful move; it is an acknowledgement of complexity. It allows for the
explosion of information and the inevitable contradictions that form part of a
truly complex network.

The critique claiming that a postmodern position would produce many
isolated discourses in which anything goes is countered in two ways. In the
first place, society forms a network. Although different discourses form
‘clusters’ within this network, they cannot isolate themselves from the
network. There are always connections to other discourses. The different local
narratives interact, some more than others, but no discourse is fixed or
stabilised by itself. Different discourses—clusters in the network—may grow,
shrink, break up, coalesce, absorb others or be absorbed. Local narratives
only make sense in terms of their contrasts and differences to surrounding
narratives. What we have is a self-organising process in which meaning is
generated through a dynamic process, and not through the passive reflection
of an autonomous agent that can make ‘anything go’. Instead of being self-
sufficient and isolated, discourses are in constant interaction, battling with
each other for territory, the provisional boundaries between them being the
very stakes in the game. This is what Lyotard calls ‘the agonistic aspects of
society’ (16–17).

The second aspect of the network of society that counters the idea of
isolation is the distributed nature of the network. In a connectionist network
information is not ‘represented’ by specific nodes, but encoded in patterns
distributed over many nodes. Conversely, any specific node forms part of
many different patterns. In the social network, discourses are similarly
spread over many ‘selves’. A discourse is merely a ‘pattern of activity’ over
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a large group of individuals exchanging local information, and does not
represent any aspect of a metanarrative. Each individual is also part of many
patterns. One can be a mother, a scientist, a consumer, a political activist, an
artist and a lover, all at the same time. Since the social network shares the
characteristic of distributedness with connectionist networks, the argument
claiming that postmodernism results in isolation misses the target
completely.

A further aspect of the social network Lyotard refers to in the passage
cited above is that of self-organisation—the ‘self-adjustments the system
undertakes to improve its own performance’. I have already pointed to the
fact that the discarding of a determining metanarrative on the one hand, and
of the autonomous agent on the other, suspends the self-organising process
somewhere between active and passive modes. The dynamics of the social
network also share the other characteristics of self-organisation discussed in
the previous chapter. The social fabric is not ‘designed’ by means of some
transcendental principle, but develops as a result of the way in which it
responds to contingent information in a dynamic fashion. The process is a
complex one involving many individuals with complex, non-linear
relationships between them, including feedback relations. Individuals co-
operate to form clusters, but also compete for resources in the network. The
system is therefore not, and can never be, symmetrical (a point we will return
to). The history of the system is vitally important for the way in which
meaning is generated in any part of it. The evolution of structures in the
social fabric, causing continuous alterations, is an integral part of its
dynamics.

Lyotard is quite clear on the point that the complexity of the social system
does not automatically lead to randomness or noise. From the passage above it
is clear that the system ‘combats entropy’, that it generates meaning, not noise
or chaos. To optimise this process, the system has to be as diverse as possible,
not as structured as possible. This, for Lyotard, is the function of paralogy.
Paralogy thus performs a similar function to that of self-organised criticality
(discussed in the previous chapter).

Self-organised criticality is the mechanism by which networks diversify their
internal structure maximally. The more diverse the structure, the richer is the
information that can be stored and manipulated. The network has to walk the
tightrope between solid structure, on the one hand, and disorder, on the other.
In our network model, this process is the consequence of fierce competition
among units or groups of units. For Lyotard, the driving force in a social system
is that of paralogy and dissension:
 

…it is now dissension that must be emphasized. Consensus is a horizon that
is never reached. Research that takes place under the aegis of a paradigm
tends to stabilize; it is like the exploitation of a technological, economic, or
artistic ‘idea’. It cannot be discounted. But what is striking is that someone
always comes along to disturb the order of ‘reason’. It is necessary to posit
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the existence of a power that destabilizes the capacity for explanation,
manifested in the promulgation of new norms for understanding or, if one
prefers, in a proposal to establish new rules circumscribing a new field of
research for the language of science.

(61)
 
Lyotard’s insistence on dissension and destabilising forces, as opposed to
consensus—notions which also form the core of Lyotard’s critique of
Habermas—has serious implications for philosophy in general, and
specifically for the philosophy of science. The role of science has
traditionally been understood as one that has to fix knowledge in a
permanent grid. Experimental evidence was used to verify theories.
Sufficient verification would ensure a permanent place in the grid. It soon
became clear, however, that the conditions for objective verification were
problematic, that experimental evidence could support a theory, but not
prove it. The experimental process cannot include all the factors that could
possibly be involved, nor can it predict how new knowledge would change
the interpretation of experimental results. Since one could still disprove
theories, the process of verification was replaced by one of falsification. If
one could not add to the grid, one could at least disqualify unwanted
members. This strategy of ‘throwing away’ has the result of making the
body of knowledge qualifying as ‘scientific’ leaner and leaner. Everything
too complex or containing uncertainties or unpredictability is, for the time
being at least, left aside. Consequently, large parts of the totality of human
knowledge are disregarded as unscientific—most of the arts, most of
psychology (for many scientists Freud remains the paradigm of a scientific
charlatan), and often, human sciences in general. Working with a narrow
understanding of what science should be, even the life sciences (biology)
and the empirical sciences (engineering) become suspect. Pushed to its
limits, the theory of falsification implies that only abstract, a priori truths
are really scientific.

Lyotard’s suggestion is that we discard the idea of consensus since it is
impoverishing. To proliferate knowledge, we have to proliferate discourses
without trying to fix them into a permanent grid. This position has some affinity
with the position of Paul Feyerabend (1975). Feyerabend insists on a scientific
‘anarchy’ in which all the marginalised voices should participate. There should
be no immutable ‘method’ that determines what forms part of the canon and
what does not. Instead of throwing away everything that does not fit into the
scheme, one should try to find meaningful relationships among the different
discourses.

In this regard the connectionist model provides us with an extremely
important insight. If it is granted that all knowledge is embedded in the larger
social network—the acceptance of this point remains a kind of water-shed—the
proliferation of meaning and discourses is an inevitable characteristic of a
complex, self-organising network. Lyotard and Feyerabend are not wilfully
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disruptive, anti-scientific anarchists; they are considering the conditions of
knowledge in a complex society. To allow previously marginalised voices equal
opportunity once again does not imply that ‘anything goes’. Dissenting voices
receive no special privilege; they have to enter into the ‘agonistics of the
network’, where their relevance is dynamically determined through competition
and co-operation in terms of the history as well as the changing needs and goals
of the system.

To conclude this section, a cautionary note. Since all the networks we have
talked about are contingent entities, they are finite. Even the most complex ones
have a finite capacity for handling information. A network can therefore suffer
from an overload, especially when confronted with too much novelty. An
overloaded network will show ‘pathological’ behaviour, either in terms of
chaotic behaviour or in terms of catatonic shutdown. This may actually be the
state of affairs many critics of postmodernism fear, one in which we are being
overloaded with information and, in the process, annihilated (e.g. Baudrillard
1988). The point is, however, that there is little escape. Reverting to rigid,
central control or the reintroduction of grand narratives will not make the
information go away. We have to learn to cope with it by being more
discriminating, by filtering out some of the excesses.

Once again, the connectionist model is the most effective one for performing
this ‘filtering’. In a rule-based system, preferences have to be programmed in,
and can be adjusted only with difficulty. Such systems remain paradigmatic of
the modernist approach working with abstract forms of meaning
(representation) and central control. Connectionist models can dynamically
adjust themselves in order to select that which is to be inhibited and that which
is to be enhanced. Robustness and flexibility are two sides of the same coin. In
terms of our social condition, this means that we would experience less
postmodern stress by becoming less rigid in our interaction with each other and
our environment. This does not mean that one should give up, or go with the
flow. It means that we all have to enter into the agonistics of the network.

COMPLEX SYSTEMS AND POSTMODERN SOCIETY

In this section I wish to argue that postmodern society (seen as a system) can be
described in terms of the ten characteristics of complex systems described in
Chapter 1. I will take them one by one and argue that some of them have
interesting implications for a theory of contemporary culture.
 

(i) Complex systems consist of a large number of elements. If we look at
the social system as constituted by human individuals, the number of
elements in the system is certainly huge.

(ii) The elements in a complex system interact dynamically. Individuals
are engaged in a constant exchange of information. Remember that
a specific node in a neural network has limited significance, that it
is the patterns of interconnections that encode information and



120 Complexity and postmodernism

generate meaning. Similarly, no human individual’s existence is
meaningful in isolation: ‘the self does not amount to much’
(Lyotard 1984:15). The individual is constituted by its relationships
to others,

(iii) The level of interaction is fairly rich. Human individuals interact with
many others in a vast array of different capacities. In postmodern
society the level of interaction is growing continuously,

(iv) Interactions are non-linear. Non-linearity is a precondition for
complexity, especially where self-organisation, dynamic adaptation
and evolution are at stake. Closely related to the principle of non-
linearity is the principle of asymmetry. Linear, symmetrical
relationships give rise to simple systems with transparent structures.
In complex systems, mechanisms have to be found to break
symmetry and to exploit the magnifying power of non-linearity.
This is ensured by a rich level of interaction and by the competition
for resources.

The social system is non-linear and asymmetrical as well. The
same piece of information has different effects on different
individuals, and small causes can have large effects. The competitive
nature of social systems is often regulated by relations of power,
ensuring an asymmetrical system of relationships. This, it must be
emphasised strongly, is not an argument in favour of relations of
domination or exploitation. The argument is merely one for the
acknowledgement of complexity. Non-linearity, asymmetry, power
and competition are inevitable components of complex systems. It is
what keeps them going, their engine. If there were a symmetrical
relationship between infants and adults, infants would never survive.
If there were a symmetrical relationship between teacher and student,
the student would never learn anything new. If the state had no
power, it would have no reason to exist. If women and men were all
the same, our world would be infinitely less interesting.

These considerations have important implications for social theory.
The fact that society is held together by asymmetrical relations of
power does not mean that these relationships are never exploited. To
the contrary, they are continuously exploited by parents, by lecturers,
by the state and by men, but also by children, by students, by
citizens and by women. The point is that the solution to these forms
of exploitation does not lie in some symmetrical space where power
is distributed evenly. Such spaces cannot exist in complex systems
that are driven by non-linearity. The hope that such spaces could be
created in any enduring fashion is false.3 To combat exploitation,
there is only one option: you have to enter into the agonistics of the
network. Since this approach does in no way guarantee success, there
is very little moral high ground to be had, whether one rejects the
abstract rules of modernist ethics or not.
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(v) The interactions have a fairly short range. The elements in a complex
network usually interact primarily with those around them. In large
networks this results in groups or assemblies of elements clustering
together to perform more specific functions. Lyotard (1984: xxiv, 61,
66) describes the phenomenon as ‘local determination’. Elements
operate on information that is available to them locally—they have to,
since in the complex (postmodern) system there is no meta-level
controlling the flow of information. The behaviour of the system is
therefore characterised best in terms of a multiplicity of local
‘discourses’.

At the risk of repetition, it must be emphasised that these locally
determined groups are not isolated from each other. Despite the short
range of immediate interactions, nothing precludes wide-ranging
influence. Different clusters are interconnected and since these
connections are non-linear, they can produce large effects, even if the
interconnections are sparse. Important events can reverberate through
the system quite rapidly, but they are never propagated in a pure
form since they are constantly modulated by the cluster they pass
through.

(vi) There are loops in the interconnections. Feedback is an essential
aspect of complex systems. Not feedback as understood simply in
terms of control theory, but as intricately interlinked loops in a
large network. This means that the activity of an element can
directly or indirectly influence itself. In postmodern theory this
manifests itself as the problem of reflexivity (see Lawson 1985). If
one accepts that information is proliferated throughout the system
and that it is continually transformed—by other bits of information
and by itself—then it becomes impossible to stipulate a ‘true’
interpretation for any piece of information. Information can only be
interpreted locally and then only through the dynamics of
différance—as reflecting upon and transforming itself. These
dynamics precludes the definition of truth or origin at a meta-level
and is therefore referred to as the postmodern predicament—‘a
crisis of our truths, our values, our most cherished beliefs’ (Lawson
1985:9).

There may indeed be a crisis of knowledge, but, and this must be
underscored, the crisis is not the result of the disruptive activity of
‘subversive’ theoreticians like Nietzsche, Heidegger and Derrida. It is
a direct result of the complexity of our postmodern society. This is the
point Lyotard also makes when he insists that the conditions for
knowledge are locally determined. Reflexivity does lead to paradox,
but this is only a problem if all paradox has to be resolved at a meta-
level. If one has to remain at the level of the network, one has to cope
with the paralogy of the postmodern condition. The implication is not
that it is impossible to interpret information; it merely means that all
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interpretations are contingent and provisional, pertaining to a certain
context and a certain time-frame.

(vii) Complex systems are open systems. We already made the point that
local discourses are not closed off, but interact with each other. The
social system also interacts with many other systems, including, for
example, the ecosystem. This relationship has come under new
scrutiny, giving rise to strong political groupings with the environment
as their prime concern. Nature is no longer the passive object of
human exploitation, but is part of the set of relationships that makes
humans what they are.

(viii) Complex systems operate under conditions far from equilibrium.
Complex systems need a constant flow of energy to change, evolve
and survive as complex entities. Equilibrium, symmetry and complete
stability mean death. Just as the flow of energy is necessary to fight
entropy and maintain the complex structure of the system, society can
only survive as a process. It is defined not by its origins or its goals,
but by what it is doing. In postmodern society this constant activity,
this lack of equilibrium, is pushed to ever higher levels, particularly
through the role of the mass media. This has an unsettling effect on
many, and undeniably one has to develop certain skills to cope with
these conditions, but to yearn for a state of complete equilibrium is to
yearn for a sarcophagus.

(ix) Complex systems have histories. The importance of history has been
emphasised over and over again. One point bears repetition: the history
of a complex system is not an objectively given state; it is a collection
of traces distributed over the system, and is always open to multiple
interpretations. History, understood in this sense, certainly applies to
postmodern society, making it all but a-historical. What
postmodernism does reject is an interpretation of history which
elevates it to a master key for unlocking the true meaning of present
conditions. However, it remains impossible to think in the present
without considering the past—or the future.

(x) Individual elements are ignorant of the behaviour of the whole system
in which they are embedded. This is a more complex point that needs
careful consideration. We have already pointed to the fact that
elements in a system can only respond to local information, bearing in
mind that this information can be quite rich. We have also shown that
single elements of a complex system are not significant by themselves,
but obtain significance through their patterns of interaction. The point
made here is slightly different. Single elements cannot contain the
complexity of the whole system and can therefore neither control nor
comprehend it fully.

Because of the overwhelming amount of information available in
postmodern society, we often live under the illusion that we get the
complete picture. Because of the complexity of our society, this is not
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possible. Since we are in part creating society through our actions, no
complete picture of its present state is available to anyone. In this
regard all elements are in the same boat. Certain elements may have
more control over specific aspects—our political models are still
geared in a way that allows single individuals far too much power.
Single elements should not, and normally do not, exert complete
control over a decentralised system. For example, I may want to
combat inflation, but I have no way of measuring the effect of my own
spending pattern. These effects only become apparent when my
behaviour combines with those of a large number of other economic
agents.

The claim that the structure of society is an emergent property of the
social system may create a feeling that one’s own activities are
irrelevant or insignificant. This need not be the case. In the first place,
the relevance of your activities is determined by the effectiveness with
which you enter into the agonistics of the network, not by attempts to
understand life from God’s viewpoint. Secondly, it must be kept in
mind that since the interactions are non-linear, small causes can have
large effects. It also means, however, that the effects of our actions are
somewhat unpredictable.

 
Looking at these ten characteristics should make it clear that it is possible to
analyse postmodern society in terms of the distributed model of complex
systems. What is of particular interest is the implications the model seems to
have for ethics. These will be dealt with towards the end of the chapter. In the
following sections I want to look at the implications the model has for our
understanding of language, and for the status of scientific knowledge.

LANGUAGE AS A COMPLEX SYSTEM

In Chapter 2 I outlined two paradigmatic approaches to language: the rule-
based approach of Chomsky and the relational approach of Saussure. I
argued for the affinities between connectionist models and Saussurian
linguistics, and also discussed how complex networks can incorporate some
of Derrida’s expansions and critiques of Saussure (discussed in Chapter 3).
In Chapter 5 the problem of representation was analysed, with specific
reference to representational theories of meaning. Language has therefore
already received a great deal of attention. In this section I want to
summarise the implications the distributed model of complex systems has
for the theory of language. To really characterise language in these terms,
and to evaluate various theories of language against this background, would
demand a full-length study of its own. To then develop a full-fledged
connectionist model of language and to test it computationally would be an
equally daunting task. Here I merely want to indicate why such a project
would be meaningful.
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Similar to the way in which postmodern society was shown to have the
important characteristics of complex systems, we can examine language in
order to establish to what extent the model applies to it as well. Since we
have been through the exercise once before, I will move a little faster. Any
proper language consists of a large number of words whose meanings are
constituted through their relationships to each other (this is within the
Saussurian paradigm, of course). In these relationships non-linearity and
asymmetry are of vital importance. For example, while the meaning of ‘red’
is constituted through a set of relationships to all the other words in the
system, its relationships to ‘blue’ and ‘yellow’ are not similar to its
relationships to ‘blood’ or ‘materialism’. The asymmetry of linguistic
relationships is also a precondition for the development of metaphor. To say
that A is a B (he is a pig) does not imply that B is an A. However, most terms
are primarily constituted by their relationships to their immediate neighbours
(‘red’ by its relationships to ‘yellow’, ‘blue’, ‘green’ ‘purple’, etc.). Long-
range interactions are mediated by intermediaries, often resulting in
metaphors. When the metaphor has become fixed, it means that the network
has altered its structure to such an extent that the words have become
neighbours (in the sense of network topology).

The reflexivity of language—the loops in the network—is exemplified by
the dynamics of différance. Language is constantly transformed by the way in
which it is used. The frequent use of a term, for example, can cause that term
either to limit its semantic field (because we have grown too accustomed to it),
or to expand it (because it is used inappropriately or in different contexts). The
use of the term thus shifts the meaning of the term itself. As language is an
open system, it interacts with the environment in many ways. New aspects of
the environment will have effects on language. Words that have been used
innocently for a long time (e.g. ‘chairman’) can suddenly become controversial.
We are also forced, especially in the post-modern world, to come up with new
words for new things all the time.

If language is closed off, if it is formalised into a stable system in which
meaning is fixed, it will die, or was dead to start with. A living language is in a
state far from equilibrium. It changes, it is in contact with other languages, it is
abused and transformed. This does not mean that meaning is a random or
arbitrary process. It means that meaning is a local phenomenon, valid in a
certain frame of time and space. Since every language also has a history—a
history co-responsible for the meaning of terms—meaning is more stable than
one would think, even within the context of a model that values flux and
proliferation. Words bear with them the traces of previous meanings that cannot
be discarded at will. Above all, language is a system in which individual words
do not have significance of their own. Meaning is only generated when
individual words are caught in the play of the system.

The problems with a representational theory of meaning have been discussed
in detail in Chapter 5, and I will not repeat the discussion here. The culmination
of the argument there was the rejection of theories which separate the syntactic
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and semantic levels. The point was not only made from a post-structural
perspective, but also incorporated arguments from Putnam’s critique of classical
representation. I do, however, want to return to the discussion of language as a
self-organising system.

Those who support a post-structural understanding of language are often
confronted with the following question: if language is constituted by a set of
relationships among signifiers, how do you account for the relationship
between language and the world? The concern here is that if meaning is
ascribed to the play of signs only, language will become free-floating to the
extent that no empirical truth claims can be made anymore. Although this
objection is usually motivated by a nostalgia for a coherent metanarrative
capable of regulating the production of meaning, it does pose a question that
deserves a careful answer.

I have already argued that a pairing off of words and objects in a direct
fashion—classical mimetic representation—is not acceptable. It does not give
enough credit to the fact that language is a complex system. It assumes the
existence of an objective, external viewpoint and begs the question as to the
identity of the agent that performs this ‘pairing off’. The relationship between
language and the world is neither direct and transparent nor objectively
controlled, but there is such a relationship—without it natural language would
not exist. By understanding language as a self-organising system, we can start
sketching a more sophisticated theory of this relationship.

Self-organisation describes how a complex system can develop and change
its internal structure. The process is driven by competition for the resources of
the system. Information from the environment enters the system (through some
sensing mechanism) and interacts with information already encoded and stored
in the system, causing the system to adapt and change its responses to the
environment. All of this was described in Chapter 6. There we focused on the
brain and neural networks as self-organising systems, but equivalent arguments
would hold for language.

The important point for our discussion here is the fact that information from
the environment has a direct, though non-determinate, influence on the system:
it causes certain changes in the system, but it does not fully determine the
nature of these changes. Information from the environment interacts in a non-
linear way with information already stored in the system. (Bear in mind that the
memory of the system is distributed, not iconic.) Incoming signals are mediated
by the history of the system in such a way that it incorporates important new
aspects, but resists unnecessary fluctuations. The state of the system at any
given time is thus the result of conditions in the environment, the history of the
system and the effects that the system must have on its environment in order to
perform its functions.

How does language in fact interact with the environment (the ‘world out
there’)? Primarily through the users of language who have to interact with
the environment in order to survive and operate in it. As a matter of fact,
language is one of the most important tools we use to cope with the task.
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We try to make sense of our experiences, and in the process create and
expand our language. This is not the result of an act by an abstract mind,
nor a mere reflection of circumstances. Meaningful language evolves in
time through a self-organising process, suspended between active and
passive, in which useful or effective forms of language survive, and
obsolete forms decay. An example may help to illustrate this. The word
‘cow’ (or some equivalent) can enter into someone’s language through
different mechanisms—including definition (indicating the relationships
through the use of terms already known) and ostentation. However, none of
these mechanisms are sufficient by themselves as a basis for an adequate
theory of language. The word ‘cow’ will acquire meaning to the extent that
cows are important to the user of language, and also, of course, to the
extent it interacts with those elements that are already part of the user’s
linguistic system. The term is compared to other terms already available so
as to satisfy present constraints. The term may originally be quite inaccurate
(nothing more specific than ‘fairly large, black and white animal’). The
meaning of the term will develop proportional to the importance the term
has. If, for example, you are a judge of cattle on important international
shows for stud animals, the term ‘cow’ will be differentiated into a large
number of finer details. If you are a city boy, the term may only have a few
weak connotations with ‘milk’, ‘steak’, and a number of insults you do not
really understand.

If language can be described as a self-organising system, the problem of the
relationship between language and the world is solved in a fairly sophisticated
way. The world has a direct causal influence on the meaning of words, but it
does not determine the exact meaning of words. Meaning flows from a complex
process of interaction between information from the world, on the one hand,
and a web of already existing relationships, built up through previous
interactions, on the other hand. This makes language a vital, evolving system,
capable of coping with great complexity. If certain aspects of the environment
are of great importance, the system will organise itself towards a robust,
accurate interpretation of these aspects. It will not waste its resources by
allocating too much of it to terms that are used infrequently or are of little
interest. This kind of interpretation of language allows us to find an important
place for the dynamics of trace and différance; it also leads us to acknowledge
that the linguistic system will organise itself to a point of criticality where the
maximum amount of meaning can be generated without becoming unanchored
from the world.

The relationship between language and the world is always of interest, but
all the more so when we do science. Then we have a responsibility to be as
clear about this relationship as circumstances allow. Let us therefore examine
the relationship between science and postmodern theory from the perspective of
complex systems.
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UNDERSTANDING SCIENTIFIC KNOWLEDGE FROM A
POSTMODERN PERSPECTIVE

If we can describe language without invoking a meta-position, but rather in
terms of a complex but robust system that helps us to cope with the world, we
should be able to do something similar for the status of scientific knowledge. I
will once again make use of Lyotard’s analysis of the conditions of scientific
knowledge in postmodern society, but the discussion will be introduced by a
quote from Wilden (1987:309).
 

[The] revolt against simplicity made the neglected topic of complexity, or
more accurately, organised complexity (constrained diversity), into a subject
worthy of attention by scientists—biologists, ecologists, philosophers,
humanists, culture critics, and others.

This many-levelled revolution in favor of diversity is coming about at a
time when we know for a fact that we may all end up nuked or puked.

Our long-range future—if we have one—is now utterly dependent on
those in power coming to understand the basic fact of the new science: that
the open system that destroys its environment ultimately destroys itself.

Organized complexity is the fount of life, liberty, and novelty on the
planet earth.

 
In the first place, Wilden provides a definition of complexity that is consistent
with the understanding of complexity developed in this study. He emphasises
the principle of organisation in order to make sure that complexity is not
confused with chaos. Complex systems are constrained, they have an organised
structure, but within those constraints the system has to diversify maximally.
The study of complexity, once neglected, can now be approached in a scientific
way.

The second important point raised here by Wilden concerns the nature of
this scientific approach. Instead of seeing science as an isolated element in a
closed, fragmented social system, he stresses the political and social importance
of the science of complexity.

We need to come to grips with complexity in order to ensure our survival. At
the same time, complexity is the fount of liberty. In both science and politics,
therefore, the acknowledgement of complexity is a vital step. Liberty and
justice will not come about through the imposition of universal laws by some
form of central control, nor will science flourish if it maintains a closed shop
and speaks a private language. Scientific activities need to be more open, not
only towards the world, but also internally. The barriers between the various
scientific disciplines need to be crossed.

These points are explicitly confirmed by Lyotard, who also claims that
scientific knowledge has traditionally been legitimated internally, i.e. the
criteria by which something qualified as scientific were determined by science
itself. Lyotard (1984:25–26) notes the following five properties of this
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conservative approach, an approach to which he refers as the ‘pragmatics of
science’:
 

(i) Scientific knowledge requires that one language game—denotation—
be retained and all others excluded. Although other types of
statements, such as interrogatives or prescriptives, crop up in the
process, they only present ‘turning points in the dialectical argument
which must end in a denotative statement’ (25). A scientist is one who
can produce such statements, verifiable or falsifiable, and intelligible
only to the experts in the field.

(ii) Scientific knowledge generated in this way is not part of the general
‘social bond’, but the property of the experts and professionals who
organise themselves into exclusive institutes and institutions. The
relation between knowledge and society…becomes one of mutual
exteriority’ (25).

(iii) In the process of research, only the competence of the researcher is
at stake. Competence is not required from the receiver of the
message or the subject of research (in the case of human sciences).
‘A person does not have to know how to be what knowledge says he
is’ (26).

(iv) Scientific statements do not increase their validity by being reported or
through popularity. Any such statement is only as valid as its proof.

(v) Scientific knowledge is cumulative. Scientists are supposed to know
the accepted body of knowledge in their field and should only add new
statements when they differ from previous ones.

 
This kind of knowledge—scientific knowledge—is contrasted with a more
general kind of knowledge, what Lyotard calls ‘narrative knowledge’. The
pragmatics of narrative knowledge are also described in terms of a few
properties (18–23):
 

(i) The criteria for narrative knowledge are flexible and are dynamically
defined by the society in which the narrative functions.

(ii) No specific linguistic form is privileged in these narratives. They lend
themselves to a variety of language games.

(iii) In the ‘transmission’ of these narratives, sender, receiver and the
subjects discussed are all considered in a way that strengthens the
social bond.

(iv) Narratives have a strange temporal nature. Their function is not
primarily to remember the past, but to re-enact past events as present
events. The meaning of the narrative lies not in the fact that it is
supported by some important piece of history, but in the metre and
rhythm of its present telling.

(v) No special procedure is necessary to ‘authorise’ the narrative process.
The narrator is not isolated, but performs the function of integrator,
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and all those who participate can find themselves in any of the
available roles (narrator, narratee, hero, etc.).

 
These two forms of knowledge—scientific and narrative—Lyotard claims, have
been kept apart so long that they have become incommensurable. Narrative
knowledge may include some aspect of scientific knowledge, but scientific
knowledge is legitimated separately. Narrative statements cannot be the subject
of argumentation and proof (27). The separation of the two has, however, led to
a legitimation crisis for scientific knowledge in the postmodern era during
which metanarratives are treated with incredulity. The decline of the scientific
metanarrative is, however, not merely the result of some kind of theoretical
approach, but a necessary result of the diversity and complexity that science has
to deal with now.
 

The ‘crisis’ of scientific knowledge, signs of which have been accumulating
since the end of the nineteenth century, is not born of a chance proliferation
of sciences, itself an effect of progress in technology and the expansion of
capitalism. It represents, rather, an internal erosion of the legitimacy
principle of knowledge. There is erosion at work inside the speculative
game, and by loosening the weave of the encyclopedic net in which each
science was to find its place, it eventually sets them free.

(39)
 
This new freedom is important not only for the relationship between science
and society, but also for the development of a new understanding of scientific
knowledge and the practice of science itself. The traditional divisions among
scientific disciplines no longer have a standing that cannot be challenged. As a
matter of fact, contemporary science is at its most interesting where disciplines
intersect: biotechnology, genetic computational algorithms, cyber-networks and
virtual realities. ‘The speculative hierarchy of learning gives way to an
immanent and, as it were, “flat” network of areas of inquiry, the respective
frontiers of which are in constant flux’ (39).4

Lyotard here allocates two important characteristics to scientific inquiry.
Firstly, it is immanent, i.e. contingent. This implies that, as in the case of
narrative knowledge, its value is determined by participants of the game in
terms of their present needs and constraints. Secondly, areas of inquiry are
interconnected in a ‘flat’ network. We are already aware of the importance of
understanding postmodern society as a network, but we must bear in mind that
this network is ‘flat’. It is not supported from below by some foundation, nor
held together from above through general abstractions. We can only trace
various narrative routes through a complex, flat network.

We now possess a framework for developing a ‘narrative’ interpretation of
scientific knowledge. Instead of being denotative, external, self-centred, logical
and historically cumulative, scientific knowledge is produced through
interaction and diversity, and has become more and more embedded within the
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context of the wider social network. Science, as well, can only survive by
entering the agonistics of the network.

The criteria for useful knowledge are no longer denotative, but more
flexible. Because it forms part of an open system, it has to take the wider
scenario into account. It cannot depend solely on the authority of either
history,5 or the expert, to legitimate it. Scientific knowledge, like the social
network, organises itself in a manner that ensures only those narratives
making a difference—in contingent, not abstract terms—will be
perpetuated. There is no reason to fear, as some modernists do, that this
would lead to less, or less reliable, knowledge than would following a
conservative approach.

The idea of narrative knowledge that is also scientific can now be
summarised. The world we live in is complex. This complexity is diverse but
organised, not chaotic. Descriptions of it cannot be reduced to simple, coherent
and universally valid discourses. If we model complexity in terms of a network,
any given narrative will form a path, or trajectory, through the network. There
are a great diversity of such paths. The network is not only complex, but also
dynamic. As we trace various narrative paths through it, it changes. However,
all paths are constrained by the local structure of the network. In some places
these constraints can be fairly loose, in others they can be quite tight. The fact
that there are many narrative paths to follow, even between two specific points,
does not imply that anything goes. All narratives are subject to some form of
constraint, and some paths are ruled out. All paths share the characteristics of
contingency and provisionality. For strategic reasons, certain parts of the
network can be closed off and fixed. This process of ‘framing’ is a necessary
part of scientific inquiry, but the knowledge hereby produced remains relative
to that specific frame and cannot be generalised in either a temporal or spatial
sense.

At this point, a few other thinkers who have an understanding of science
similar to the one derived from Lyotard, can be mentioned briefly. Blackwell
(1976) suggests a framework for what he calls ‘a structuralist account of
scientific theories’. He does not mention any postmodern or post-structuralist
authors, but acknowledges his indebtedness to Piaget (264). Nevertheless, his
arguments have a familiar ring to them. He states that ‘almost all theories of
knowledge in Western philosophy are based on the notion that there are
epistemological ultimates’ (263). As examples he cites Plato’s Forms,
Aristotle’s four causes, Descartes’s innate ideas, Locke’s primary qualities,
Hume’s simple impressions, Kant’s forms of sensibility and categories of
understanding, Peirce’s ideal state of science, Husserl’s essences, Russell’s
sense data and Carnap’s logical atomistic building blocks of the world (263–
264). Blackwell then denies the existence of epistemological ultimates and
proposes a more modest outlook that admits ‘that our personal experience as
well as the accumulated evidence available to us is limited to a relatively
short stretch of space and time’ (264). In giving accounts of our knowledge,
we always have to begin where we find ourselves: in mid-stream. It is in
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order to cope with this state of affairs that he proposes a ‘structuralist’
account.

Following Piaget, he defines a structure as ‘any organised system of
transformations which are governed by laws and which are self-regulatory’
(266). He emphasises that a structure is ‘a system of transformations, rather
than a system of parts or elements’ (267). The self-maintenance (read self-
organisation) of the system is aimed at maintaining the dynamic structure and
not the existence of any specific element (268). In developing scientific
theories, one should not fall for the temptation of identifying basic elements
and then ask how they are combined to form a theory. ‘This is precisely the
wrong approach and, in our opinion, is the main reason for the failure of
contemporary philosophy of science to formulate an adequate account of
theories’ (269).

According to his ‘mid-stream principle’, theories have no ultimate elements,
only intermediate ones. One should focus not on the elements, but on the
system. Theories are hereby ‘designated as processes, not as static, logical
formalisms’ (269). Although he does not refer to complexity or the need for
diversity, Blackwell shows a sensitivity to the contingency of scientific
knowledge as well as to the role of self-organisation—a process which allows
for continuity in the structure of the system while it is adapting to new
circumstances.

Mary Hesse is another thinker who is apprehensive about traditional
analytical philosophy of science (Hesse 1992:49). Her arguments are presented
in the context of Anglo-American philosophy, and although they do not include
elements of structuralist or postmodern thinking,6 she has a keen interest in the
complex nature of language and the ways in which it provides access to the
world. She argues that metaphor is a ‘fundamental form of language, and prior
(historically and logically) to the literal’ (54). An emphasis on metaphor and
analogical reasoning shifts the focus of the philosophy of science from
deductive reasoning to the problems of categorisation and clustering (Hesse
1988:324). Using Wittgenstein’s notion of family resemblances, she argues that
we gain cognitive knowledge not by exhaustively calculating all the logical
relations at stake in a particular instance, but rather by finding enough analogies
to place this instance relative to others we are already happy with.

Clustering together things with related characteristics is of course exactly
what a self-organising neural network does. Although Hesse does not explicitly
use connectionist terms, she does work with the concept of a ‘resemblance
network’ (324), and many of the points she makes are commensurable with a
connectionist model of complexity. That much is clear from her advocation of a
moderate scientific realism, of knowledge that ‘turns out to be particular rather
than general, local rather than universal, approximate rather than exact,
immediately describable and verifiable rather than theoretically deep and
reductive’ (Hesse 1992:53).

Joseph Rouse is explicit in his adoption of postmodern elements in his
development of a philosophy of science with a narrative structure. His central
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claim is formulated thus: ‘the intelligibility, significance, and justification of
scientific knowledge stem from their already belonging to continually
reconstructed narrative contexts supplied by the ongoing social practices of
scientific research’ (Rouse 1990:181). Unfortunately he does not concentrate on
the development of such a ‘narrative reconstruction of science’. Instead he
attempts a kind of mapping of the territory of the philosophy of science to see
who fits in where, with specific reference to the way in which the Modern
discourse persists in the philosophy of science (Rouse 1991a). In this respect he
makes the following remark:
 

Thus I take the quintessentially modernist feature of much recent philosophy
and sociology of science to be the posing of a stark alternative: either
realism or rational methodology on the one hand, or relativism and the
debunking of the alleged cultural hegemony of sciences on the other.

(Rouse 1991b: 608)
 
From this position he concludes that radical post-positivist philosophers of
science like Kuhn, Lakatos and Feyerabend are actually still part of
modernity. He admits that this may sound odd at first, but, following Hacking,
clarifies it by saying that we should think of ‘modernity’ not as a position, but
as a ‘shared field of conflict for which there must be a great deal of
underlying agreement in order to make sharp and consequential disagreement
possible’ (610). A postmodern philosophy of science has to escape from the
structure of this ‘either/or’, but Rouse does not really elaborate on how this
should be done.

In a slightly earlier article, which makes no direct reference to post-modern
thinkers, but recognises an indebtedness to Heidegger, Rouse (1990) does make
his understanding of the generality of scientific knowledge clear. Here he is
concerned with the thorny issue of the coherence of the scientific narrative. On
the one hand, Rouse rejects the idea of the unity of science ‘which postulates as
an epistemic ideal the unification of scientific representations of the world into
a single all-inclusive and coherent picture’ (192). He motivates this rejection by
denying that the goal of science is the ‘accumulation of a body of
representations abstracted from the activity of research’ (192). The advance of
science is centrifugal rather than centripetal, and in this process established
results are often left by the wayside. The concerns of science are practical
rather than representational, and insofar as there is a concern for coherence, it is
only local, more local even than the level of the applicable discipline, let alone
that of the whole of science.

On the other hand, Rouse claims that there is a different and important
sense in which scientific knowledge does get unified. This has to do with the
fact that the boundaries between disciplines are regularly breached, not only
by scientists plundering other disciplines for tools and ideas, but also by the
hybrid disciplines that are developing as increasingly complex issues are
addressed.  
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What we get is not a single coherent picture of the world, but an ever
more complex network of interconnections binding together various
scientific endeavours…. [T]he loss in coherence is often happily
compensated by the creation of new possibilities to explore, and new
capabilities for doing that.

(192–193)
 
His sensitivity for the importance of competition is also worth mentioning:
‘To be “technical” simply is to be a response to a history of conflicts’ (188).
Given this framework, we can conclude that although Rouse does not
elaborate on the actual dynamics of scientific knowledge in postmodern
society, he should not object to the ‘agonistics of the network’ suggested by
my reading of Lyotard.

In his latest book, however, Rouse (1996) does little more than pay lip
service to the idea of postmodern science. Apart from some references to
gender issues, the ethical dimension of scientific practice is not explored and
there is no engagement with continental theory. Thinkers like Lyotard and
Derrida are mentioned only en passant. For me, reading this book was about as
pleasant as it would be to eat it.

The next theorist I wish to discuss turns out to be a disappointment as well,
at least within the context of the approach taken in this study. Paul Churchland
is a strong advocate of the importance of the neurocomputational approach. He
and Patricia Churchland were some of the first philosophers to explore the
philosophical implications of neural networks (P.M.Churchland 1984, 1989;
P.M.Churchland and P.S.Churchland 1990; P.S.Churchland 1986;
P.S.Churchland and Sejnowski 1992). The issue at stake is not whether they
accept and employ connectionist models, but how they do it. This issue can be
tackled by looking at A Neurocomputational Perspective in which Paul
Churchland (1989) examines the importance of neural networks for the theory
of scientific knowledge.

In an essay entitled The Ontological Status of Observables: In Praise of
Superempirical Virtues’ (139–151) he positions himself as a realist asserting
‘that global excellence of theory is the ultimate measure of truth and ontology
at all levels of cognition, even at the observational level’ (139). His realism is
more circumspect than may be deduced from this passage (141), but he
remains committed to the idea that there is a world that exists independent of
our ‘cognition’, and that we construct representations of this world (151).
Since different representations are possible, they have to be compared, and
the best selected. The selection cannot be made on the basis of ‘empirical
facts’, but ‘must be made on superempirical grounds such as relative
coherence, simplicity, and explanatory unity’ (146). It should be clear that
from this position he is not about to explore contingency, complexity and
diversity.

Churchland’s approach is not naïve or unsophisticated, as can be seen from
the central essay, ‘On the Nature of Theories’ (153–196). According to him,
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the classical view of a theory is that it is ‘a set of sentences or propositions,
expressible in the first order predicate calculus’ (153). In that view, theories
are statable. Only theories of this kind can perform the primary functions of
theories, i.e. prediction, explanation and intertheoretical reduction; they
promise an account of the nature of learning and of rationality (in formal
terms), and their ultimate virtue is truth (153). Churchland rejects the view
that sentential and prepositional attitudes are ‘the most important form of
representation used by cognitive creatures’ (158), and suggests that one
should rather look at the way in which the brain ‘represents and computes’
(159). After an introduction to neural networks (or parallel distributed
processing) he discusses the implications the latter have for the nature of
theories. One important aspect that he does point out is the following: an
explanation of what a neural network does can only be given at the level of
the weights (177). The need for higher level (logical) explanations is
therefore eliminated.7 Everything necessary to explain the behaviour of the
network is contained in the (material) values of the weights.

Although this point does concur with the position proposed in the present
study, Churchland understands it in a very static way. An explanation is
provided by the collective values of the weights at a specific moment, ‘a point
in weight space’ (177). Given his representational bent, this is perhaps not
surprising, but it does undermine an interpretation of explanation and
understanding as processes. This may be in part because Churchland uses, as I
do, the simple, one-directional ‘back-propagation’ network to explain the
working of a neural network. Although he recognises the importance of
recurrent networks (208), he does not expand on the dynamics of these
networks. I could therefore find no analyses of the process of self-
organisation—a process for which recurrency is a prerequisite.

Another important conclusion he draws from the model of the network is
that all empirical observations are theory-laden. Since information entering the
network can only be processed in terms of the patterns of weights already
existing, ‘no cognitive activity whatsoever takes place in the absence of some
theory or other’ (188). Such a viewpoint is closer to the one taken in this study,
but he still refers to the goal of theory formation as the development of
partitions of the weight space into ‘useful and well-structured subdivisions’
(189).8 There is nothing a priori about these divisions since Churchland is
willing to discard the notion of truth ‘in pursuit of some epistemic goal even
more worthy than truth’ (150). What this goal might be, however, is not
mentioned.

In summary, Churchland’s employment of neural networks as explanatory
tool is an important step, but to my mind it is seriously hampered by his
continued commitment to the importance of representation. He does not
believe in the existence of a single, correct representation, and consequently
he sees no hope for convergent realism (194), which must bring him quite
close to discarding the notion of representation. However, he clings to the
idea that the world has to be ‘carved up’, and that networks perform the
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carving by developing representations. His final article of faith remains the
following:
 

Our best and most penetrating grasp of the real is still held to reside in the
representations provided by our best theories. Global excellence of theory
remains the fundamental measure of rational ontology. And that has always
been the central claim of scientific realism.

(151)
 
Finally I want to mention a book that constitutes a project that is not all that
different to mine, but arrives at opposite conclusions. In A Blessed Rage for
Order: Deconstruction, Evolution, and Chaos, Alexander J.Argyros (1991)
examines the work of Derrida, and then discards it. His approach is a
conservative one, and by his own admission, ‘a kind of foundationalism’ (2).
He is firmly committed to the ideal of progress (323–331), at times with a zeal
that sounds pious: ‘If we are to replace the emperor [the naked one—that
favourite metaphor of modern conservatives] with something better, we must
believe, and deeply, that better alternatives are possible’ (5). Given this
approach, it comes as no surprise that he focuses on chaos theory as the kind of
science that should lead us to the promised land: ‘[Chaos theory] can serve to
begin healing the four-hundred-year-old schism between science and the
humanities. In addition, chaos may allow us to reaffirm such battered concepts
as universality, identity, meaning, truth, and beauty’ (7).

The basic premise of Argyros’s book is not really at odds with my
argument. He claims that the natural world, as revealed by natural science, of
course, ‘channels human interpretations of both culture and nature as much as
human interpretations of culture and nature are channeled by sociohistorical
pressures’ (2). Despite the fact that this claim seems to have a circular
component—human interpretation is guided by the world as revealed by
science, which itself of course involves interpretation—my quarrel is not with
the claim, but with Argyros’s conclusion that Derrida would contest such a
position.

His understanding of post-structuralism is clearly influenced by a strain of
American literary theory that likes to see post-structuralism as something
anarchistic and destructive. It is this severely limited understanding of Derrida
that leads him to claim that ‘deconstruction, and all antifoundationalisms, must
bracket the entirety of the natural world, including that part of it comprising the
non-mindlike components of human beings’ (2), and that ‘for deconstructionists,
any dialogue with nature can only be a disguised monologue’ (3). From this it is
clear that for Argyros, post-structuralism is an idealism that denies any
importance to the human body and to the world as it is. It is exactly this kind of
understanding of post-structural theory that I contest, and, I am convinced, so
would Derrida. It is also a pity that Argyros chooses what is generally considered
to be one of Derrida’s weaker pieces—his essay on apartheid9—for detailed
analysis.
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Let me repeat the position stated in Chapter 1: there is no imperative to
subscribe to the post-structural position when we deal with complex, dynamic
systems. I find it extremely helpful, and therefore important, but it is possible to
make points similar to mine from other perspectives. In the case of Argyros,
however, I feel that his basic conservatism has forced him to turn a potential
ally into a foe.

In this section I have explored the nature of scientific knowledge in the
context of connectionist models. My central point has been that our
descriptions of the world need to have an inherent sensitivity for complexity.
Through the examination of a number of theoretical frameworks, it has
become clear that postmodern and post-structural theories do have such a
sensitivity, and, furthermore, that a reading of these theories from a
connectionist perspective suggests that the notions of patterns and constraints
are inherent to post-structuralism. The existence of contingent constraints
argues against an interpretation of these theories as implying that ‘anything
goes’. I have also shown that the acceptance of connectionist models does not
by itself lead to a deeper understanding of complexity. That is why I would
insist on the fruitfulness of combining complexity theory with post-
structuralism.

THE COMPLEXITY OF POSTMODERN ETHICS

I wish to return to Lyotard’s (1984) claims that his analysis of the post-
modern condition provides us with ‘the outline of a politics that would
respect both the desire for justice and the desire for the unknown’ (67). Here
Lyotard flies in the face of those who feel that the absence of all
metadescriptions (or prescriptions) makes the postmodern condition
fundamentally unethical. Their objection is that any form of critique that is
not backed up by objective criteria, or at least by some form of consensus,
can be dismissed too easily. Lyotard singles out Habermas as one who would
adopt this kind of approach, but argues that such an approach is ‘neither
possible, nor even prudent’ (45).

Lyotard claims that Habermas’s approach, consisting of what he calls a
‘dialogue of argumentation’, rests on two assumptions: in the first place, it
assumes that ‘it is possible for all speakers to come to agreement on which rule
or metaprescriptions are universally valid for all language games’; and in the
second place, it assumes ‘that the goal of dialogue is consensus’ (65). Lyotard
finds neither of these assumptions acceptable, primarily because they deny the
complexity of postmodern society—the nature of which he describes in the
following way:
 

It is a monster formed by the interweaving of various networks of
heteromorphous classes of utterances (denotative, prescriptive,
performative, technical, evaluative, etc.). There is no reason to think that it
could be possible to determine metaprescriptives common to all of these
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language games or that a revisable consensus like the one in force at a
given moment in the scientific community could embrace the totality of
metaprescriptions regulating the totality of statements circulating in the
social collectivity. As a matter of fact, the contemporary decline of
narratives of legitimation—be they traditional or ‘modern’ (the
emancipation of humanity, the realization of the Idea)—is tied to the
abandonment of this belief.

(65)
 
The first assumption of the Habermasian approach is directly opposed to
Lyotard’s emphasis on the proliferation of heterogeneous discourses and the
role of paralogy, while the second is opposed to his insistence on the
importance of dissent. Not that consensus is always impossible; it can be
achieved, but only as a local phenomenon limited in both time and space.
Consensus as a goal would attempt to freeze the social system into a particular
state. Since it is unlikely that this will be achieved (as well as undesirable), a
better (and more just) policy would be to develop a sensitivity for the process
of social transformation. This may indicate that ‘consensus has become an
outmoded and suspect value’, but, claims Lyotard, ‘justice as a value is neither
outmoded nor suspect’ (66).

Given the complexity of postmodern society, the concept of justice is
certainly a problematic one, but Lyotard recognises two important, if
predictable, strategies: the recognition of the heteromorphous nature of
language games; and the recognition of the fact that all agreements on the rules
of any discourse, as well as on the ‘moves’ allowed within that discourse, must
be local, in other words, ‘agreed on by its present players and subject to
eventual cancellation’ (66).

This proposal sketches the outline for a practical theory of justice that can
best be understood as follows. It becomes the responsibility of every player in
any discursive practice to know the rules of the language game involved. These
rules are local, i.e. ‘limited in time and space’ (66). In following such rules, one
has to assume responsibility both for the rules themselves and for the effects of
that specific practice. This responsibility cannot be shifted to any universally
guiding principles or institutions—whether they be the State, the Church or the
Club.

The question that should be posed at this point is the following: can
behaviour in accordance with an abstract, universal set of rules be called
‘ethical’ at all? What is at stake here is the very meaning of the word ‘ethics’.
It was part of the dream of modernism to establish a universal set of rules that
would be able to regulate our behaviour in every circumstance. Taken by
itself, this is a noble ideal, but if we wish to argue that human beings are
constituted by their ethical behaviour, we run into problems. Following a
universal set of rules (assuming such rules exist) does not involve decision or
dilemma, it merely asks for calculation. Given the circumstances, what do the
rules decree my behaviour should be? Can this be called ‘ethical’? What kind
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of human being would act like this? Clearly some kind of automaton, itself
constituted by rational, rule-based principles. Modernist ethics, and an
understanding of language and the mind in terms of rule-based systems, fit
together perfectly.

This concurs with Zygmunt Bauman’s (1992, 1993) analysis of modern
and postmodern ethics. For him, modernism’s attempt to structure our
existence leads to nothing less than our imprisonment. A postmodern attitude
sets us free, not to do as we like, but to behave ethically. He acknowledges
that this involves a paradox: ‘it restores to agents the fullness of moral choice
and responsibility while simultaneously depriving them of the comfort of the
universal guidance that that modern self-confidence once promised…. Moral
responsibility comes with the loneliness of moral choice’ (Bauman 1992:
xxii). Actually this is just another formulation of the principle that has
become a leitmotiv of this chapter: you cannot escape the agonistics of the
network.

How does this principle influence moral behaviour in practice, and does it
really mean that all ethical principles are so contingent as to be ephemeral?
Difficult questions of this kind are addressed in the work of Druscilla Cornell
(1992). Her aim is to ‘establish the relationship of the philosophy of the limit
[the term she employs to describe her interpretation of post-structural theory] to
the questions of ethics, justice, and legal interpretation’ (1). She concentrates on
the work of Adorno, Derrida and Levinas, and although she is mainly
concerned with the field of jurisprudence, I am of the opinion that most of the
arguments presented in this book will support her position.

Cornell certainly supports the notion that we are all constituted by a
complex set of relationships, and she analyses different interpretations of
this position, taking Hegel as an important point of reference. In his
criticism of Kant’s abstract idealism, Hegel realises that we are constituted
within the social system, but for him it is a system that will ultimately be
perfectly organised. Everybody will have their specified place. Although
Hegel realised that the (dialectical) process of organisation is still in
progress, his view is, in the end, still a conservative one. At some stage
there will be no further need for transformation. Adorno argues that there
are differences among human beings that remain irreducible to a totalising
system. He thus reminds us of the importance of differences, not as
something that prevents us from finding a comfortable place in the system,
but as that which constitutes our humanity.

As an example of a contemporary thinker who analyses the implications
of a system’s theory for ethical issues, Cornell (116–154) discusses the
work of Niklas Luhmann. Luhmann sees society as a complex, self-
organising system. Since we are part of this system—we can actually never
stand outside it—we have no choice but to accept that the system will
organise itself in the way best for its survival. The system will ‘evolve’, but
cannot be ‘transformed’. We have no choice but to stay ‘inside’ the system.
The present understanding of, for example, a legal principle is therefore the
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correct one—a conservative, even positivistic, conclusion. This is a ‘weak’
kind of post-modernism, an example of the kind of constructivism that
Argyros (see above) objects to. It may come as some surprise to him that it
is Derrida whom Cornell uses to counter Luhmann’s understanding of
society as a self-contained, complete system.

The crux of the Cornell/Derrida argument is their interpretation of the flow
of time in a system (128). Traditional interpretations of the temporal nature of
a system, including Luhmann’s position, privilege the present. The immense
gain of the notion of différence is that it reminds us that not only the past has
to be considered when we try to establish the meaning of (say) an event, but
that since we cannot fully predict the effects of this event, the future has to be
considered as well, despite the fact that we have no idea what this future
might be. Now, instead of throwing up his hands, and declaring that in such a
case it is impossible to talk about meaning, and that therefore anything goes,
Derrida insists that we should take responsibility for this unknowable future.
In the case of ethical decisions, this leads to an aporia (133–135): we have to
take responsibility for the future effects of our decisions, but we cannot know
those effects, nor can we wait to see what they are. We have to make the
decision now.

How do we deal with this aporia? To fall back on universal principles is
to deny the complexity of the social system we live in, and can therefore
never be just. To allow everything is to evade our responsibility. The first
approach to the system is too rigid, the second too fluid. Cornell’s
suggestion (following Derrida, and reformulated in my terminology) is to
take present ethical (and legal) principles seriously—to resist change—but
to be keenly aware of when they should not be applied, or have to be
discarded. We therefore do follow principles as if they were universal rules
(Cornell and Derrida use the term ‘quasi-transcendental’), but we have to
remotivate the legitimacy of the rule each time we use it. To behave
ethically means not to follow rules blindly—to merely calculate—but to
follow them responsibly, which may imply that the rules must be broken. It
is important to emphasise that in these circumstances breaking a rule does
not invalidate it. That would have been the case if the rule were part of an
abstract set of rules bound by logical relationships. But if it is a quasi-rule
emerging from a complex set of relationships, part of the structure of this
kind of rule will be the possibility not to follow it. To make a responsible
judgement—whether it be in law, science or art—would therefore involve at
least the following components:
 
• Respecting otherness and difference as values in themselves.
• Gathering as much information on the issue as possible, notwithstanding the

fact that it is impossible to gather all the information.
• Considering as many of the possible consequences of the judgement,

notwithstanding the fact that it is impossible to consider all the
consequences.
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• Making sure that it is possible to revise the judgement as soon as it becomes
clear that it has flaws, whether it be under specific circumstances, or in
general.

 
Admittedly, this brief discussion of Cornell’s work does not do justice to the
many issues she raises. The problems of ethics, justice and law—at a personal,
national and international level—remain some of the most challenging, and
most important to be faced. I hope to have shown that complexity theory,
interpreted from a post-structural perspective, can help us to approach these
issues better equipped.



8 Afterword: Understanding complexity

The aim of this book has been to stimulate transdisciplinary discussion on the
subject of complexity. It is my contention that the traditional methods of
science and analytical philosophy are not sensitive enough to the dynamics of
complex systems. I have therefore been critical of the analytical method
(carving things up), deductive logic, atomism, formal rule-based grammars,
closed algorithms and symbolic representation. The shortcomings of these
approaches have been pointed out in analyses of information theory, formal
symbol systems, Searle’s Chinese Room argument and Fodor’s mental
representationalism. As an alternative, I have proposed a connectionist
approach, arguing that this approach is intrinsically more sensitive to
complexity. It focuses on the behaviour of collections of many interconnected,
similar elements that do not have (atomistic) significance by themselves, but
that obtain significance through a complex set of non-linear, asymmetrical
relationships in a network. Important characteristics of these networks include
distributedness, self-organisation and the operation on local information without
central control. I have also shown that these models already have practical
applications, e.g. in pattern recognition problems, and that an understanding of
them as complex systems can help to improve their practical performance.
Throughout I have tried to intertwine philosophical and scientific discourses.
The idea has been to show not only how philosophical considerations can
benefit scientific practice, but also the reverse. It was specifically the burden of
the final chapter to show how a practical understanding of complexity can
contribute to some of the key areas in postmodern philosophy.

As far as the application of these models of complexity is concerned, this
conclusion marks only the beginning. It must be clearly understood that the
general understanding of complexity developed here does not supply a
complete description of any specific complex system. If we want to analyse, for
example, a living cell as a complex system, the ideas presented here merely
provide a framework. The framework will have to be filled in with the
(biochemical) detail relevant to the specific case. Similarly, we have
characterised language in terms of a complex system, but this has to be seen as
a very tentative first step. For the development of useful, wide-ranging
connectionist models of language, and for their implementation in machines—
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should that prove to be possible—a great deal of very hard work still lies ahead.
My hope is that this study could provide a certain theoretical orientation when
difficult and complex projects such as these are attempted.

Finally, I am very much aware of the fact that I could be criticised for
committing the performative fallacy, i.e. attempting to do what I claim is not
possible. In this case the problem would lie in trying to develop a theory that
insists on radical contingency, yet claims to be generally valid. This is exactly
the same problem that Derrida (1981:26) faces when he claims ‘there are only,
everywhere, differences and traces of traces’. To insist that this fallacy should
not be committed makes it extremely difficult to maintain any radically critical
position. This demand marks the starkest division between the analytical and
the postmodern positions. What is seen as the ultimate knock-down argument
on the one side is seen as an evasion of the real issues by the other.

Perhaps a truly postmodern response to this demand would be to just ignore
it. However, Derrida responded quite strongly when this kind of accusation was
made against him by Habermas,1 and perhaps I should take the risk of
responding as well. I cannot counter the argument on its own grounds—in that
respect it is a show stopper. However, I do think that one should consider the
contents of the theory being accused of the performative fallacy. Just like
Derrida’s theory of the trace, the characterisation of complexity presented here
is a very sparse one; it claims very little. It describes in general the structure of
complex systems, but at a very low level. This means that the higher-level or
emergent properties play no role as such in the theory itself; they have no
‘higher’ importance. Just as Derrida’s model of language is held together by
traces only, complex systems are held together by local interactions only. The
model does not attempt to specify the effects of those interactions.

This argument can be explicated by referring, for the last time now, to a
similar problem concerning the training of neural networks. Neural networks
are said to be non-algorithmic in the way they solve problems, yet the network
is trained with a learning ‘algorithm’. This learning algorithm, however, knows
absolutely nothing about the structure of the specific problem being addressed.
The same ‘algorithm’ can be used to change the weights in networks that are
applied to any number of problems. It operates at such a low level that it has no
content by itself, and is only given content in specific, contingent applications.
Similarly, the description of complexity provided here does pretend to be
general, but at a low level. It does not pretend to provide an accurate, detailed
description of any specific complex system. As a matter of fact, it remains
sceptical of such descriptions exactly because of the dynamics apparent at the
low level.

This point will surely not eliminate the charge of performing the
performative fallacy, or other criticisms, for that matter, but hopefully it
communicates something of the spirit in which this book is offered: one of
openness, provisionality and adventure.
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1 APPROACHING COMPLEXITY

1 These characteristics are adapted from similar descriptions in Nicolis and Prigogine
(1989), Serra and Zanarini (1990) and Jen (1990).

2 The concept ‘emergence’ is often used in a way that creates the impression that
something mysterious happens when ‘things come together’. The way in which it is
used here implies nothing ineffable whatsoever. It merely underlines the fact that
nothing ‘extra’, no external telos or designer, is required to ‘cause’ the complex
behaviour of a system. Perhaps it would be better to employ the term ‘relational
properties’ rather than ‘emergent properties’.

3 The example is chosen for didactic reasons. I have no detailed knowledge of
economics.

4 In a certain sense, the economic system ‘bottoms out’ at the level of the penny. There
is nothing below, nor is there anything above, this level. The economy is constituted
by the movement of clusters of pennies. In Derrida’s terms (to be discussed later),
the penny is the ‘trace’ of the economic system.

5 For a detailed discussion of the development and significance of thermodynamics,
and of the ways in which it opened up new avenues for research, see Prigogine and
Stengers (1984).

6 Talking only about series of numbers may seem a little superficial, but bear in mind that
any formalism can be expressed as a series of numbers via the Gödel numbering system.

7 To prove that a sequence is not random is easy, one only has to find a program that is
shorter. It need not even be a minimal program. To prove that a sequence is random,
however, you have to prove that no shorter program exists. Chaitin argues, following
Gödel’s Incompleteness Theorem, that such a proof cannot be found. Randomness is
falsifiable, but never verifiable (this is a much stronger claim in mathematics than in
the empirical sciences). Chaitin’s conclusion concerning the implications of this
argument for the limitations of number formalism is both interesting and important,
but falls outside the scope of this study. For further details see Chaitin (1975:50–53;
1987:146–164).

8 The status of all states of a system cannot be determined from within the system.
The ‘incompleteness’ of a formal system, in other terms also known as the ‘halting
problem’, is a complex meta-mathematical issue analysed by Gödel (1962) and
Turing (1936) respectively, and falls outside the scope of this study. For accessible
discussions of these issues, see Hofstadter (1980) or Penrose (1989).
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9 Whether a natural language can actually be modelled by a formal system is one of
the great unresolved problems of modern linguistics. I will argue that rule-based
systems are not adequate models for the complexity of natural language. The
example of a formal language given here is from within the AI perspective.

10 This is of course an oversimplification of the actual working of the brain, but even in
such a reduced model we already have the capability for complex behaviour.

11 Their critique is discussed in Chapter 2.
12 They are adapted from discussions in Serra and Zanarini (1990:26, 27) and

Chandrasekaran et al. (1988).
13 In first-order logic, anything can be proven from contradictory premises. As soon as

a contradiction occurs, the results of the logical deduction become meaningless.

2 INTRODUCING CONNECTIONISM

1 An equation for the output of a specific neuron can be given:
 

 

with:

Ø the output of this neuron
n the amount of preceding neurons connected to this one
On the output of the nth previous neuron
Wn the weight associated with the nth previous neuron
f the transfer function of the neuron, almost always a non-linear function, usually

sigmoidal in shape

For a detailed, technical introduction to neural networks, see Rumelhart and
McClelland (1986).

2 The concept of Turing machines can be misleading. They are abstract mathematical
entities that provide formalisations with which to describe computational procedures,
i.e. processes that follow an algorithm in discrete steps, including those implemented
on digital computers with a Van Neumann architecture. The fact that Turing
describes these ‘machines’ in terms of a ‘tape head’ that reads and prints symbols on
a (sometimes infinitely long) ‘tape’ does not make them ‘real’. For a more detailed
discussion of Turing machines and their relationships to computers see Haugeland
(1985:133–140) or Penrose (1989:40–86).

3 Their failure to distinguish between a semantic net and a distributed representation in
a neural net also results in their equating of connectionism with associationism
(Fodor and Pylyshyn 1988:31). A connectionist network does not encode a number
of relationships between specific ideas, because specific nodes in the network do not
correspond to specific ideas, as they do in a semantic network. Some of this
confusion is a result of connectionist terminology. Connectionists tend to refer to the
relationships in a network as ‘sub-symbolic’ or as ‘micro-features’, as if a group of
micro-features lumped together will add up to one whole feature or symbol. A better
understanding of what a weight is emerges when it is compared with Derrida’s
notion of a ‘trace’ (see below).
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4 Such research has received serious attention among connectionists long before Fodor
et al. suggested it. See, e.g., Touretzky and Hinton (1985).

5 A similar argument can be used to defend a ‘postmodern’ form of rationality that is
not based on universal principles, but emerges from the necessity to cope with—and
be critical of—our complex life-world. Rationality cannot precede the generation of
meaning, but must follow it; and meaning is the result of a complex set of
relationships. See Schrag (1992) for a similar kind of argument, made from a
philosophical—not connectionist—perspective.

6 This division between knowledge and ethics will be discussed in the final chapter.

3 POST-STRUCTURALISM, CONNECTIONISM AND
COMPLEXITY

1 Throughout this introduction the concept ‘sign’ can be regarded as functionally
equivalent to the connectionist notion of ‘unit’ or ‘node’ in a network.

2 Culler (1983:96) provides the following example:

If a cave man is successfully to inaugurate language by making a special grunt
signify ‘food’, we must suppose that the grunt is already distinguished from other
grunts and that the world has already been divided into the categories ‘food’ and
‘non-food’.

3 For his own succinct summary of the notion of différance, see Derrida (1982:89).
4 For a more detailed comparison, see Cilliers (1990).

4 JOHN SEARLE BEFUDDLES

1 Searle’s argument leads Roger Schank to conclude that the only understanding that
can be found is situated in the person writing the program, the AI researcher (Searle
1980:447).

2 For a more detailed discussion see Marletti (1990).
3 The question concerning who are and who are not dualists could form a separate line

of inquiry. Hofstadter (in Searle 1980:433) is quite clear about his evaluation of
Searle’s status in this respect. He claims that Intentionality is merely Searle’s word
for ‘soul’.

4 This essay, along with Derrida’s response to Searle’s critique and an extended
Afterword, was anthologised under the title Limited Inc. (Derrida 1988). My
references will be to the anthologised versions.

5 After having written this chapter, I encountered an article by Globus (1991) which
also raises a number of objections, some of them similar to mine.

5 PROBLEMS WITH REPRESENTATION

1 Productivity and structure are also the two horns of the argument Fodor and
Pylyshyn (1988) advance against connectionism. This was discussed in Chapter 2.

2 The transfer function of specific neurons can vary as well. This is of practical
importance in finding economic implementation, but in theory the change in transfer
function can be achieved by the addition of bias terms or, if necessary, by using a
few extra neurons with transfer functions similar to the rest.

3 Of course, if the network has self-organising capabilities, the functions of lost
neurons can be taken over by others without having to build up a new representation
from scratch. Self-organisation is discussed in the next chapter.
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4 Sterelny (1990:187) lists six ‘serious problems’. Some of them are similar enough to
be combined. I will also discuss them in a sequence different from the one in which
he presented them.

5 Strictly speaking we should no longer use the word ‘representation’ in this context.
Instead of introducing new and perhaps confusing terminology, I will continue to use the
term, bearing in mind that the term ‘distributed representation’ contains internal
contradictions. In the tradition of Heidegger one should perhaps have used ‘distributed ’.

6 An expert system is a formal model of a domain of knowledge implemented on a
computer by using sets of rules.

7 A classic example is the so-called exclusive-or (XOR) problem. It is used as a
traditional test-case for classifiers since it constitutes a problem that is not linearly
separable. Neural networks consisting of half a dozen neurons can solve the problem.
I do not think that the analysis of such networks contributes much to our
understanding of neurocomputing.

8 These parameters apply to the XOR problem. See note 7 above.
9 For example, at ICANN-92—a large neural network conference (see Aleksander and

Taylor 1992)—several papers addressed this issue. Judd (1992) showed that wide,
shallow networks are computationally efficient, and Hecht-Nielsen (1992) argued
that the high-dimensional networks necessary to solve complex problems have less
difficulty converging than one may think.

10 The philosophical arguments provided here are certainly not the only ones against
representation. Problems with representation is, for example, one of the central
themes of Rorty’s (1980) Philosophy and the Mirror of Nature—where he also
engages with Chomsky and Fodor (244–256). Joseph Rouse (1996:205–236) argues
against representation from a Davidsonian perspective. Norris (1992:59–82) analyses
attempts to show similarities between Davidson and Derrida, and concludes that this
comparison is not a simple one to make.

11 This issue is discussed at greater length, incorporating insights from both Wittgenstein
and Derrida, by Schalkwyk (1991). The structural necessity for the sign to be iterable is
one of the central issues at stake in the confrontation between Searle and Derrida (1988).

12 One could perhaps argue that both Baudrillard and Derrida want to collapse the Tower
Bridge picture of representation, but not in the same way. Baudrillard, the more ‘postmodern’
of the two, collapses the picture to the top level—everything is simulation—whereas Derrida
wants to collapse it to the bottom level—everything is material. If one falls for the idea of
one level only, perhaps the difference does not matter so much. One can, however, see how
Baudrillard’s approach leads to the ‘anything goes’ style of postmodernism; something
that is foreign to Derrida’s understanding of the status of texts.

6 SELF-ORGANISATION IN COMPLEX SYSTEMS

1 There is an interesting tension between the need for structure and the need for
plasticity. Some form of structure is a prerequisite for the encoding of information in
the system, but if the structure is too rigid, it cannot adapt. Similarly, plasticity is
necessary for adaptation, but if change can take place too easily—if the memory of
the system is too short—the system merely reflects the surroundings, and cannot
interpret it. This matter will receive more attention below.

2 Other models are provided by cellular automata (Serra and Zanarini 1990: 50–60;
Toffoli and Margolus 1987) as well as digital cellular automata, also known as
Random Boolean nets (Serra and Zanarini 1990:64–69; Staufer 1987). Boolean nets
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are also used by Stuart Kauffman in his simulations of self-organising systems.
Although Kauffman undoubtedly does important work, I will not discuss it. Part of
the problem is that it is difficult to find a Kauffman text with which one can engage
at a philosophical level. It would be helpful if he wrote a book finding a balance
between the strict mathematics of The Origins of Order (Kauffman 1993) and the
flowery, quasi-religious rhetoric of At Home in the Universe (Kauffman 1995).

3 In the case of the brain (which is a neural network), stimuli are received not only
from the outside via the senses, but also from the inside of the body.

4 These principles are based on a similar list provided by Von der Malzburg
(1987:272).

5 Predefined structure is not excluded. In living systems important structures can be
inherited.

6 Instances of entrainment found in nature include the following: populations of
crickets entrain each other to chirp coherently; populations of fireflies move towards
coherent flashing; and the ovulation cycles of women living closely together move in
phase (Garfinkel 1987:200).

7 The best example of a meta-stable state is that of an upside-down pendulum. The
smallest perturbation will immediately push it out of the balanced state.

8 Ideally we need a formulation of the principle of selection that would be compatible
with Hebb’s rule (or the use-principle).

9 See Edelman (1987:234, 235) for a discussion on the differences between the theory
of direct perception (Gibson 1979) and neuronal group selection.

10 For an important discussion of the role of memory that incorporates the views of
Freud and Edelman, see Rosenfeld (1988). Rosenfeld argues for a non-symbolic,
non-representational theory of memory.

11 I owe this insight to Andries Gouws.
12 See Cornell (1992:116–154) for a discussion of how the dynamics of différance

deconstructs a linear understanding of time in the context of complex systems—in
Cornell’s case, the legal system.

7 COMPLEXITY AND POSTMODERNISM

1 In the previous chapter we encountered the notion of ‘population thinking’. As a kind
of equivalent—in the context of Lyotard’s arguments in favour of a sensitivity to
difference—we can coin the term ‘difference thinking’, alluding to the way in which
members of a population can only be told apart on the basis of their differences from
each other.

The choice of the word ‘paralogy’ is also significant. It is usually employed to
designate false reasoning, to mark something as unlogical. The word literally means
‘beside’ logic, and Lyotard employs it to show that logical descriptions are not
adequate when dealing with the richness and contradictions of contingent
complexity. Many stories, even contradictory ones, can be told about single events or
phenomena. Lyotard (1984:60) distinguishes paralogy from ‘innovation’, which, he
claims, is still under the command of the system, as it is used to improve the latter’s
efficiency. Paralogy is ‘a move played in the pragmatics of knowledge’, the
consequences of which cannot be determined a priori.

2 Here Lyotard explicitly refers to Jean Baudrillard, whose analyses of postmodern
society often have a very negative flavour.

3 In her analysis of social (or ethical) relationships, Druscilla Cornell (1992) is aware
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of the necessity of asymmetrical relationships as well. In order to minimise the
possibilities of exploitation, she insists (following Derrida’s reading of Levinas) on
‘phenomenological symmetry’ (85). The argument is that no element in the system is
privileged in an a priori way. In their existence, all elements are equal. This is an
important point to make, and does not conflict with our understanding of the
elements in a complex system. It does not, however, supply any guarantee against
exploitation, nor does it really help us to identify exploitation when we encounter it.
The problem is that, to a large extent, the node in the network (and therefore the
individual in the social system) is constituted by its relationships, not by some
phenomenological aspect of the node itself. We have to grant the phenomenological
equality of each individual, but, in all but the most obvious cases, to establish
whether someone is being violated, we have to start disentangling the web of social
relationships. These relationships are contingent, and therefore different each time.

4 It must be noted that Lyotard is somewhat ambiguous in his evaluation of this point.
Although he shows that the ‘potential for erosion’ is intrinsic to traditional scientific
discourse, it does seem as if he feels something important is lost in the process, some
special kind of ‘speculative’ research that is only possible under the auspices of the
‘faculty’ associated with the traditional university (Lyotard 1984:39, 52).

5 This point forms the basis of Lyotard’s rejection of hermeneutics. Hermeneutic
discourse is born of the presupposition that ‘true knowledge…is composed of
reported statements that are incorporated into the metanarrative of a subject that
guarantees their legitimacy’. This is a presupposition ‘which guarantees that there is
meaning to know and thus confers legitimacy upon history (and especially the
history of learning)’ (Lyotard 1984:35).

6 Rouse (1991b: 609) does, however, include her in a group he calls ‘cheerfully
postmodern’.

7 The Churchlands’ style of philosophy is often referred to as ‘eliminative
materialism’ (see P.M.Churchland 1989:1–122).

8 In arguing for the superempirical value of simplicity, Churchland opts for the
employment of minimal networks (181). I argue against them in Chapter 5.

9 I analyse this essay, entitled ‘Racism’s Last Word’ (Derrida 1985), in a forthcoming
article (Cilliers 1998).

8 AFTERWORD: UNDERSTANDING COMPLEXITY

1 See the Afterword to Limited Inc. (Derrida 1988) for this response.
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